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Abstract

Arthroscopic surgery is a type of Minimally Invasive Surgery (MIS) performed in human

joints, which can be used for diagnostic or treatment purposes. The nature of this type of

surgery makes it such that surgeons require extensive training to become experts at performing

surgical tasks in tight environments and with reduced force feedback. MIS increases the pos-

sibility of erroneous actions, which could result in injury to the patient. Many of these injuries

can be prevented by implementing appropriate training and skills assessment methods.

Various performance methods, including Global Rating Scales and technical measures,

have been proposed in the literature. However, there is still a need to further improve the

accuracy of surgical skills assessment and improve its ability to distinguish fine variations in

surgical proficiency.

The main goal of this thesis is to enhance surgical, and specifically, arthroscopic skills

assessment. The optimal assessment method should be objective, distinguish between subjects

with different levels of expertise, and be computationally efficient. This thesis proposes a new

method of investigating surgical skills by introducing energy expenditure metrics. To this end,

two main approaches are pursued: 1) evaluating the kinematics of instrument motion, and 2)

exploring the muscle activity of trainees.

Mechanical energy expenditure and work are investigated for a variety of laparoscopic and

arthroscopic tasks. The results obtained in this thesis demonstrate that expert surgeons expend

less energy than novice trainees. The different forms of mechanical energy expenditure were

combined through optimization methods and machine learning algorithms. An effective two-

step optimization method for classifying trainees into detailed levels of expertise is proposed

that demonstrates an enhanced ability to determine the level of expertise of trainees compared

to other published methods. Furthermore, performance metrics are proposed based on elec-

tromyography signals of the forearm muscles, which are recorded using a wearable device.

These results also demonstrate that the metrics defined based on muscle activity can be used

for arthroscopic skills assessment. The energy-based metrics and the muscle activity metrics



demonstrated the ability to identify levels of expertise, with accuracy levels as high as 95% and

100%, respectively.

The primary contribution of this thesis is the development of novel metrics and assessment

methods based on energy expenditure and muscle activity. The methods presented advance

our knowledge of the characteristics of dexterous performance and add another perspective to

quantifying surgical proficiency.

Keywords: Performance metrics, motor skills assessment, energy expenditure, muscle ac-

tivity, arthroscopy, minimally invasive surgery, surgical training, motion and force measure-

ment, electromyography
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Chapter 1

Introduction

Arthroscopic surgery is a type of Minimally Invasive Surgery (MIS) that can be used for di-

agnostic or treatment purposes on human joints. Similar to other MIS procedures, this type

of surgery reduces post-operative pain, the risk of infection, and bleeding compared to open

surgery [1]. Consequently, patients can recover, start rehabilitation, and go back to normal

activities faster. Recently, arthroscopy has become the most performed orthopaedic proce-

dure [2].

Apart from theoretical knowledge, motor skills substantially affect the outcome of MIS

[3]. In particular, arthroscopy requires the learning of fine motor skills and enhanced visual-

spatial abilities [4, 5]. It has been reported in [6, 7] that orthopaedic residents do not feel

prepared and confident when they start participating in the Operating Room (OR), even when

their participation is supervised. In addition, the limited practice time available in the OR,

the high cost, and the possibility of tissue injury necessitate appropriate training and skills

assessment outside of the OR. It was reported in [8] that a high percentage of the mortality rate

in hospitals is related to medical errors; and from that large percentage, 50% is preventable

during surgery. An appropriate assessment method can assist in providing high quality health

care to patients by ensuring that surgeons are truly proficient with their instruments.

1
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1.1 Motivation

One of the problems in the area of surgical training is that there is no clear definition of pro-

ficiency. Previously, there was a significant reliance on the outcome of the task, or the time

required to complete the task. However, it is now argued by many researchers that these fac-

tors are not appropriate for a thorough analysis of surgical proficiency [9, 10]. Trainees can

demonstrate a similar task completion time as experts and minimize the number of errors in

their performance. However, their limited capability in transferring these skills to the operating

room is an indication of their lack of proficiency. In addition, by exploring other performance

metrics, significant differences can be found between two subjects with the same task comple-

tion time. A thorough assessment method is required to prevent trainees from being misguided

and instead give them a realistic report on their performance [9]. Surgical assessment methods

are required that can detect small variations in the performance of subjects with various levels

of expertise.

For arthroscopic training in particular, there is a lack of standardized assessment methods

for arthroscopic skills. Most of the studies in this area have focused on developing simulators

without as much consideration about how the simulators can be used to objectively assess

performance.

The lack of an appropriate training system in the area of arthroscopy motivated researchers

at Canadian Surgical Technologies and Advanced Robotics (CSTAR) to develop a physical

knee simulator [11, 12] and a physical shoulder simulator [13]. In addition to the develop-

ment of simulators, objective assessment methods are required to realize a complete training

platform. In 2015, a study was published and discussed by the Association for Surgical Ed-

ucation (ASE) Simulation Committee about the challenges in the use of surgical simulators

and included possible solutions to these challenges. A lack of optimal assessment methods

was mentioned as one of the major gaps in training with a surgical simulator [14]. Although

performance metrics have been explored previously for arthroscopy, the assessment has been

limited to a few metrics. This problem limits the criteria of expertise that can be explored

and also our knowledge of the skills required for arthroscopy. The knowledge of arthroscopic

proficiency and standardized assessment methods are inadequate for realizing an appropriate

training system.
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1.2 General Problem Statement

One of the factors that influences the quality of health care is fluid, purposeful instrument mo-

tion, which can be limited for some surgeons. Currently, a major part of surgical competence

assessment is performed by expert evaluators observing the performance of trainees, whose

performance is rated based on Global Rating Scales. However, this assessment method is sub-

jective and the ratings vary for different evaluators [15]. This inconsistency of evaluation was

also noticed in a previous study in our group. In this study, two different expert surgeons blindly

evaluated the performance of trainees by watching video of their performance. A significant

percentage of subjects were rated differently by the two expert surgeons. Differing opinions

are inevitable because there is no clear definition of proficiency, and also because there might

be features of performance that are not observable in a video.

Developing an objective and comprehensive method of surgical skills assessment prevents

medical errors by preventing less-prepared surgeons from operating on human patients, or

at least ensuring that developing surgeons are supervised by proficient surgeons. A better

understanding of what constitutes surgical proficiency will also inform the development of

more appropriate training simulators that can focus on enhancing the required skills at different

stages of learning. In addition, this knowledge is beneficial for the development of training

curricula.

This thesis, proposes a new method of investigating surgical skills by introducing energy

expenditure metrics. Since energy expenditure is mentioned as one of the features of general

motor skills [16], investigating this parameter might assist in developing a more comprehensive

surgical skills assessment method. Including energy expenditure, in addition to the previously

developed metrics that have shown high capability in skills assessment, can enhance the accu-

racy of the current assessment methods, enable us to differentiate between detailed levels of

expertise, and improve the guidance provided to trainees.

1.3 Objectives

The main goal of this thesis is to enhance surgical, and specifically, arthroscopic skills assess-

ment. The optimal assessment method should include the following characteristics:
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• be objective, and not require the presence of an assessor,

• distinguish between subjects with different levels of expertise, including those with in-

termediate skill levels,

• indicate the trainee’s dexterity as well as the patient’s safety, and not rely solely on the

task outcome,

• be computationally efficient in order to inform trainees about their performance in a

reasonable amount of time.

After carefully studying the previously developed metrics for arthroscopy and other MIS

procedures, it was noticed that surgical proficiency has not been investigated from the view

point of energy expenditure. The focus of this thesis is to investigate energy expenditure during

arthroscopic performance.

1.4 Overview of the Thesis

In considering energy expenditure to assess surgical skill, two main approaches were pursued:

1) evaluating the kinematics of instrument motion, and 2) exploring muscle activity features.

This thesis is organized into the following chapters to address its objectives:

Chapter 2 Literature review: Various metrics that have been used for arthroscopy and other

areas of MIS that can inform arthroscopic skills assessment are reviewed in this chapter. In

addition, various types of surgical simulators and methods of implementing the assessment are

reviewed.

Chapter 3 Analysis of Energy-based Metrics for Laparoscopic Skills Assessment: This

chapter considers energy metrics based on instrument motion and contact force. Various types

of energy are combined, and the optimized combination is found. A novel method is proposed

and evaluated for improving the efficiency of detecting the change in energy expenditure ac-

cording to different levels of experience. This chapter provides an initial analysis of energy
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metrics using a laparoscopy data set to evaluate the concept of energy-based performance met-

rics.

Chapter 4 Energy-Based Metrics for Arthroscopic Skills Assessment: In this chapter, energy-

based metrics are investigated for arthroscopic skills through a different approach. Machine

learning algorithms are explored to classify trainees based on the energy content of their per-

formance.

Chapter 5 Muscle Activity Analysis for Surgical Skills Assessment: This chapter investi-

gates the use of muscle activity for developing skills assessment metrics. These metrics are

cross validated to detecting the level of expertise of trainees. In addition, forearm motions are

inspected and found to be informative for differentiating between various states of training.

Chapter 6 Conclusions and Future Work: In this chapter, the methods and findings of this

thesis are summarized. Suggestions and guidelines for future research in this area are also

provided.

Appendix A Sensitivity Analysis of Energy-based Metrics to Additional Mass: This ap-

pendix provides a complimentary analysis on the effect of removing mass from the energy

equations.

Appendix B Approvals: The ethics approval is provided in this chapter.
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Chapter 2

Introduction

2.1 Introduction

The number of procedures that are performed through minimally invasive surgery (MIS) is in-

creasing due to the advantages that this type of surgery promises patients [1]. However, the

reduced access conditions imply that surgeons require extensive training to become experts at

performing surgical tasks in tight environments and with reduced force feedback. Surgeons

are required to develop the necessary skills to triangulate within confined spaces, visualize 3D

objects from magnified 2D images, and improve their hand–eye coordination ability [2,3]. Sur-

gical simulators provide trainees with the opportunity to practice these skills before proceeding

to the operating room [4–6]. Practicing with simulators offers certain advantages such as al-

lowing practice to occur frequently and conveniently, with high accessibility, increased safety

for patients, and providing more relaxed conditions for trainees. Surgical simulators would be

even more efficient if they were able to provide proper objective feedback to trainees [7]. Such

feedback eliminates the need for an expert evaluator and allows trainees to practice indepen-

dently. However, providing constructive feedback to trainees and assessing their skill level is

only possible if proper objective assessment methods are available. Different researchers have

proposed a variety of metrics and assessment methods for evaluating the progress of trainees

for different type of MIS procedures. Although the basic principles of all MIS procedures are

similar, in the sense that no direct sense of touch is obtained and the surgery is performed with

long instruments, each type of MIS has certain characteristics. Different sizes of instruments,

9
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in terms of diameter and length, affect the relationship between movement of the handle and

the tip of the instrument. In addition, the available space in the human body around the instru-

ments affects the motion profile. As there is constrained space in human joints, the range of

motion in arthroscopy is more limited. Vulnerability/hardness of the target tissue also requires

practicing the appropriate interaction with tissue, i.e., being gentle enough and effective at the

same time. For instance, surgeons need to learn to apply sufficient force when working on

bones or on arteries.

Robotic Assisted Minimally Invasive Surgery (RAMIS) is also developed based on similar

concepts. Robotic systems usually allow hand motion scaling, 3D visualization, and provide

intuitive movements and tremor compensation. Similar to MIS procedures, special training is

required for RAMIS for learning the interaction with the robot and its effect on tissue. Alto-

gether, the running principles for different types of MIS are similar, but specific training and

assessment methods are required for various surgical conditions. In this chapter, various per-

formance metrics that have been explored for arthroscopy are reviewed. In addition, the studies

related to other MIS procedures that can be applicable to arthroscopy are discussed.

In Section 2.2, MIS and its challenges are briefly explained. In Section 2.3, the learning of

surgical skills is discussed. Sections 2.4 and 2.5 provide a review of various metrics for techni-

cal skills assessment and previous classification methods used for MIS. Finally, in Section 2.6,

the shortcomings of the current state of surgical skills assessment are discussed.

