5 research outputs found

    Towards safety in minimally invasive surgery : patient safety, tissue handling and training aspects

    Get PDF
    In recent years a flow of media reports about unsafe situations in operating rooms have reached the general public. Awareness of the importance of patient safety also reached politicians. The report by the Dutch inspectorate of health care __Risico__s minimaal invasieve chirurgie onderschat__ (Risks minimally invasive surgery underestimated) stressed that patient safety is especially at risk in Minimally Invasive Surgery. Therefore patient safety became a focus of research and quality improvement, also in minimally invasive surgery. The current thesis aimes to give insight into patient safety risk factors in minimally invasive surgery. Of all examined risk factors minimally invasive surgical skills appeared to be directly related to patient safety. Therefore special focus for training of these skills is necessary. Previous research has shown that during simulation training objective assessment of economy of movements and time is possible. However, until recently there was no way to objectively assess one of the most important surgical skills: tissue handling. The development of a force sensor has made it possible to measure interaction forces with artificial tissue. In this thesis the clinical implications of a force sensor and the need of this new technology within training of minimally invasive surgical skills is examined.Financial support for the publication of this thesis was kindly provided by: Nederlandse Vereniging voor Endoscopische Chirurgie, Medical Dynamics, Olympus Nederland BV, ERBE Nederland BV, Skills Meducation, ChipSoft, Memidis Pharma b.v., Goodlife Healthcare bv, Covidien, Stöpler Instrumenten en Apparaten B.V.UBL - phd migration 201

    Skills Assessment in Arthroscopic Surgery by Processing Kinematic, Force, and Bio-signal Data

    Get PDF
    Arthroscopic surgery is a type of Minimally Invasive Surgery (MIS) performed in human joints, which can be used for diagnostic or treatment purposes. The nature of this type of surgery makes it such that surgeons require extensive training to become experts at performing surgical tasks in tight environments and with reduced force feedback. MIS increases the possibility of erroneous actions, which could result in injury to the patient. Many of these injuries can be prevented by implementing appropriate training and skills assessment methods. Various performance methods, including Global Rating Scales and technical measures, have been proposed in the literature. However, there is still a need to further improve the accuracy of surgical skills assessment and improve its ability to distinguish fine variations in surgical proficiency. The main goal of this thesis is to enhance surgical, and specifically, arthroscopic skills assessment. The optimal assessment method should be objective, distinguish between subjects with different levels of expertise, and be computationally efficient. This thesis proposes a new method of investigating surgical skills by introducing energy expenditure metrics. To this end, two main approaches are pursued: 1) evaluating the kinematics of instrument motion, and 2) exploring the muscle activity of trainees. Mechanical energy expenditure and work are investigated for a variety of laparoscopic and arthroscopic tasks. The results obtained in this thesis demonstrate that expert surgeons expend less energy than novice trainees. The different forms of mechanical energy expenditure were combined through optimization methods and machine learning algorithms. An optimum two-step optimization method for classifying trainees into detailed levels of expertise is proposed that demonstrates an enhanced ability to determine the level of expertise of trainees compared to other published methods. Furthermore, performance metrics are proposed based on electromyography signals of the forearm muscles, which are recorded using a wearable device. These results also demonstrate that the metrics defined based on muscle activity can be used for arthroscopic skills assessment. The energy-based metrics and the muscle activity metrics demonstrated the ability to identify levels of expertise, with accuracy levels as high as 95% and 100%, respectively. The primary contribution of this thesis is the development of novel metrics and assessment methods based on energy expenditure and muscle activity. The methods presented advance our knowledge of the characteristics of dexterous performance and add another perspective to quantifying surgical proficiency

    21st century manufacturing machines: Design, fabrication and controls

    Get PDF
    Advances in nanotechnology, microfabrication and new manufacturing processes, the revolution of open electronics, and the emerging internet of things will influence the design, manufacture, and control of manufacturing machines in the future. For instance, miniaturization will change manufacturing processes; additive and rapid prototyping will change the production of machine components; and open electronics offer a platform for new control architectures for manufacturing systems that are open, modular, and easy to reconfigure. Combined with the latest trends in cyber-physical systems and the internet of things, open architecture controllers for CNC systems can become platforms, oriented for numerical control as a service (NCaaS) and manufacturing as a service, tailored to the creation of cyber-manufacturing networks of shared resources and web applications. With this potential in mind, this research presents new design-for-fabrication methodologies and control strategies to facilitate the creation of next generation machine tools. It provides a discussion and examples of the opportunities that the present moment offers. The first portion of this dissertation focuses on the design of complex 3D MEMS machines realized from conventional 2.5D microfabrication processes. It presents an analysis of an example XYZ-MEMS parallel kinematics stage as well as of designs of the individual components of the manipulator, integrated into a design approach for PK-XYZ-MEMS stages. It seems likely that this design-for-fabrication methodology will enable higher functionality in MEMS micromachines and result in new devices that interact, in three full dimensions, with their surroundings. Novel and innovative research exemplifies the opportunities new and economical manufacturing technologies offer for the design and fabrication of modern machine tools. The second portion of this dissertation describes the demonstration of a new flexural joint designed with both traditional and additive manufacturing processes. It extrapolates principles based on the design of this joint that alleviate the effects of low accuracy and poor surface finishing, anisotropy, reductions in material properties of components, and small holding forces. Based on these results, the next section presents case examples of the construction of mesoscale devices and machine components using multilayered composites and hybrid flexures for precision engineering, medical training, and machine tools for reduced life applications and tests design-for-fabrication strategies. The results suggest the strategies effectively address existing problems, providing a repertory of creative solutions applicable to the design of devices with hybrid flexures. The implications for medical industry, micro robotics, soft robotics, flexible electronics, and metrology systems are positive. Chapter number five examines to positive impact of open architectures of control for CNC systems, given the current availability of micro-processing power and open-source electronics. It presents a new modular architecture controller based on open-source electronics. This component-based approach offers the possibility of adding micro-processing units and an axis of motion without modification of the control programs. This kind of software and hardware modularity is important for the reconfiguration of new manufacturing units. The flexibility of this architecture makes it a convenient testbed for the implementation of new control algorithms on different electromechanical systems. This research provides general purpose, open architecture for the design of a CNC system based on open electronics and detailed information to experiment with these platforms. This dissertation’s final chapter describes how applying the latest trends to the classical concepts of modular and open architecture controllers for CNC systems results in a control platform, oriented for numerical control as a service (NCaaS) and manufacturing as a service (MaaS), tailored to the creation of cyber-manufacturing networks of shared resources and web applications. Based on this technology, this chapter introduces new manufacturing network for numerical control (NC) infrastructure, provisioned and managed over the internet. The proposed network architecture has a hardware, a virtualization, an operating system, and a network layer. With a new operating system necessary to service and virtualize manufacturing resources, and a micro service architecture of manufacturing nodes and assets, this network is a new paradigm in cloud manufacturing

    Force Parameters for Skills Assessment in Laparoscopy

    No full text
    Cervix cance
    corecore