2,714 research outputs found

    Modeling and Control of a Quadrotor UAV Equipped With a Flexible Arm in Vertical Plane

    Get PDF
    In the field of unmanned aerial vehicles (UAVs), aerial manipulations are receiving considerable attention because of their potential application to tasks such as pick and place, detection, and inspection. However, short flight endurance times and concerns about the safety to surroundings during interacting heavily limit the expansion of aerial manipulations in real implementations. To overcome these challenges, this paper focuses on a system in which a quadrotor UAV is equipped with a lightweight and flexible arm. Based on the infinite-dimensional dynamics, the mathematic model of system is described by a hybrid partial differential equation-ordinary differential equation (PDE-ODE). An easily implementable controller is derived from a Lyapunov functional construction related to the energy of the system. The proposed controller ensures global Lyapunov stability for nonlinear system and local asymptotic stability for the linearized system. Further, it is shown that the proposed controller realizes stable motion of the aerial manipulator as well as vibration control of the flexible arm. Finally, numerical simulations are conducted to investigate the validity of the proposed controller

    Variable stiffness robotic hand for stable grasp and flexible handling

    Get PDF
    Robotic grasping is a challenging area in the field of robotics. When interacting with an object, the dynamic properties of the object will play an important role where a gripper (as a system), which has been shown to be stable as per appropriate stability criteria, can become unstable when coupled to an object. However, including a sufficiently compliant element within the actuation system of the robotic hand can increase the stability of the grasp in the presence of uncertainties. This paper deals with an innovative robotic variable stiffness hand design, VSH1, for industrial applications. The main objective of this work is to realise an affordable, as well as durable, adaptable, and compliant gripper for industrial environments with a larger interval of stiffness variability than similar existing systems. The driving system for the proposed hand consists of two servo motors and one linear spring arranged in a relatively simple fashion. Having just a single spring in the actuation system helps us to achieve a very small hysteresis band and represents a means by which to rapidly control the stiffness. We prove, both mathematically and experimentally, that the proposed model is characterised by a broad range of stiffness. To control the grasp, a first-order sliding mode controller (SMC) is designed and presented. The experimental results provided will show how, despite the relatively simple implementation of our first prototype, the hand performs extremely well in terms of both stiffness variability and force controllability

    Inside the brain of an elite athlete: The neural processes that support high achievement in sports

    Get PDF
    Events like the World Championships in athletics and the Olympic Games raise the public profile of competitive sports. They may also leave us wondering what sets the competitors in these events apart from those of us who simply watch. Here we attempt to link neural and cognitive processes that have been found to be important for elite performance with computational and physiological theories inspired by much simpler laboratory tasks. In this way we hope to inspire neuroscientists to consider how their basic research might help to explain sporting skill at the highest levels of performance

    Attitude control analysis of tethered de-orbiting

    Get PDF
    The increase of satellites and rocket upper stages in low earth orbit (LEO) has also increased substantially the danger of collisions in space. Studies have shown that the problem will continue to grow unless a number of debris are removed every year. A typical active debris removal (ADR) mission scenario includes launching an active spacecraft (chaser) which will rendezvous with the inactive target (debris), capture the debris and eventually deorbit both satellites. Many concepts for the capture of the debris while keeping a connection via a tether, between the target and chaser have been investigated, including harpoons, nets, grapples and robotic arms. The paper provides an analysis on the attitude control behaviour for a tethered de-orbiting mission based on the ESA e.Deorbit reference mission, where Envisat is the debris target to be captured by a chaser using a net which is connected to the chaser with a tether. The paper provides novel insight on the feasibility of tethered de-orbiting for the various mission phases such as stabilization after capture, de-orbit burn (plus stabilization), stabilization during atmospheric pass, highlighting the importance of various critical mission parameters such as the tether material. It is shown that the selection of the appropriate tether material while using simple controllers can reduce the effort needed for tethered deorbiting and can safely control the attitude of the debris/chaser connected with a tether, without the danger of a collision

    Specific binding of a polymer chain to a sequence of surface receptors.

    Get PDF
    This paper considers a biologically relevant question of a Gaussian chain (such as an unfolded protein) binding to a sequence of receptors with matching multiple ligands distributed along the chain. Using the characteristic time for a tethered ligand to bind to a surface receptor, we study the case of multiple binding to a linear sequence of receptors on the surface. The tethered binding time is determined by the entropic barrier for the chain to be stretched sufficiently to reach the distant receptor target, and a restriction on chain conformations near the substrate. Adsorption (multiple-site binding) is shown to be dominated by a simple zipper sequence, only occasionally accelerated by loop formation. However, when the number of receptors increases, a competing rate-limiting process takes over: the center of mass of the remaining free chain has to drift down the line of receptors, which takes longer when the receptors are close and the entropic pulling force is low. As a result, the time for the complete chain adsorption is minimised by a certain optimal number of receptors, depending on the distance to be traversed by the free end, and the chain length

    Adaptive optimal control of under-actuated robotic systems using a self-regulating nonlinear weight-adjustment scheme: Formulation and experimental verification

    Get PDF
    This paper formulates an innovative model-free self-organizing weight adaptation that strengthens the robustness of a Linear Quadratic Regulator (LQR) for inverted pendulum-like mechatronic systems against perturbations and parametric uncertainties. The proposed control procedure is devised by using an online adaptation law to dynamically adjust the state weighting factors of LQR's quadratic performance index via pre-calibrated state-error-dependent hyperbolic secant functions (HSFs). The updated state-weighting factors re-compute the optimal control problem to modify the state-compensator gains online. The novelty of the proposed article lies in adaptively adjusting the variation rates of the said HSFs via an auxiliary model-free online self-regulation law that uses dissipative and anti-dissipative terms to flexibly re-calibrate the nonlinear function's waveforms as the state errors vary. This augmentation increases the controller's design flexibility and enhances the system's disturbance rejection capacity while economizing control energy expenditure under every operating condition. The proposed self-organizing LQR is analyzed via customized hardware-in-loop (HIL) experiments conducted on the Quanser's single-link rotational inverted pendulum. As compared to the fixed-gain LQR, the proposed SR-EM-STC delivers an improvement of 52.2%, 16.4%, 55.2%, and 42.7% in the pendulum's position regulation behavior, control energy expenditure, transient recovery duration, and peak overshoot, respectively. The experimental outcomes validate the superior robustness of the proposed scheme against exogenous disturbances
    corecore