2.2 Minimally Invasive Surgery, Benefits and Complications

MIS provides certain advantages for patients, such as shorter hospital stay, less blood loss,

and decreased pain and infection risk. Consequently, attention towards this type of surgery

has increased [1]. Accordingly, the number of arthroscopic surgeries has increased in recent

years. As reported by the American Board of Orthopaedic Surgery (ABOS), knee and shoulder

arthroscopy are two of the most commonly performed orthopaedic procedures [8]. However,

a high-quality procedure is essential for obtaining the same outcomes as with open surgery.

Low-quality performances might negate the benefits of MIS, result in reoperation, or even

irreversible damage to patients. The quality of health care can also affect the overal costs of
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the health care system [9].

MIS complications increase the possibility of erroneous actions, which result in medical

injuries. According to McCrory et al. [10] medical errors cause a larger number of deaths than

breast cancer and car accidents in the United States. Many of these medical injuries can be

prevented by implementing appropriate training and skills assessment methods [10]. In recent

years, improvements have been achieved by utilizing engineering knowledge to improve the

quality of health care [10]. The development of surgical simulators that are equipped with

automated objective assessment methods allows trainees to practice surgical tasks and enhance

their technical skills, which ultimately prevents possible injuries to patients [2, 3].

2.3 Learning Surgical Skills

Surgical training has conventionally been performed through the apprenticeship model. This

method relies on observing the performance of an expert and gradually increasing involvement

of the residents in the operation [11]. The apprenticeship model has disadvantages, such as

inconsistency in training, inefficiency in time and cost, and lack of objective assessment and

feedback [11, 12]. Surgical simulators are an alternative to the apprenticeship model. Simu-

lators allow trainees to practice surgical tasks multiple times, without time limitations or con-

cerns about patient safety. Various types of surgical simulators and tasks that can be practiced

on simulators are described in the following subsections.

An important question in surgical training is to determine what indicates competency in

MIS and how much experience is required to obtain it. The criterion of being an active mem-

ber of the Arthroscopy Association of North America (AANA) is performing 50 arthroscopic

operations annually [13]. However, the amount of practice needed to reach proficiency is not

clear.

The transferability of surgical skills learned on a simulator to the operating room has not

been established yet. Demonstrating the effect of simulator practice on dexterity in the oper-

ating room is not easy to accomplish. However, in a follow-up research, it was observed that,

after practicing for three years in the operating room, subjects improved their performance

on the simulator [13]. For aviation simulators, it has been reported that one hour of training
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on the simulator corresponds to half an hour of training on an airplane [14]. In a study by

Stefanidis et al. [15], it was demonstrated that the transferability of surgical skills to the op-

erating room is superior for trainees who continued their practice until reaching the level of

automaticity, compared to participants who stopped practicing after the level of proficiency. In

this study [15], automaticity was tested by a secondary task and the NASA-TLX questionnaire.

Learning psychomotor skills consumes a huge amount of cognitive energy. As a result, novice

trainees usually do not possess the ability to multitask in the early stages of their training. How-

ever, through practice, the cognitive requirements for performing surgical tasks decrease [16].

According to [15], robust learning can be achieved after reaching automaticity.

2.3.1 Surgical Simulators

Various types of surgical simulators have been used for training surgical skills including train-

ing boxes, physical models, virtual reality (VR) simulators, and cadaver models [17]. Suther-

land, et al. [18] have reviewed the studies that compared the usefulness of these simulators.

A consistent finding of all of these studies was that training with simulators improves perfor-

mance. This review article, [18], reports controversial findings on the superiority of various

types of simulators. Based on this article, it is not clear if training with computer simulation

provides a better training than standard surgical drills. In addition, the amount of data on com-

parison between VR and physical models were not enough to deduce a certain conclusion.

It should be noted that these findings are not affected only by the type of simulator but are

affected also by the tasks that were studied and the number of participants.

VR simulators have the advantage of realistic modeling of detailed anatomical structures.

LapSim is a VR laparoscopic model that is capable of simulating bleeding and tissue deforma-

tion [14, 19]. Although some VR models have been equipped with haptic feedback [20, 21],

these models still lack the ability to produce a realistic sense of contact with tissue. Munz, et

al. [14] found higher levels of performance improvement for subjects who practiced on a box

trainer than those who practiced on the LapSim model.

Based on a survey of the European Society of Sports Traumatology, Knee Surgery and

Arthroscopy (ESSKA) [22], high fidelity simulators are ranked as the most useful training

platforms after cadaver models. The highest fidelity can be found in cadaver models. How-
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ever, standardization of training cannot be achieved for these models due to pathological and

anatomical variations between different cadaver samples [13]. Physical models have been

developed for various MIS procedures such as arthroscopy [5, 6, 12], laparoscopy [23], thora-

coscopy [24], etc. Focusing on arthroscopy, the Alex Shoulder Professor models and Fully En-

cased Knee Joint with Patella and Ligaments by Sawbones R© (Vashon Island, Washington) are

among the commercially available training platforms for arthroscopy. The Arthroscopy Shoul-

der with Replaceble Skin by the same company allows for the practice of portal placement.

Box trainers are another group of physical models that allow surgical tasks to be practiced on

animal tissues or synthesized models with low cost. Additional details about various surgical

simulators are provided in [22].

2.3.2 Previously Studied Surgical Tasks

Suturing, which consists of needle driving and knot-tying, is one of the most studied laparo-

scopic tasks in the literature [25, 26]. In the study by Rodrigues et al. [25] a double knot and

a three-loop knot were performed on the left needle driver, and one single knot was performed

on the right needle driver. In the single, double, and three-loop knots the thread was spiraled

once, twice, and three times around the needle, respectively; and the other end of the thread

was pulled inside the loops to tighten the knot. In this study, the level of difficulty of this task

was scored higher than 5 in a 7-point Likert scale by participants.

Peg transfer and shape cutting [27] are other commonly practiced tasks [26,28,29]. The peg

transfer task consists of picking up a number of pegs with one hand (usually the non-dominant

hand), transfer the pegs to the other hand, and place them on another board or another side of

the same board. The shape cutting task is performed using laparoscopic scissors and requires

cutting the edges of a pre-drawn shape on a piece of paper/gauze [30].

Pedowitz et al. [31] have studied arthroscopic knots on a Sawbones arthroscopy training

station. Following that, the completed knots were tested using the Sawbones knot tester. It

was found that, for experienced surgeons, postgraduate year (PGY) 4-5, and residents, the

rates of knot failure were 22%, 26%, and 11%, respectively. The inferior performance of

experts can be due to unrealistic simulation conditions or inappropriate design of the task.

In a study by Srivastava et al. [32] variety of navigation tasks were investigated on a virtual
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reality shoulder simulator (Mentice Corp. Procedicus shoulder arthroscopy simulator). These

tasks included anatomic identification, which required finding 10 anatomic structures in the

glenohumeral joint. Trainees were asked to find the structures and then press a foot pedal when

the structure was in the middle of the screen. Another task consisted of touching 15 randomly

generated colored balls with a probe. A third task addressed scoping and required subjects

to find and place a tack in the appropriate view of the scope and press a foot pedal upon a

change in the color of that tack. In probe manipulation and anatomical identification, the only

significant difference between the three groups of subjects in this study—novice, intermediate,

and expert— were found between experts and novices for the third repetition of the tasks and in

task completion time. This could have been due to lack of realism in the virtual reality model,

inappropriate task design, and the learning curve for the expert group. For the navigation task,

however, the difference between experts and novices–intermediate groups was significant. A

considerable improvement was also found for the expert groups in the second and third task

repetitions. This improvement indicates the learning curve of the experts due to the difference

between the model and the human shoulder.

In another study by Howells et al. [4] on an Alex Shoulder Professor (Sawbones, Malmö,

Sweden), participants completed a probing task that included probing 9 points inside the model.

Appropriate probing of these points was monitored by one of the authors of the study. Another

task studied in [4,20] was grasping and removing a ball bearing or other foreign bodies from a

joint. Resection with a shaver or punch of parts of a menisci that were specified to trainees by

colour is another arthroscopic task studied in the literature [20].

2.4 Surgical Skills Assessment

In previous studies, different assessment methods have been developed and investigated. These

methods range from global rating scales (GRS), such as the Arthroscopic Surgical Skill Evalua-

tion Tool (ASSET) used for the knee [33] and the Global Rating Scale for Shoulder Arthroscopy

(GRSSA) [34], to assessment methods based on technical parameters. The goal of all of these

methods is to provide objective and consistent assessments. However, some of them, such as

GRSs require expert evaluators to rate the performance of subjects, which reduces the objec-
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tiveness of the proposed metrics. Many metrics aimed at providing objectiveness have been

developed, as described in the following subsections.

2.4.1 Pre-processing Techniques

Segmentation methods have been used in previous studies to divide surgical tasks into smaller

sections to increase understanding of the difference between the gestures of novices and ex-

perts. Ahmidi et al. [35] processed tool motions of a septoplasty tissue dissection task. The

segmentation was performed based on deviations from the septal plane, moving from the local

minimum distance to the next local maximum distance. Additional filtering and constraints

including time, length, and position were applied to the segmented data. This group has inves-

tigated various automatic segmentation algorithms based on machine learning algorithms, such

as skip-chain conditional random chain, to decompose surgical tasks into smaller motions.

Despinoy et al. [29] introduced a new technique for automatically recognizing sub-gestures,

called dexemes, and then classifying these dexemes into their related surgical gestures, called

surgemes. The position and orientation of the instrument were analyzed to calculate curvature

and torsion in several peg transfer tasks and a task consisted of drawing the letter R. Manual

segmentation methods based on video recordings has also been employed to decompose differ-

ent stages of surgical task performance [36]. For instance, in a suturing task, the needle driving

and knot-tying were separated in [37] and each one was analyzed individually.

2.4.2 Technical Metrics

In this section, assessment methods developed based on technical metrics that do not need an

external evaluator are reviewed.

2.4.2.1 Temporal Metrics

One of the most used metrics for assessing trainee performance is task completion time. It has

been shown to best discriminate between novice and expert subjects. Task completion time

has been used in [4, 5, 38–44] for skills assessment. It is not clear, however, whether or not

performing a task quickly implies better performance. Consequently, in most studies, time
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has been combined with other performance metrics to provide a more objective assessment.

The number of repetitions required to complete a task successfully is also considered as an

assessment method, although secondary criteria need to be defined to determine whether a

task has been completed successfully [22]. In addition, hesitation can be determined by time

intervals between subtasks [37] or by short intervals in which the instrument does not move

[22].

In the study described in [32] that explored the performance of arthroscopic tasks on a vir-

tual reality simulator, the difference between experts and novices in terms of task completion

time was statistically significant only in the third trial. Nevertheless, experts always demon-

strated shorter task completion times.

2.4.2.2 Outcome Metrics

Assessing the outcome of a task, regardless of how it is performed, is used for skills assessment

in some studies [45]. These metrics are defined based on the specifics of the tasks. Examples

of outcome metrics are the number of probe and/or scope collisions [38–42,46], the number of

successful identifications of landmarks or structures, and the score assigned to a performance

assessment [39, 47]. The number of probe and/or scope collisions can also be an indication of

safety and can be determined by identifying the number of times a certain force threshold has

been exceeded.

2.4.2.3 Motion-based Metrics

Motion analysis is an objective method of skills assessment. Instrument and hand position

have been used to extract biomechanical parameters to determine the proficiency of trainees

and surgeons [48]. Several metrics are extracted from motion information, as discussed in the

following subsections.

Path Length

The distance that the probe or scope travels has been used in [4,40–44,46]. It can be calculated

using the following formula in Cartesian space [48].
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P =
end

∑
i=start

√
(xi+1− xi)2 +(yi+1− yi)2 +(zi+1− zi)2, (2.1)

where xi, yi, and zi represent position in three Cartesian directions for each time step.

In the same way, economy of movement is defined by dividing the ideal path length by the

actual path length [22, 40, 49]:

E =
Pideal

P
. (2.2)

The ideal path length can be defined by measuring the minimum distance between the starting

point and the target, or based on performance of expert surgeons.

Depth Perception

Depth perception is defined based on movement of the instrument in its longitudinal direction.

This metric reflects the perception that subjects have when they convert from the 3D world to

a 2D view on a screen, and the ability of subjects to control the instrument. To calculate depth

perception, the coordinate system must be converted to that of the instrument to determine

movements in the longitudinal direction of the instrument [22].

D =
end

∑
i=start

√
(li+1− li)2, (2.3)

where li is displacement in the longitudinal direction of the instrument for each time step.

Volume of Motion

Volume of motion corresponds to the volume of an ellipsoid constructed from the standard de-

viation of movement around 3 main directions. It reflects the required 3D space for the subject

to complete the task. This metric can be easily influenced by the direction of movement— if

the instrument does not move in one direction, the total volume will be zero [22].
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Out-of-View Time

Out-of-view time demonstrates the time span in which the instrument is not in the view of the

scope. This condition compromises the safety of the patient as the instrument may damage

tissues when it cannot be seen. Out-of-view time can either be calculated from the stream

of video images from the scope, or from tracking position of the instrument and scope and

defining the view cone, knowing the scope’s imaging characteristics [22, 50].

Tip-to-Tip Distance

The tip-to-tip distance, dt–t, indicates the sum of the distance between the instrument tip and

the scope tip during the task. This metric is similar to “out-of-view time” in the sense that it

can also reflect whether the instrument is out of the scope view, when the distance is more than

a certain value. This metric is highly dependent on the task as the distance varies due to task

requirements.

dt–t =
end

∑
i=start

√
(xi scope− xi probe)2 +(yi scope− yi probe)2 +(zi scope− zi probe)2 (2.4)

Speed

Speed, the first derivative of position, is another characteristic of trainee motion that is used in

the literature as an assessment metric [41,42]. Different forms of speed such as the normalized

speed, the mean speed, the peak speed, the magnitude of the velocity vector, and the number of

changes in velocity have been proposed as assessment metrics [48]. Speed can be interpreted

as the subject’s ability to control position and instrument movements.

Acceleration

Acceleration, the second derivative of position, is another common metric used for skills as-

sessment for arthroscopic simulators. The mean acceleration, the maximum acceleration, and

the number of accelerations and decelerations are some of the metrics defined based on acceler-

ation [48]. The integral of the magnitude of the total acceleration vector, IAV , which represents

the energy expenditure, is another metric calculated as [40, 51]:
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IAV =
end

∑
i=start

√(
∆2xi

∆t2

)2

+

(
∆2yi

∆t2

)2

+

(
∆2zi

∆t2

)2

, (2.5)

where ∆2(·)
∆t2 is the second derivative in discrete time.

Jerk

Jerk, which is defined as the third derivative of position, represents the smoothness of motion.

A lower jerk value indicates a smoother motion [48, 51]. The normalized jerk was defined

in [52] as:

Jnorm =

√√√√ T 5

2A2

end

∑
i=start

[(
∆3xi

∆t3

)2

+

(
∆3yi

∆t3

)2

+

(
∆3zi

∆t3

)2
]
, (2.6)

where T and A are task completion time and the amplitude of the motion, respectively; and
∆3(·)
∆t3 is the third derivative in discrete time.

2.4.2.4 Force-based Metrics

Force information can be used in the development of objective metrics [5, 44, 53]. However,

due to complications in recording the applied force, this data has not been commonly used in

performance assessments [9]. It is essential for trainees to learn to apply sufficient force when

needed but to be gentle enough with the tissues. Applying too much force may result in tissue

damage; however, applying less force than required may lead to ineffective performance. Some

of the developed force-based metrics are the average force, the maximum force, the integral of

the force, the force range, the force direction, the interquartile range, derivatives of the force,

and smoothness of the applied force [22, 37, 48]. These metrics can also be an indication of

performance safety and efficiency.
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2.4.2.5 Optimized Combination of Metrics

Optimized combined metrics are developed by combining various metrics through an opti-

mization method such as linear and non-linear least square methods. These metrics consider

multiple characteristics of performance in one unified metric. Different combined metrics are

defined and studied in [37, 54–56].

2.4.2.6 Muscle Activity-based Metrics

MIS demands different muscle activity compared to open surgery due to its difficult postures,

use of long instruments, which mostly are not ergonomically comfortable, limited degrees of

freedom in manipulating the instruments, etc. According to [57], the muscle activity and total

effort required to perform tasks using a laparoscopic grasper are significantly higher than that

required for doing the same tasks with open surgery instruments, e.g., a Crile hemostat.

The level of fatigue and stress in MIS is also considerably higher than in open surgery.

Fatigue affects the ability of surgeons to focus on the task, decreases their ability to make

appropriate surgical decisions, and reduces their ability to use their surgical skills and dex-

terity [58, 59]. According to Uhrich et al. [26] muscle fatigue is lower among surgeons with

higher levels of expertise; however, it is still high enough to produce chronic injuries for MIS

surgeons. The thresholds for low, medium, and high contraction muscle activities are defined

in [60] as 2–5% of Maximum Voluntary Contraction (MVC), 10–14% of MVC, and 50–70%

of MVC, respectively.

Analyzing EMG signals allows investigation into patterns of muscle activation that are

beneficial to increasing our knowledge about surgical skill development and also identifying

the hazards that might be associated with certain surgical instruments and postures for surgeons

[58]. This information can be used to adjust the current surgical postures, video display systems

[26,61], and table heights [58], or to develop new instruments that decrease surgeon discomfort

and chance of chronic injuries. Different instrument handles have been extensively investigated

in [62–64].

The areas of the surgeon’s body that are actively involved during MIS procedures are usu-

ally the neck, arms, and shoulders [58, 65]. It is hypothesized that increased efficiency in

performing surgical tasks can be quantified through analyses of physiological parameters such



CHAPTER 2. INTRODUCTION 21

as electromyography [66]. This hypothesis has been investigated in a few studies for robotic

surgery on the da VinciTM system. It was shown in [66–68] that practice reduces muscle activ-

ity.

Most of the studies that used EMG metrics for evaluating posture or newly developed in-

struments performed the analysis on participants with approximately the same level of exper-

tise. However, Shafti et al. [69] compared the STIFF-FLOP arm with conventional laparo-

scopic instruments, while evaluating its effect on expert and novice subjects separately. In this

study, expert subjects demonstrated considerably lower Root Mean Square (RMS) of EMG

magnitude and slightly higher median frequency than novice subjects.

In the following paragraphs, EMG-based metrics that have been used in surgical skills

assessment, posture analysis, and other areas related to MIS are described.

Muscle Activation Volume

Muscle activation volume (EMGV) is calculated by integrating the ratio of the EMG signal,

which is recorded during the task, to the MVC over time [66, 67]. In [66], a significant re-

duction in EMGV was found for the extensor digitorum, when comparing pre-practice tests

with post-practice and retention tests. In this study, [66], a series of surgical tasks including

bimanual carrying, needle passing, suture-tying, and grasping were performed on a da Vinci

Surgical System. As was mention in Section 2.1, RAMIS shares common features with manual

MIS, which compels investigating this metric for other types of MIS as well. However, it is

mentioned in this study [66] that the reduction in EMGV might be due to the reduction in task

completion time.

Muscle Activation Rate

Muscle activation rate (EMGR) is calculated by dividing EMGV by the total time that was

spent to complete the task. EMGR was investigated in [66,67] to study surgical robotic perfor-

mance using the da Vinci System. This metric was less successful than EMGV in demonstrat-

ing the difference between pre-practice and post-practice tests in [66].

Relative Activation Time

Relative activation time (RAT) was proposed by Quick et al. [70] to compare different lapro-



CHAPTER 2. INTRODUCTION 22

scopic tasks and instruments. This metric is defined as the time duration that muscle activity

exceeds 10% of MVC. As this metric is defined based on the on and off times of muscle activ-

ity, it is suitable for tasks that follow a specific temporal order. In addition, in [70], all of the

participants were expert surgeons, which reduced variability in task performance. Overall, the

more time that a muscle activates, the higher the level of fatigue expected for that muscle [58].

This metric demonstrated significant differences between two different graspers and between

two of the three studied tasks.

Median Frequency

The median frequency (MF) of the EMG power spectrum is another metric that is a represen-

tation of muscle fatigue [68].

MF:
∫ fmed

0
P( f )d f =

∫ fmax

fmed

P( f )d f , (2.7)

where P is power spectrum and fmed and fmax are median and maximum frequencies of the

power spectrum. The higher median frequency is associated with faster performance and less

muscle fatigue. It was shown in [68] that training for robotic surgery increases median fre-

quency. In [69] the median frequency was calculated over time and the variation in its value

was explored by calculating the Coefficient of Variation (CV). CV equals the standard devi-

ation of MF over its mean value. However, CV of MF did not show a significant difference

between novices and experts. Suh et al. [71] used median frequency to investigate the effect of

distraction on performance. According to the results of their study, distraction has a significant

effect on MF. The EMG envelope was also calculated. Overall, it was shown that muscle work

increases in the presence of distraction.

Frequency Bandwidth

Frequency bandwidth is the difference between the maximum and the minimum frequency at

which the power spectrum is half its maximum level. Bandwidth indicates the range of muscles

that are involved in the performance [68].
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Dynamic EMG Metrics

Recurrence Quantification Analysis (RQA) and recurrence plots have been incorporated into

[72] to study muscle fatigue during MIS. The determinism percentage is a novel metric pro-

posed in this study, which is defined based on the predictability of the method and the diagonal

lines in the recurrence plot. According to Panahi et al. [72] determinism percentage is asso-

ciated with muscle fatigue. muscle activity of the upper arm and shoulder was investigated

during a real surgical operation. The trapezius and deltoid were activated continuously during

MIS to allow the surgeon to maintain posture and watch the video display. Biceps and triceps

were recruited to manipulate instruments in higher frequencies than the deltoids and trapezius.

Consequently, higher levels of fatigue were noticed in the deltoids and trapezius. Since the

EMG sensors could not be attached to sterilizable parts of the arms and hands, forearm and

hand muscles were not examined in this study.

The results of the above-mentioned studies show that the proposed metrics are highly task

dependent and more studies should be performed to define EMG-based metrics with the ca-

pability of discriminating between subjects with different levels of proficiency for each task.

Future EMG signal analysis for the development of objective performance metrics should in-

corporate different parameters of the EMG signal and study the pattern of muscle activation

during different MIS tasks.

2.5 Classifying Trainees based on their Performance

The criteria of expertise can be defined based on various performance features. Some studies

have investigated the applied forces required to operate on delicate tissues, such as menisci, the

facial nerve, and sigmoid sinus [53, 73]. Since any damage to these tissues can be irreversible,

special care must be taken when working around vulnerable tissues. In a study by Tuijthof et

al. [53] the force levels for safe probing of menisci were investigated using cadaver samples.

A force sensor was placed beneath the samples to measure the applied force. According to

the results, the maximum force level that is safe for probing menisci is 8.5 N. The tasks that

were studied were probing and lifting the surface of menisci. In addition, the performance

of expert and novice subjects in these tasks were compared. It was found in this study and
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also in [43] that expert subjects demonstrated higher levels of force. This can be a sign of

dexterity and novice trainees might need to be encouraged to incorporate higher levels of force

when performing arthroscopic tasks. However, other studies have found a different result,

i.e., experts apply lower amounts of force than novice trainees [37, 44]. A shortcoming of the

Tuijthof’s study, [53], is that measuring force below the sample might reduce the accuracy

of force measurement. In addition, the cadaver menisci samples are stiffer than live tissue.

This issue was justified by using cadaveric menisci samples of elderly people, which usually

represent lower stiffness than that of young people. The force threshold is a reasonable criteria

for assessing trainees and providing feedback to them. However, this limits the assessment

into only one feature of performance. In order to develop a comprehensive evaluation, other

characteristics such as motion and temporal features should be considered. To analyze multiple

features of performance, machine learning algorithms have been evaluated in the literature [45].

These algorithms are reviewed in the next paragraph.

Vendula et al. [9] published a thorough review of the algorithms that have been used for

surgical skills assessment for classification. According to this study, the classifiers can be

divided into three groups based on their input: 1) the group that uses extracted features of

performance as its input. In this group, the size of the input is fixed for all of the trainees. 2) the

group of classifiers that utilize time-series variables as their input, and 3) the group of classifiers

that are implemented for use in conjunction with histogram-based and dictionary variables. For

the first group of these classifiers, two categories can be defined: discriminative and generative.

In the generative models, the probability distribution of parameters is generated based on prior

knowledge; then the probability of belonging to each class is calculated for the target data

using Bayes’ theorem. Gaussian Mixture Model (GMM) and Hidden Markov Model (HMM)

are examples of generative models. In MIS skills assessment, descriptive models are more

prevalent. Descriptive classifiers calculate the probability of belonging to each class directly.

Linear Discriminant Analysis (LDA), Logistic Regression (LR), and Linear Regression (LR)

are examples of algorithms that establish a linear discrimination criteria, and Neural Networks

(NN), Support Vector Machines (SVM), and K Nearest Neighbors are examples of algorithms

that establish a non-linear discrimination.

HMM and Descriptive Curve Coding (DCC) methods can be used with time-series data as
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their inputs [74, 75]. These models are sensitive to the input data. For instance, HMM is very

sensitive to the coordinate system when developing the model based on position data. These

methods are also not very robust to new samples that were not used in the model development

[76].

In applications for which the size of input data is very large, pre-processing techniques are

used to extract the most valuable features. Principal Component Analysis (PCA) can be used to

extract information and reduce the dimension of data when many variables might represent the

same features. The PCA algorithm generates another set of variables that represent the original

data’s variation. The size of PCA generated variables is the size of the original data. However,

in most studies, the first few components can represent more than 75–90% of variation of data.

Parts of the information in the original data might be lost in the process of calculating principal

components. Nevertheless, the reduced dimension permits easier analysis and visualization of

the data [77]. This method has been used in [3, 35, 76] for MIS data processing.

The above-mentioned algorithms have been used in the following surgical skills assessment

studies:

• Zirkle et al. [78] used LR to evaluate the correlation between experts’ opinion with vari-

ous methods of assessment such as Global Rating Scales, task-based Checklist, and final

product analysis.

• Ahmidi et al. [35] used HMM and DCC to evaluate performance in septoplasty based

on motion of the instruments. The results of this study demonstrated higher accuracy

levels for the DCC method. In addition, in [74] a performance index was defined based

on similarity of the Markov model of the trainee’s with that of the experts and novices

based on force/torque data. In this study, the data recorded from 3 novice and 3 expert

subjects were used for training the HMMs and the data that was recorded from another

group of participants, including 2 novices and 2 experts, was used for evaluation. This

method demonstrated 87% accuracy in determining the level of expertise of trainees.

• The SVM method has been used in [35] for classifying surgeons in septoplasty and in

[29, 76] for robotic-assisted MIS practice on a simulator.

• In the study by Despinoy et al. [29] the KNN method was developed for classifying
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surgical gestures performed by the Raven-II robot. In this study, the KNN method, when

K was 5, provided superior accuracy to the SVM method.

• LDA is another commonly used algorithm in MIS studies. In [3, 79] this algorithm has

been used for classifying trainees who performed laparoscopic tasks on box trainers.

• Richstone et al. [80] investigated the metrics developed based on eye movements and

evaluated their metrics with the NN and LDA methods. The NN method demonstrated

slightly more accurate results.

2.6 Shortcomings of Current Metrics

In 2015, a study was published and discussed by the Association for Surgical Education (ASE)

Simulation Committee concerning the challenges in the use of surgical simulators and included

possible solutions to these challenges. A lack of optimal assessment methods and constructive

feedback were mentioned as two of the major gaps in training with a surgical simulator [81].

Further investigation is required to increase the knowledge on psychomotor skills. There can-

not be a trend defined for a particular metric or set of metrics and claim that this trend applies

to every task. For example, in many studies it has been shown that experts demonstrate shorter

path lengths than novices. However, in a study by Tashiro et al. [44] it was noticed that during

meniscectomy the expert subjects demonstrated longer path lengths than the novice subjects.

By adopting larger movements, the experts make the procedure easier and the resulting higher

path length cannot be classified as unnecessary. This study shows that skills assessment tech-

niques should be enhanced and possibly new metrics should be developed that can represent

both general and detailed features of proficiency.

While stress can also produce fatigue and might result in negative effects on surgical out-

comes, it is outside the scope of this study. In this project, the effect of dexterity on muscle

activity is investigated.
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Chapter 3

Analysis of Energy-based Metrics for

Laparoscopic Skills Assessment

The material presented in this chapter has been accepted for publication in IEEE Transactions

on Biomedical Engineering (2017), Available online: http://ieeexplore.ieee.org/document/7932145.

3.1 Introduction

Minimally invasive surgery (MIS) promises certain advantages for patients such as lower pain

levels, reduced blood loss and better cosmesis. However, it demands the manipulation of long

instruments in difficult positions with limited degrees of freedom. In addition, dealing with

the fulcrum effect and a different sense of force compared to conventional open surgery are

among the complications of MIS. Consequently, MIS tasks must be practiced repeatedly to

achieve mastery prior to performing them in the operating room. Surgical simulators are help-

ful in providing the opportunity to practice in a safe environment with fewer time constraints.

These simulators will be more efficient when equipped with objective assessment methods [1].

Appropriate assessment methods are essential to quantify the level of expertise of trainees, to

provide them with feedback about their performance, to allow independent training, and to

certify the proficiency level of a resident or a surgeon before operating on a patient [2]. Section

3.1.1 provides a review of the commonly used performance metrics.
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3.1.1 Review of Performance Metrics

The metrics proposed for surgical skills assessment can be classified in different ways. Mc-

Crory, et al. [2] considered three main groups of metrics: 1. the group related to patient

safety—e.g., force magnitude, 2. the group related to the success of the procedure—e.g., task

outcome metrics, and 3. the group that deals with efficiency—e.g., path length [3,4]. However,

the ability of the provided examples to represent safety, success, or efficiency depends on the

task and should be further investigated. A more detailed classification was performed in [5]

by dividing metrics into temporal, task outcome, motion-based, force-based, and combined

metrics, as described bellow:

Temporal metrics are among the most commonly used metrics for assessing the perfor-

mance of trainees. Task completion time has been shown to best discriminate between novice

and expert subjects and has been used in [6–9] for skills assessment. Inclusion of this metric

in skills assessment enhances discrimination between various levels of expertise [10]. Al-

though experts are faster than novices in performing surgical tasks, a short task completion

time does not necessarily mean a superior performance. Consequently, in most studies, time

has been combined with other performance metrics to provide a more complete assessment.

Other examples of temporal metrics include the number of repetitions required to complete a

task successfully [3] and hesitation. Hesitation can be determined by the time intervals between

subtasks [5] or by short intervals in which the instrument does not move [11].

Task outcome metrics are developed based on the outcome of task completion regardless

of how it is performed. These metrics are defined based on the proposed tasks and are usu-

ally evaluated by an external observer. Examples of outcome metrics include the number of

instrument collisions, the number of successful identifications of landmarks or structures, and

the score assigned to a performance assessment [12]. The number of instrument collisions can

also be an indication of safety and can be determined by identifying the number of times a

certain force threshold has been exceeded.

Motion-based metrics are defined using instrument and hand position to extract biome-

chanical parameters [5]. Several metrics are extracted from motion information such as path

length—the distance that the instrument travels, speed—the first derivative of position, accel-

eration—the second derivative of position, and jerk—the third derivative of position, which
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represents smoothness of motion. Different parameters can be considered to further character-

ize speed and acceleration metrics. These include the mean, the peak, the magnitude, and the

normalized speed/acceleration [5–7, 13].

Force-based metrics are developed based on force profile of performance [8, 9]. It is

essential for trainees to learn to apply sufficient force when needed and to be gentle enough

with the tissues. Applying too much force may result in tissue damage; however, applying less

force than required may lead to ineffective performance. Force-based metrics include average

force, maximum force, the integral of the force, force range, force direction, derivatives of the

force, and smoothness of the applied force [3, 5]. These metrics can also be an indication of

performance safety and efficiency.

Combined metrics are established by combining different metrics together. These metrics

consider multiple characteristics of the performance in one unified metric. Different combined

metrics are defined and studied in [5, 8, 14] [15, 16].

The following section describes the development of a new metric for laparoscopic skills

assessment.

3.1.2 Using Energy Expenditure for Metric Development

Guthrie’s definition of skill [17] recognizes maximum certainty, minimum time and minimum

energy as features of a skilled performance. Certainty has been investigated in qualitative stud-

ies [18,19] and will not be explored here. Time has been extensively used for skills assessment

but this metric cannot completely represent the level of proficiency of a trainee. Energy expen-

diture has been also considered as a feature of skilled performance in other literature [20, 21].

Elliot, et al. [22, 23] indicate that through practice, energy expenditure optimization can be

achieved, as well as optimization in accuracy and speed of performance. To reach the mini-

mum energy expenditure, removal of unnecessary and undesirable movements is required [24].

Energy expenditure can be quantified by measuring the heart beat, body temperature, and

the rate of oxygen–carbon dioxide exchange [25, 26]. However, for MIS tasks, it is possible to

measure force and position information related to energy expenditure at the tip of the instru-

ment. According to Sparrow, et al. [27] the human body tends to minimize metabolic energy

expenditure in relation to the task to be performed, the environment in which the task is con-
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ducted, and the constraints imposed on the performer’s action. An important part of energy

expenditure minimization relates to receiving appropriate sensory information and adapting

motions based on the received information. Unfortunately, the sensory information received

by the MIS performer is reduced due to the lack of direct visual and force feedback. Limited

degrees of freedom in motion is another constraint that makes energy expenditure optimization

challenging.

3.1.3 Objectives

Although various metrics have been proposed and used for MIS skills assessment, as reviewed

in Section 3.1.1, a metric that can objectively determine the detailed level of expertise of sub-

jects is still lacking. The goal of this study is to enhance MIS skills assessment by developing

objective metrics based on energy expenditure and to validate these metrics.

3.2 Metric Development

Previous studies [5, 7, 9, 28] reported a difference in the velocity and the applied force profiles

of novices and experts. Thus, experts use different techniques or movements, coordinating both

hands, to perform MIS tasks. The differences observed in velocity and force when experts per-

form surgical tasks might be due to a different amount of energy expenditure. This information

can be incorporated into an energy formula. In this study, the types of energy that can be quan-

tified using force and position information are considered. Energy expenditure, in the form of

mechanical energy and work, has been used in human movement studies [29, 30]. However,

these forms of energy expenditure are not currently used in surgical skills assessment.

The proposed metrics in this study consist of three components, which are defined based

on potential energy, kinetic energy, and work. These components are combined to optimize the

ability of the proposed metrics to discriminate various skills levels. Four levels of experience

are considered in this study with two levels in each of the novice and expert groups. In this

study, it is assumed that the level of experience of the subjects correlates with their level of

expertise. However, in some cases, this assumption may not hold for all the subjects. The basic

components and the combined method are described in Sections 3.2.1 and 3.2.2, respectively.
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3.2.1 Basic Components

Gravitational potential energy is the form of energy that is generated or consumed due to

changes in the position of an object in the gravitational field, as follows:

EP = mgh [J], (3.1)

where m is the mass of the surgical instrument [kg], g is the gravitational acceleration [9.8

m/s2], and h is the height of the tip of the instrument [m]. In laparoscopic skills assessment,

the sum of the absolute changes in potential energy is considered:

Potential-based component =
end

∑
i=start

|∆EPi| [J], (3.2)

where i represents the index of the sampling time, which ranges from the start to the end of the

task.

Kinetic energy is another form of mechanical energy. Here, kinetic energy due to transla-

tional velocity is considered, as follows:

Ek =
1
2

mv2 [J], (3.3)

where v is the translational velocity of the tip of the instrument [m/s]. Similar to potential

energy, the sum of the absolute changes in kinetic energy is considered for laparoscopic skills

assessment, as follows:

Kinetic-based component =
end

∑
i=start

|∆EKi| [J]. (3.4)

The kinetic-based and potential-based components were calculated assuming a constant

mass for the instruments. However, due to interaction of the instruments with their environ-

ment, there may be additional mass carried by the instruments, which increases the total value

of these components. Consequently, the potential-based and kinetic-based components repre-

sent the minimum amount of change in the potential and kinetic energies.
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The amount of work done on the surgical simulator through the surgical instruments is

another component of the energy-based metric proposed in this study. The total amount of the

absolute work during task completion forms this component:

Work-based component =
end

∑
i=start

|Wi| [J], (3.5)

where Wi represents the amount of work in each sampling time and can be calculated according

to work formula:

W = F ·d [J], (3.6)

where F and d are vectors of the applied force [N] and displacement [m] at the tip of the

instrument.

3.2.2 Combined Energy-based Metrics

Each of the above components represents a part of the change in energy expenditure. In order to

study the relationship between the level of experience (LOE) and energy expenditure, combined

metrics were defined to estimate the minimum energy expenditure. These combined energy-

based metrics are the weighted sum of all of the components for the left and right hands.

Combined metric = αWL×WL
βWL +αWR×W

βWR
R +

αPL × PL
βPL +αPR × P

βPR
R +

αKL × K
βKL
L +αKR × K

βKR
R ,

(3.7)

where WL and WR represent the work-based components for the left and right hands, PL and PR

represent the potential-based components for the left and right hands, and KL and KR represent

the kinetic-based components for the left and right hands.

In this formula, the α values are the corresponding coefficients for each component. Higher

values of α mean a higher contribution of the related component. β values are the exponents of

each component, where β equal to 1 means a linear relationship between the combined metric

and the corresponding component. Incorporating exponents into this formula allows non-linear
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relationships between LOE and energy-based components to be identified. A positive value of

β corresponds to a direct relationship and a negative value reflects an inverse relationship. For

instance, αWL is the coefficient of the work-based metric for the left hand in the combined met-

ric and βWL is the exponent of this basic component. Due to differences in task requirements,

particular combinations of the basic components should be established for each task, such that

the difference between the energy expenditure of various levels of experience is maximized.

Optimization methods were investigated to find the coefficients (α) and exponents (β ) that

maximize the Spearman’s rho correlation of the combined metric (Eq. 3.7) with LOE.

Two approaches were explored for developing combined metrics as follows:

3.2.2.1 One-step Combined Metric

In the one-step combined metric, a set of coefficients and exponents is obtained through opti-

mization of the correlation of the combined metric with the four LOE considered in this study.

3.2.2.2 Two-step Combined Metric

The four levels of experience considered in this study can be classified in two main groups of

novices (Levels 1 and 2) and experts (Levels 3 and 4). In this approach, the discrimination

between different levels of experience is accomplished in two steps. The first step consists

of recognizing the main LOE (novice or expert). The optimization is performed for this step

to find the set of coefficients and exponents that maximize the correlation with the two main

levels of experience. In the second step, different coefficients and exponents are determined to

distinguish between LOE 1 and 2 (novice) or between LOE 3 and 4 (expert). Fig. 3.1 outlines

this method.

Two methods of optimization were investigated to determine the appropriate set of coeffi-

cients and exponents: the Genetic Algorithm (GA) function of the global optimization toolbox

and the fmincon function of MATLAB (The Mathworks, Inc., Natick, MA). Since each basic

component might have a different range, as can be seen in Section 3.4.1.1, a normalization

process was implemented before combining these components. This was accomplished by di-

viding each component by the range of variation of that component. The upper and lower limits

for the coefficients were set to +1 and -1 and for the exponents were set to +3 and -3.
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Figure 3.1: Diagram of the two-step combined metric.

3.3 Materials and Methods

The proposed metrics were investigated for two laparoscopic tasks. In this section, the design

of the experiment for the data collection and the data processing are described.

3.3.1 Experimental Design

The setup for this experiment is composed of a standard laparoscopic training box. Inside the

training box, an ABS plastic frame was placed to hold a soft tissue model made of silicone

and foam. A layer of soft rubber was placed on top of the soft tissue model to mimic the skin

layers.

For this experiment, 30 subjects with different levels of experience in laparoscopy were

recruited. The participants in the study were divided into four levels of experience as follows:

LOE 1— with no medical background (n = 6), LOE 2— medical students with no surgical

training, surgeons with no MIS experience, and postgraduate year (PGY) 2–3 who had no

exposure to MIS (n = 11), LOE 3— PGY 4–5 and trained fellows (n = 7), and LOE 4— expert

surgeons (n = 6). This division constitutes the reference for evaluating the proposed metrics.

All subjects were right-hand dominant.

Each subject was asked to perform a suturing and a knot-tying task in each trial. All par-

ticipants were asked to repeat these tasks in four trials. In the suturing task, participants were

asked to pass a needle through both sides of an incision in the simulated skin. The exact starting

point for the suturing task was left to the participant’s discretion. The knot-tying task consisted

of one double knot and two single knots (Fig. 4.2). The skills required to perform these tasks
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(a) (b)

(c) (d)

Figure 3.2: The laparoscopic tasks. (a), (b) Passing the needle through the tissue for the sutur-
ing task. A double knot (c) and two single knots (d) constitute the knot-tying task.

included proper handling and placement of the needle, and controlling the instrument tip and

the suture.

The Sensorized Instrument-based Minimally Invasive Surgery (SIMIS) [31] System was

used to perform the tasks [32]. Two SIMIS instruments were used to record forces applied per-

pendicular to the shaft of the instrument, in two Cartesian directions, and position information

of the tip of the instrument in 6 degrees of freedom. The mass of each instrument is 170 g.

3.3.2 Data Processing

Before calculating the proposed metrics, the recorded data for each subject was segmented

to isolate the data of the suturing and knot-tying tasks. Time frames for the start and end of

the task were identified by video recordings during the experiment. In addition, the intervals

where there was an interruption in task completion were determined and removed to focus

on the movements related to the task. The recorded data was then low-pass filtered with a

second-order Butterworth filter at the cut-off frequency of 40 Hz. This cut-off frequency was
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selected by investigating the power spectrum of the force and position signals to ensure that

no significant information was lost by filtering and that the data was not affected by high-

frequency noise. To identify outliers, the boxplot function of MATLAB was used. The data

points outside [q1−w(q2− q1),q2 +w(q2− q1)] were recognized as outliers, where q1 and

q2 represent 25th and 75th percentiles and w represents the whisker length which was set to

1.72 (equivalent to 3 standard deviations of the data for each LOE). Each of these outliers was

then investigated by watching the corresponding video to find the cause of the outlier. For the

outlier points that dealt with a reasonable cause, the data point was replaced with the maximum

nonoutlier value for the corresponding LOE. The accepted causes were sliding the skin layer

out of the tissue model frame or breaking the suture. Among 120 trials executed, 8 trials were

recognized for including outlier data for the suturing task and 11 trials were recognized for

including outlier data for the knot-tying task.

3.4 Results and Validation

Among the four trials executed in this study for each subject, the data from the first, second,

and fourth trials were considered as the training data set. These data were used to determine the

coefficients and exponents of the combined metrics. The basic components and the resulting

combined metrics obtained from the training data set, as presented in Section 3.4.1, were used

to determine the margins of the four levels of experience. Based on these margins, the LOE of

a subject with an unknown LOE can be determined. The third trial was considered as the test

data set and was utilized in order to validate the proposed metrics. Since the test data consisted

of the data that was collected from all of the participants in their third trial, the distribution of

LOE over the test data set was the same as the distribution of LOE over the training data. The

validation results are presented in Section 3.4.2.

3.4.1 Results of Metric Development

3.4.1.1 Basic Components

The basic components were shown to be successful in discriminating novice and expert subjects

for both tasks. This was demonstrated in a previous study considering subjects in two main
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levels of novice and expert [32]. However, more detailed classification of subjects would be

beneficial in guiding trainees and improving the learning quality. This detailed classification is

investigated in the current study. The three basic components of the proposed metrics versus

the four LOE for the left and right hands are shown in Fig. 3.3 (suturing task) and Fig. 3.4

(knot-tying task). Since the axial force was not measured in these experiments, the work-based

component presented in this study represents the work performed perpendicular to the shaft

of the instrument. The maximum correlation was obtained for the work-based component for

both tasks. In order to assess the effect of additional mass on the potential-based and kinetic-

based metrics caused by the interaction of the instruments with tissue, a sensitivity analysis

was performed (Appendix A). The results showed that the possible additional mass does not

affect the relationship between these components and the various LOEs. This is likely due to

the additional mass having a similar effect on the performance of all the subjects.

The amount of each basic component decreased as the LOE increased for both tasks. The

difference between the first two LOE and the last two LOE was significant, while the difference

between LOE 1 and LOE 2 and also between LOE 3 and LOE 4 was limited. Consequently,

discriminating between subjects with various levels of experience could not be accomplished

completely by defining margins for those levels.

3.4.1.2 One-step Combined Metric

Comparing the results obtained from the two optimization methods (fmincon function and

GA algorithm) showed that the resulting coefficients and exponents from the GA algorithm

demonstrated higher correlations of the combined metrics with LOE. Therefore, the values

obtained from the GA algorithm were used for both combined metrics in this study.

Fig. 3.5 shows the results of the one-step combined metric for the suturing and knot-tying

tasks. By combining the basic components using the one-step combined metric, the correlation

with LOE for the suturing task was improved from -0.459 (the maximum correlation that was

obtained for the work-based component for the right hand) to -0.506. For the knot-tying task,

the one-step combined metric resulted in an improvement of the correlation with LOE from

-0.694 to -0.795. It may be observed in Fig. 3.5 that the overlap between various levels of

experience for the one-step combined metric was relatively smaller than the overlap of the
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(a) (b)

(c) (d)

(e) (f)

Figure 3.3: Basic components for the suturing task based on the training data set. The Spear-
man’s rho correlation of each basic component with LOE (r) and the corresponding p value are
shown below each sub-figure. All correlations are statistically significant. The red line in each
box indicates the median.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.4: Basic components for the knot-tying task based on the training data set. The
Spearman’s rho correlation of each basic component with LOE (r) and the corresponding p
value are shown below each sub-figure. All correlations are statistically significant.
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(a)

(b)

Figure 3.5: The one-step combined metric for (a) the suturing task and (b) the knot-tying task
for the training data. Red, blue, and green dashed lines represent the lower margin of LOE 1,
LOE 2, and LOE 3, respectively.

basic components (as seen in Figs. 3.3 and 3.4).

The margins of variation for each LOE were also derived from the results of the training

data set for all of the metrics presented in this study. For instance, the lower margin of LOE

1, which was also the upper margin of LOE 2, was the average of the 25th percentile of LOE

1 subjects and the 75th percentile of the subjects in LOE 2 for each metric. These margins for

the one-step combined metric are shown by dashed lines in Fig. 3.5. The area above the red

dashed line indicates the area of variation for LOE 1, the area between the red and blue dashed

lines relates to LOE 2, the area between the blue and green dashed lines defines LOE 3, and

the area below the green dashed line indicates LOE 4.
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(a)

(b)

Figure 3.6: The two-step combined metric for the suturing task for the training data: (a) Step 1
for two main LOE and (b) Step 2 for detailed LOE for the novice and expert groups. Red, blue,
and green dashed lines represent lower margins for the novice, LOE 1, and LOE 3, respectively.

3.4.1.3 Two-step Combined Metric

Figs. 3.6 and 3.7 show the results of the two-step combined metric for the suturing and knot-

tying tasks. The correlation with LOE was calculated for this metric based on the results of

the second step. For the suturing and knot-tying tasks, the correlations with LOE were -0.905,

which are considerably higher than the corresponding values obtained from the individual com-

ponents and the one-step combined metric.

The margins of variation for this metric were also calculated using the same method ex-

plained in Section 3.4.1.2. The red dashed lines in Figs. 3.6(a) and 3.7(a) show the margin
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(a)

(b)

Figure 3.7: The two-step combined metric for the knot-tying task for the training data: (a)
Step 1 for two main LOE and (b) Step 2 for detailed LOE for the novice and expert groups.
Red, blue, and green dashed lines represent lower margins for the novice, LOE 1, and LOE 3,
respectively.

for discriminating between experts and novices. The blue and green lines in Figs. 3.6(b) and

3.7(b) indicate the margins for differentiating between LOE 1–2 and between LOE 3–4.

3.4.2 Validation

In this part of the study, it was assumed that the LOE of the subjects were unknown. The

margins extracted in Section 3.4.1 were used in MATLAB to determine the LOE of subjects

based on the test data set. Afterwards, the determined levels of experience were compared to

the true levels of experience to investigate the accuracy of each metric. Thus, the validation

was performed blindly.

The results of the one-step combined metric for the test data set are shown in Fig. 3.8 along
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(a)

(b)

Figure 3.8: The one-step combined metric for the test data set for (a) the suturing task and (b)
the knot-tying task. The margins specified in this figure are obtained from the training data set.

with the margins for each LOE. The two-step combined metric for the test data set related to

the suturing and knot-tying tasks are presented in Figs. 3.9 and 3.10, respectively. Due to

variations in the performance of the subjects in each trial, the margins obtained based on the

training data set do not necessarily match the values that could be obtained from the test data

set.

The accuracy, defined as the total number of correct identifications over the total number

of subjects expressed as a percentage, is represented in Fig. 3.11 for all of the energy-based

metrics. The basic components provided a maximum accuracy of 30% and 37%, for the su-
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(a)

(b)

Figure 3.9: The two-step combined metric for the test data set for the suturing task: (a) Step 1
and (b) Step 2. The margins specified in this figure are obtained from the training data set.

turing and knot-tying tasks, respectively. Using the combined metrics, the discrimination is

significantly improved compared to the basic components. The one-step combined metric can

accurately identify the LOE of 14 and 18 subjects (47% and 60%) for the suturing and knot-

tying tasks. Using the two-step combined metrics, the LOE of 20 subjects (67%) was properly

recognized for both tasks. In addition, 29 subjects (97%) were identified within±1 level of the

correct LOE for the knot-tying task. For the suturing task, the number of participants identified

within ±1 level of the correct LOE was 28 (93%) for both combined metrics.

These combined metrics were compared with two metrics commonly used in MIS skills

assessment: path length and task completion time (Fig. 3.11). The margins of variation for
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(a)

(b)

Figure 3.10: The two-step combined metric for the test data set for the knot-tying task: (a) Step
1 and (b) Step 2. The margins specified in this figure are obtained from the training data set.

these metrics were determined based on the training data and using the same method explained

in Section 3.4.1.2. These margins were utilized for LOE determination of the subjects based

on the test data. For the suturing task, path length of the right hand demonstrates better ac-

curacy in identifying LOE than the basic and the one-step combined metrics. However, the

two-step combined metric provided superior accuracy compared to the path length and time.

For the knot-tying task, both one-step and two-step combined metrics provided more accurate

identifications than path length and time.

The correlation with the LOE for the basic components, and for path length and time,

calculated for the test data set, are shown in Tables 3.1 and 4.1, respectively. The maximum
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amount of correlation among the path length and task completion time for the suturing task

was obtained for time: -0.369 (Table 4.1). Among the basic components for the suturing task,

the highest correlation was obtained for the work-based component for the right hand: -0.582

(Table. 3.1). The correlation for the one-step combined metric was -0.523 (Fig. 3.8 (a)). The

highest correlation was obtained for the two-step combined metric, which was -0.860 (Fig.

3.9).

For the knot-tying task, the maximum correlation of the path length and the task completion

time was obtained for time: -0.754 (Table 4.1). This correlation was smaller than the one for

the work-based component (the maximum among the basic components), which was -0.791

(Table 3.1). This was also smaller than the correlations of the one-step and two-step combined

metrics with LOE, which were -0.837 (Fig. 3.8 (b)) and -0.867 (Fig. 3.10), respectively.

Table 3.1: The correlation with LOE and the corresponding p values for the basic components
applied to the test data set. The statistically significant correlations (p < 0.05) are displayed in
bold.

Task Basic component Left hand Right hand

Su
tu

ri
ng

Potential-based
component -0.292, p = 0.118 -0.260, p = 0.165

Kinetic-based
component -0.367, p = 0.046 -0.280, p = 0.133

Work-based
component -0.326, p = 0.079 -0.582, p <0.001

K
no

t-
ty

in
g

Potential-based
component -0.741, p <0.001 -0.713, p <0.001

Kinetic-based
component -0.651, p <0.001 -0.388, p = 0.003
Work-based
component -0.791, p <0.001 -0.684, p <0.001
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Table 3.2: The correlation with LOE and the corresponding p values, for path length for the
left and right hands (PLL, PLR), and time for the test data set. The statistically significant
correlations ( p < 0.05) are displayed in bold.

Task PLL PLR Time

Suturing -0.318, 0.087 -0.345, 0.062 -0.369, 0.045

Knot-tying -0.747, <0.001 -0.745, <0.001 -0.754, <0.001

3.5 Discussion

In this study, the accuracy in determining LOE and the Spearman’s rho correlation were used to

assess several proposed energy-based metrics and compare them with commonly used metrics

for minimally invasive skills assessment.

The basic components (potential-based component, kinetic-based component, and work-

based component) showed a decreasing trend as the LOE increased for both the suturing and

knot-tying tasks. This indicates that as the LOE increases, subjects become more efficient in

performing the task and expend less energy. In this study, the work-based component rep-

resented the amount of work that was produced perpendicular to the shaft of the instrument.

Incorporating the axial force into the work-based metric can enhance the discriminatory capa-

bility of this component.

The combination of these components was analyzed in the one-step combined metric. Us-

ing this metric, accuracies of 47% and 60% in recognizing LOE were obtained for suturing

and knot-tying tasks. However, due to overlaps between the one-step combined metric for the

different levels of experience, it was not possible to locate margins between different LOE to

allow for complete differentiation between all subjects. In terms of correlation with LOE, the

one-step combined metric demonstrated smaller correlation with LOE than the basic compo-

nent of work for the right hand for the test data of the suturing task. This reduced correlation

is most likely due to the optimization weights of the combined metric based on the training

data. These weights do not necessarily provide higher correlations for every set of data. This

issue might be mitigated by using larger data sets for the optimization process and determin-
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(a)

(b)

Figure 3.11: Accuracy of the energy-based metrics and path length for the left hand (PLL), path
length for the right hand (PLR), and task completion time for the test data set. (a) The suturing
task and (b) the knot-tying task.

ing a metric that can compensate for the variations in task executions. However, the one-step

combined metric for the knot-tying task and the two-step combined metrics for both tasks also

provided higher correlations with LOE than the basic components for the test data.

Decomposing the discrimination into two steps facilitated the determination of appropriate

coefficients and exponents for each main LOE. This metric resulted in 67% accuracy for both

the suturing and knot-tying tasks. In addition, higher amounts of correlation with LOE were

obtained using the two-step combined metric for the training and test data sets compared to

other energy-based metrics and the time and path length. The superior performance of the two-
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step combined metric is due to using different combinations of the basic components for each

main LOE (novice and expert). The pattern of expending different forms of energy (potential

energy, kinetic energy, and work) among novice subjects can be different from that of expert

subjects. Another set of weights for combining these components is required to demonstrate

the major differences between the two main levels of experience.

Among the four trials that were performed by each participant, the third trial was used to

evaluate the performance of the proposed metrics. This trial was chosen because it represented

a trial in which the subjects were already familiar with the setup and the tasks, but had not

yet performed at their best. In other words, this trial represents the average state of their

performance during the four trials. To further investigate the effect of using this third trial, an

evaluation of the proposed metrics was performed by selecting the test trial randomly between

the second and fourth trials, and also between the third and fourth trials. The first trial was

excluded from the randomization to avoid the effect of the learning curve. The results showed

the same trend and similar values when using a random trial for testing.

Comparing the energy-based metrics proposed in this study with two commonly used met-

rics in MIS skills assessment (path length and task completion time), demonstrated superior

performance for the one-step and two-step combined metrics for the knot-tying task, and supe-

rior performance of the two-step combined metric for the suturing task.

The superior results obtained for the knot-tying task— better accuracy and correlation with

LOE—is likely due to the difficulty of the task. The knot-tying task consists of three knots,

which requires a larger number of movements compared to the suturing task. The higher

complexity of this task more clearly demonstrates the difference in subject proficiency. Another

point that might affect the results of this study was that the level of expertise of the subjects

in our experiment was determined based on their experience in MIS. However, having more

experience does not necessarily result in demonstrating higher level of expertise. The motor

skills of subjects might influence their performance more than their direct experience in MIS.

It should be noted that the developed metrics in this study can be used for providing feedback

to trainees about their level of expertise at the end of the task. Developing instructions for

trainees based on these metrics requires additional research.

The results obtained in this study are not at a level that they can be relied upon blindly for
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automatic discrimination of skill level. However, the energy-based metrics demonstrated a bet-

ter performance than the commonly used metrics and can be used for enhancing these metrics.

In order to improve the proposed energy-based metrics, additional investigation should be per-

formed. Using a larger number of subjects would provide the opportunity to develop a more

comprehensive metric in terms of the weights of the combined metrics. A larger number of

subjects would also help to define more accurate margins for each LOE and provide increased

robustness to the different possible ways of executing the same task. The weight factors that

were used in this study were determined based on performance of right-handed subjects. Inves-

tigation of the performance of left-handed subjects is also required to establish an appropriate

set of weight factors for them. Overall, there is a trade-off between speed, energy expendi-

ture, and accuracy of performance. This trade-off should be further investigated to obtain more

knowledge about how different subjects deal with task requirements. Consequently, there can-

not be a single set of weights to discriminate subjects ranging from those with no expertise to

expert subjects. At each main LOE, such as novice or expert, there should be a different set of

weights to establish the appropriate combination of components.

3.6 Conclusion

In this study, novel metrics were proposed based on analyzing energy expenditure. The three

components of these metrics were potential energy, kinetic energy, and work. Two methods

of using these components for determining combined metrics were proposed in this study and

were tested on a data set recorded for two laparoscopic tasks performed by subjects of various

levels of experience. In conclusion, the accuracy of the one-step combined metric in identifying

LOE was 47% and 60% for the suturing and knot-tying tasks, respectively. The two-step

combined metric demonstrated an accuracy of 67% for both tasks. The metrics proposed here,

reflect the efficiency of the performance. In these metrics, different aspects of the subjects’

performance, such as motion of the instrument and the amount of force applied to the tissue,

are considered for both hands. These metrics provide an objective method for assessing the

LOE of subjects, can be computed automatically, and can be used for other tasks and other MIS

applications. However, for each task, a particular combination of these components should be

established due to different task requirements.
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Chapter 4

Energy-Based Metrics for Arthroscopic

Skills Assessment

The material presented in this chapter has been published in Sensors, vol. 17, no. 8 (2017):

1808.

4.1 Introduction

In this chapter, energy-based metrics are investigated for arthroscopy and these metrics are

evaluated for classifying trainees into their level of expertise. Section 4.1.1 provides an in-

troduction of arthroscopic skills assessment and related works and Section 4.1.2 describes the

objectives of this chapter.

4.1.1 Skills Assessment in Minimally Invasive Surgery

Surgical simulators are now being used for training and assessment purposes in various surgi-

cal fields including arthroscopy. The advantage of using these simulators in training programs

consists of unrestricted practice time, lower cost compared to cadaver models, the opportunity

for independent learning, and decreasing the risk to patients in the operating room [1]. The

suitability of these simulators for training and assessment purposes not only depends on a real-

istic design and efficient use of the simulator, but also depends on the assessment method that is

incorporated into the simulator to evaluate the proficiency levels of users. Objective assessment

65
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methods are essential in evaluating residents and surgeons before entering the operating room

to increase safety of patients. Traditionally, skills assessment is performed by expert evalua-

tors using Global Rating Scales (GRS) for scoring [2]. The Global Rating Scale for Shoulder

Arthroscopy (GRSSA) is an example of a GRS developed for shoulder arthroscopy [3]. How-

ever, these methods are subjective and the results among different evaluators are inconsistent.

A clear definition of proficiency in minimally invasive surgery is not provided in the liter-

ature. Many studies demonstrate that a higher level of expertise is associated with a shorter

task completion time [4, 5]. However, faster performance may result in reduced quality. Mo-

tion is another parameter that has been analyzed for skills assessment. Several metrics such

as path length, velocity, and jerk are defined based on motion information [6, 7]. The amount

of force applied to the target tissue has also been considered as a representation of skill profi-

ciency [8–10]. These metrics have shown high correlation with the level of expertise. However,

the currently available metrics do not address all the needs and the appropriate combination of

these metrics should be investigated to enhance surgical skills assessment.

Minimum energy expenditure has been identified as a feature of general motor skills [11].

Elliot, et al. [12, 13] demonstrated that practicing a physical task reduces energy expenditure.

Analysis of energy expenditure based on instrument kinetic energy was investigated for skills

assessment in [14] in the form of Integral of Acceleration Vector (IAV). In our previous study,

energy expenditure was introduced for laparoscopic skills assessment [15, 16]. In the current

study, another metric is added to the previously developed energy-based metrics, the proposed

metrics are normalized, and the resulting metrics are studied for arthroscopic skills.

In order to incorporate performance metrics into surgical simulators, the criteria of exper-

tise should be defined based on the performance of subjects with various levels of expertise.

Knowing these criteria, the level of expertise of a new trainee can be determined. Machine

learning algorithms are helpful in defining these criteria. As different performance metrics

may demonstrate various distributions over levels of expertise, an appropriate classifying algo-

rithm is needed for each metric or for each combination of metrics. Several machine learning

algorithms have been investigated in the literature. For example, the Support Vector Machine

(SVM) is a classifying algorithm used to explore motion patterns in [17]. An accuracy of

91% was obtained in this study. Linear Discriminant Analysis (LDA) is another classifier used
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in [18,19]. In [18], LDA was used to evaluate the combination of time, force, and motion-based

metrics and 100% accuracy in classifying subjects into two groups (experts and novices) was

achieved. LDA was also utilized in [20] to investigate eye metrics, which were developed based

on pupillary and eye movements, and provided 91.9% accuracy. The use of Neural Networks

(NN) was also explored in this study, resulting in 92.9% accuracy using the same eye metrics.

In the current study, various methods of combining the normalized energy-based metrics using

machine learning algorithms are investigated.

4.1.2 Objectives

Although energy expenditure was investigated in our previous studies for two laparoscopic

tasks, its applicability in different areas of MIS has not been explored sufficiently. The goal of

this study was to introduce and evaluate normalized energy-based metrics for basic arthroscopic

tasks. Evaluating the combination of these metrics with various classifiers was also among the

objectives of this study.

4.2 Methods

To accomplish the aforementioned objectives, a series of experiments were performed. In Sec-

tion 4.2.1 the experimental protocol for data collection is explained. The normalized energy-

based metrics, the classifiers that were used with these metrics, and the validation procedure

are presented in Sections 4.2.2, 4.2.3, and 4.2.4, respectively.

4.2.1 Experimental Design

A sensorized physical shoulder simulator was used in this study for investigating three arthro-

scopic tasks: two probing tasks and a grasping task. The shoulder simulator was developed

at Canadaian Surgical Technologies and Advanced Robotic (CSTAR), and its face and con-

struct validity were demonstrated in [21]. The simulator and the accompanying video tower

are shown in Fig. 4.1 (a). The first probing task, Task 1, consisted of pressing a switch at the

top and another switch in the middle of the glenoid (Fig. 4.2 (a)). The second probing task,



CHAPTER 4. ENERGY-BASED METRICS FOR ARTHROSCOPIC SKILLS ASSESSMENT 68

(a)

(b) (c)

Figure 4.1: Shoulder simulator and video tower (a), the sensorized arthroscopic probe (b), and
the sensorized arthroscopic grasper (c).

(a) (b) (c)

Figure 4.2: The arthroscopic tasks investigated in this study: a) Task 1, b) Task 2, and c) Task
3.
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Task 2, consisted of pressing a switch underneath the acromion and another switch underneath

the coracoid process (Fig. 4.2 (b)). The switches used in the probing tasks were top-actuated

switches with the operating force of 1 N. The successful probing of each switch was indicated

by the illumination of an LED located close to the base of the simulator and was also indicated

in the integrated graphical user interface of the system. The grasping task, Task 3, involved

grasping and removing a loose body made of silicone from the joint capsule (Fig. 4.2 (c)). For

all three tasks, the arthroscopic instruments were held in the left hand and the arthroscope was

held in the right hand. Prior to the start of the procedure, the arthroscope was placed such that

the video provided an appropriate view of the target area. The instrument was placed outside

of the simulator at the opening of the appropriate portal for the task. A sensorized arthroscopic

probe and a sensorized arthroscopic grasper were used for the probing and grasping tasks, re-

spectively (Fig. 4.1 (b, c)). These sensorized instruments were capable of measuring bending

forces applied at the tip of the instrument and tracking the position of the tip of the instru-

ment in 6 degrees of freedom (DOF). A set of four strain gauges were attached to the shaft

of the instruments for force sensing, connected in a half-bridge II Wheatstone bridge. A 6

DOF position sensor (Aurora mini 6 DOF sensor, Northern Digital Inc. (NDI), Waterloo, ON,

Canada), coupled to an electromagnetic position tracking system (Aurora v2, Northern Digital

Inc. (NDI), Waterloo, ON, Canada), was also embedded in the shaft of each instrument and the

camera [8]. The sampling frequency for both force and position data was 20 Hz. These data

were then low-pass filtered with a 12 Hz cut-off frequency.

In this study, 26 participants were divided into two levels of expertise: novice (n=18) and

expert (n=8). This grouping was performed based on each subject’s experience in arthroscopic

surgery. The novice group consisted of subjects with no surgical training, orthopaedic resi-

dents, and non-orthopaedic surgeons without scoping experience. The expert group consisted

of orthopaedic fellows and fellowship-trained orthopaedic surgeons. No exclusion criterion

was applied for recruitment of the participants. Human Research Ethics Board approval was

obtained prior to the start of the experiments.

4.2.2 Metrics

The use of energy expenditure in the form of mechanical energy, including potential energy

and kinetic energy, and work was proposed in our previous study for laparoscopic suturing
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and knot-tying tasks [15]. Work (W ) is generated due to a force that causes a displacement.

Potential energy (EP) is due to the position of instruments in a gravitational field and kinetic

energy is due to the velocity of instruments. The energy based metrics were defined as the

total work and the sum of the changes in potential energy and the sum of the changes in kinetic

energy when performing a task [15]. The kinetic energy was considered due to the translational

velocity of the instrument. In the current study, two forms of kinetic energy are considered:

translational kinetic energy (ETK)—due to translational velocity, and rotational kinetic energy

(ERK)—due to rotational velocity. The rotational kinetic-based metric is calculated according

to the following formula:

E RK =
∫ T

0

d(ω2
x +ω2

y +ω2
z )

dt
dt, (4.1)

where T is task completion time, and ωx, ωy, and ωz are rotational velocities about x, y, and

z axes. If the same instrument is used to perform a task by all of the subjects, the mass of

the instrument and the moment of inertia can be removed from the equations, as they would

contribute the same scaling factors to the metrics of all of the subjects. In this study, the same

instruments were used and the energy-based metrics did not include the mass and moment of

inertia of the instruments.

Interpreting the values of the defined metrics is not possible without knowing the amount

of energy expenditure corresponding to the ideal performance. In this study, an expert arthro-

scopist was asked to perform the tasks of this study with the same conditions as all other

subjects. This expert arthroscopist had performed well over 2500 arthroscopic interventions

and was also an expert with the simulator, due to her contributions to the design of the simu-

lator and the experiment. This trial was recorded without previous practice on the same day in

order to be consistent with all of the other subjects. The energy-based metrics that were calcu-

lated based on her performance were considered as the ideal metric values. Each energy-based

metric was divided by the corresponding ideal value and the resulting metrics are referred to

as normalized energy based metrics (WN, EP-N, ETK-N, ERK-N). In other words, the normalized

metrics indicate the performance of a subject relative to the ideal performance.



CHAPTER 4. ENERGY-BASED METRICS FOR ARTHROSCOPIC SKILLS ASSESSMENT 71

As the arthroscope was not sensorized with force sensors, the work-based metric was not

calculated for the arthroscope. Consequently, four metrics were calculated for the instrument

((WN, EP-N, ETK-N, ERK-N) and three metrics were calculated for the arthroscope (EP-N, ETK-N,

ERK-N).

4.2.3 Trainee Classification

In order to accurately determine the level of expertise of trainees, a classifier should be trained

with data from subjects at various levels of expertise. The classifiers should be able to accu-

rately determine the level of expertise of subjects based on their performance metrics. The

metrics used in this study were the normalized energy-based metrics as inputs to four classi-

fiers: SVM, K-nearest neighbors (KNN), NN, and LDA. All of the energy-based metrics have

been included in the analysis without any exclusions.

In the SVM classifier, the input data is mapped onto another feature space by a kernel

function. Then the optimum hyperplane that separates the data in the mapped feature space is

determined [22]. The fitcsvm function of MATLAB with a linear kernel function was used to

establish the SVM classifier.

KNN performs the classification based on K points that lie nearest to the test data point. The

test point is assigned to the class with the highest posterior probability of class membership.

This is computed as Ki/K, where Ki is the number of points of Class i that lie nearest to the

test point. As K increases the borders of each class become smoother, and as it decreases

fine variations in each class can be determined. The choice of a large K reduces sensitivity to

noise [22]; however, due to the small sample size of the current study, the choice of a large K

was not possible. Considering a maximum of 6 valid trials for experts (as described in Section

4.3), K was assigned a value of 3 in this study.

NN were also investigated through the Neural Network Toolbox of MATLAB. As suggested

in the literature, the maximum number of hidden layer nodes should be N/d, where N is the

length of the training data and d is the number of input nodes [23]. For all three tasks of this

study, the network structure consisted of 3 input nodes when the energy-based metrics of the

arthroscope were considered, 4 input nodes when the energy-based metrics of the instrument

were considered, and 7 input nodes when the energy-based metrics of both of the instrument
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and the arthroscope were considered. In addition, one hidden layer with 3 nodes and one

output node were specified in the network structure. This structure reduces computational cost

and the possibility of overfitting. The training data were divided into two subsets: 70% for

network training and 30% for training validation. The optimization of the weights and bias

was performed by the Levenberg-Marquardt backpropagation algorithm. The target matrix

was set to 1 for novices and 2 for experts. The output of the NN model was then rounded to

assign the test data point to its corresponding group.

In the LDA algorithm, the multi-dimensional feature matrix is projected into one dimension

by multiplying the feature matrix by a weight vector. This weight vector is determined in a

manner that maximizes the separation of class means and minimizes interclass variance [22].

The fitcdiscr function of MATLAB was used to implement the LDA classifier.

4.2.4 Validation

4.2.4.1 Leave-one-subject-out Cross-validation

Validation of the proposed metrics and the combination of these metrics with the above-

mentioned classifiers was performed through a leave-one-subject-out (LOSO) cross-validation

technique. In this technique, the data is partitioned into two sets: a test set, consisting of one

subject, and a training set, consisting of all subjects except the test subject. The validation

procedure is repeated with different test subjects until all the subjects have been in the test

group once [17, 18, 22, 24]. The level of expertise of the test subject is determined in the val-

idation procedure, assuming that his/her level of expertise is unknown. The determined level

of expertise is then compared to the level of expertise of subjects based on their experience in

arthroscopic surgery.

The performance of these classifiers in combination with the normalized energy-based met-

rics was quantified through four measures: accuracy—ratio of the total number of correct iden-

tifications to the total number of subjects, precision—ratio of the number of experts classified

as expert to the number of subjects classified as expert, recall— ratio of the number of expert

subjects classified as experts to the total number of experts, and F1 score which is defined as:
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F1 = 2 · precision · recall
precision+ recall

. (4.2)

Mistakenly classifying experts as novices indicates that they require more practice, however,

wrongly classifying novices as experts can result in safety issues for patients. Consequently,

it is very important to investigate the ability of the assessment method to correctly classify

experts, which can be evaluated by precision and recall measures. The F1 score is the harmonic

mean of precision and recall, which is the appropriate method of calculating the average of

parameters that are represented as percentages. In other words, the F1 score demonstrates the

balance between precision and recall [25, 26].

The performance of the energy-based metrics is also compared to the combination of task

completion time, path length, and maximum bending force. This combination is evaluated

using the LOSO cross validation for all of the classifiers that are investigated in this study.

4.2.4.2 Computation Time

In order to compare the computation times of the classifiers, the running time for training the

classifiers and testing of all the subjects in the cross-validation was measured. The stopwatch

timer of MATLAB was employed for the three tasks of this study and the mean and standard

deviation values were calculated. Statistical analysis was also performed to investigate the

difference between the classifiers in terms of the running time. All computations were imple-

mented on a PC running Windows 7 with a 3.40 GHz Intel(R) Core(TM) i7-3770 CPU and 8

GB RAM.

4.3 Results

The recorded data were explored to remove any erroneous data from the analysis. The data sets

that contained significant interruptions in the recording were excluded from the study. These

interruptions could happen due to limited range of position tracking, sensitivity of the posi-

tion tracking system to ferromagnetic metal, or a disconnection in the force sensing circuit.

Therefore, the number of subjects for which valid data were recorded varied in different tasks.
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Table 4.1: Number of subjects with valid data from the instrument, the arthroscope, and both
the instrument and the arthroscope for the three studied tasks.

Task
Instrument Arthroscope Instrument and athroscope

Novices Experts Total Novices Experts Total Novices Experts Total

1 16 4 20 15 5 20 14 4 18
2 18 5 23 17 6 23 15 5 20
3 16 4 20 12 4 16 12 4 16

Similarly, for analysis of both hands together, the subjects whose data from either the instru-

ment or the arthroscope was not valid were excluded. Table 4.1 shows the number of subjects

with valid data from the instrument, the arthroscope, and both the instrument and arthroscope.

The experimental design of this study required holding the arthroscope in an appropriate

position at the beginning of the task. In Task 1, both switches were clearly visible in front

of the camera at the beginning. However, subjects were allowed to move the arthroscope

as required, e.g., to zoom in on the switch or find the instrument tip. In Task 2, the switch

underneath the acromion was clearly visible at the beginning, but to have an appropriate view

of the switch underneath the coracoid process, subjects needed to navigate around the coracoid.

In Task 3, the arthroscope was located in a position that showed the loose body, but it could

be re-positioned by the subject as needed. Although the main part of the task was supposed

to be completed by manipulating the instrument, the use of the arthroscope was affected by

the expertise of the subjects as well. Fig. 4.3 provides a comparison of the changes in the

displacement and angle of the arthroscope in 6 DOF between a random novice and a random

expert during a 15 second time frame. In this figure, the same vertical limits are applied for

both the novice and expert subjects to provide a clear comparison, i.e., 10 cm for displacement

and 20◦ for angle. More fluctuations and changes in position and angle of the arthroscope can

be seen for the novice subject compared to the expert one. These fluctuations result in a higher

energy expenditure by the novice subjects.
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(a) (b)

(c) (d)

Figure 4.3: The arthroscope’s tip displacement (a,b), and angle (c,d) for a random novice and
expert subject over the same time duration.

4.3.1 Energy-based Metrics and Normalized Energy-based Metrics

The valid data were used to calculate energy-based metrics for the left hand (holding the proper

instrument for the task) and the right hand (holding the arthroscope). As can be seen in Fig.

4.4, the amount of energy expenditure for the experts was considerably lower than that for the

novices. As seen in this figure, Task 2 required higher levels of energy than Tasks 1 and 3. This

is due to the position of the switches, which required more effort, even by experts. Tasks 1 and

3 required similar ranges of energy in terms of potential energy, translational kinetic energy,
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and work. However, the required amount of rotational energy for Task 3 was considerably

less than the corresponding value for Task 1. The Probing tasks required manipulation of the

probe in certain angles to successfully press the switches, which was not required in Task 3.

Regarding the outliers in Fig. 4.4, the videos of subjects who were recognized as outliers

were inspected to find any external reason that might affect their performance. As these outlier

points were not related to a reasonable cause, they were included in the analysis.

The normality of the results for each metric was analyzed using the Shapiro-Wilk test

through the Statistical Package for the Social Sciences, Version 24 (SPSS, Chicago, IL, USA).

The normality test was rejected for some of the energy-based metrics in different tasks. The

metrics with a normal distribution were analyzed using the Independent-Sample t test and the

metrics with non-normal distribution were analyzed using the Mann-Whitney U test of SPSS.

The statistical analysis showed a significant difference between the two levels of expertise for

all the energy based metrics except rotational kinetic energy of the instrument for Task 2. These

metrics were then normalized with respect to the corresponding values of the ideal performance

of each task as was explained in Section 4.2.2. The mean and standard deviation of the resulting

metrics, the normalized energy-based metrics, are shown in Table 4.2. Statistical analysis was

also performed on these metrics using the Independent-Sample t test or the Mann-Whitney U

test depending on whether the data presented a normal or non-normal distribution. The metrics

with a normal distribution are marked by an asterisk in the p value columns of Table 4.2. For

most of the normalized energy-based metrics, the mean values of the expert group were close

to 1 and there was a significant difference between the expert and the novice groups. The small

variance among the expert group demonstrates the similarity of the performance of the expert

subjects to the ideal performance. The only metric that had a mean value considerably higher

than 1 was the rotational kinetic energy for Task 1. This can be due to the unfamiliarity of the

subjects with the appropriate angle of holding the instrument when pressing the switches. This

metric decreases significantly in Task 2.

4.3.2 Validation

The accuracy of classification using the normalized metrics and the investigated classifiers are

shown in Fig. 4.5. Overall, considering the metrics of the arthroscope as the only inputs to the
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Table 4.2: The mean and standard deviation of the normalized energy-based metrics for the
novice and expert groups and the corresponding p values. The statistically significant p values
are shown in bold. All of the metrics, except ERK-N of the instrument and the arthroscope for
Task 2, which are indicated with an asterisk, demonstrated statistically significant differences
between novices and experts. The metrics with a normal distribution are marked with † in the
p value column.

Task 1 Task 2 Task 3
Metric Level Mean ± SD p value Mean ± SD p value Mean ± SD p value

In
st

ru
m

en
t

EP-N
Novice 5.87 ± 4.47 0.001 5.15 ± 3.26

<0.001 5.22 ± 5.55 0.002
Expert 0.88 ± 0.44 1.18 ± 0.60 1.10 ± 0.17

ETK-N
Novice 6.24 ± 4.65

<0.001† 5.92 ± 4.12 0.001 6.92 ± 6.98 0.022
Expert 1.07 ± 0.51 1.37 ± 0.74 1.84 ± 1.29

ERK-N
Novice 145.35 ± 127.06 0.014† 8.05 ± 10.15

0.199 *
5.10 ± 3.33 0.003 †

Expert 50.56 ± 29.24 2.41 ± 2.65 1.95 ± 0.78

WN
Novice 29.43 ± 22.71

<0.001† 9.92 ± 10.16 0.007 7.64 ± 7.89 0.001
Expert 3.49 ± 1.32 2.68 ± 2.52 0.53 ± 0.21

A
rt

hr
os

co
pe

EP-N
Novice 11.89 ± 9.35 0.001† 7.07 ± 6.10 0.024 8.34 ± 8.02 0.001
Expert 1.59 ± 0.79 2.34 ± 1.93 2.23 ± 1.56

ETK-N
Novice 10.72 ± 8.74 0.011 6.44 ± 5.47 0.002 8.38 ± 8.56 0.001
Expert 1.40 ± 0.77 1.58 ± 0.79 1.84 ± 1.88

ERK-N
Novice 17.23 ± 23.34 0.042 10.95 ± 19.03

0.062 *
10.46 ± 11.53 0.002

Expert 1.56 ± 0.79 1.44 ± 1.36 1.09 ± 1.10

(a) (b) (c)

Figure 4.5: Accuracy using a) only the instrument’s metrics, b) using only the arthroscope’s
metrics, and c) using metrics of both the instrument and the arthroscope.

classifiers provides lower accuracy levels than incorporating the metrics of the instruments in

the classification. In addition, the NN method demonstrated higher accuracy levels compared

to the other classifiers. Accuracy, precision, recall, and F1 score, for using the normalized

energy-based metrics of both hands, including the metrics of the instruments and the arthro-

scope together, are shown in Table 4.3. Although the results were superior for the instrument
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Table 4.3: Accuracy, precision, recall, and F1 score as percentages when the normalized
energy-based metrics of both the instrument and the arthroscope are used as inputs of the
classifiers.

Task Classifier Accuracy Precision Recall F1 score

1

SVM 94.44 80.00 100.00 88.89
KNN 77.78 50.00 75.00 60.0
NN 88.89 75.00 75.00 75.00

LDA 72.22 42.85 75.00 54.55

2

SVM 80.00 57.14 80.00 66.67
KNN 85.00 75.00 60.00 66.67
NN 95.00 100.00 80.00 88.89

LDA 90.00 80.00 80.00 80.00

3

SVM 93.75 80.00 100.00 88.89
KNN 87.50 66.67 100.00 80.00
NN 93.75 80.00 100.00 88.89

LDA 81.25 60.00 75.00 66.67

only, the inclusion of both hands was considered to be the broader use of the metrics and the

corresponding results are reported to allow for comparison of the different classifiers. The NN

method provides the highest accuracy for nearly all of the tasks and different input metrics.

NN also demonstrate precision levels higher than 75%.

Temporal, motion-based and force-based metrics were calculated in a previous study for

the same data set [27]. The results of [27] showed statistically significant differences between

the experts and novices for most of the investigated metrics. The performance of the classifiers

in conjunction with task time, path length for both the instrument and the arthroscope, and

maximum bending force were evaluated and the results are presented in Table 4.4. As can be

seen, the results that were obtained using the normalized energy-based metrics provide superior

accuracy, precision, and recall in a larger number of conditions of using different classifiers

and tasks. However, for some of the conditions, such as using NN for Tasks 2 and 3, both the

energy-based metrics and the non-energy metrics provide similar accuracy levels.

The running times were also measured for different tasks and the mean and standard de-

viations are represented in Table 4.5 for various classifiers. As can be seen, NN require the

maximum running time among the four classifiers investigated in this study. The difference

between these running times was investigated using Kruskal-Wallis test, followed by post-hoc
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Table 4.4: Accuracy, precision, recall, and F1 score as percentages when task time, path length
of both the instrument and the arthroscope, and maximum bending force of the instrument are
used as inputs to the classifiers.

Task Classifier Accuracy Precision Recall F1 score

1

SVM 66.67 25.00 25.00 25.00
KNN 61.11 0.00 0.00 0.00
NN 83.33 66.67 50.00 57.14

LDA 88.89 75.00 75.00 75.00

2

SVM 80.00 66.67 40.00 50.00
KNN 75.00 50.00 20.00 28.57
NN 95.00 100.00 80.00 88.89

LDA 80.00 100.00 20.00 33.33

3

SVM 81.25 60.00 75.00 66.67
KNN 87.50 75.00 75.00 75.00
NN 93.75 100.00 75.00 85.71

LDA 87.50 100.00 50.00 66.67

Table 4.5: Mean and standard deviation of the running time for different classifiers.

Classifier SVM KNN NN LDA
Running time (s)

0.969 ± 0.028 0.866 ± 0.039 3.290 ± 0.452 1.015 ± 0.033
(Mean ± SD)

tests. The results of statistical analysis showed that the running time of NN is significantly

different from that of the KNN, SVM, and LDA with the following p values, respectively:

<0.001, 0.001, and 0.044. In addition, the running time of KNN and LDA were also signifi-

cantly different (p=0.001).

4.4 Discussion

The goal of this study was to develop new metrics for arthroscopic skills assessment and evalu-

ate the use of these metrics with different classifiers to determine a subject’s level of expertise.

The results of this study are discussed in detail in the following sections.
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4.4.1 Normalized Energy-based Metrics

All energy-based metrics showed higher levels of energy expenditure for novices compared

to experts. This is due to a larger number of movements of the instrument or the arthro-

scope and higher levels of applied forces that were unnecessary for completion of the task.

These unnecessary forces and movements can be due to lack of appropriate control over the

instrument or the arthroscope. The tasks we studied were designed to focus on the perfor-

mance of the instrument. However, it was noticed that there were significant differences in

manipulating the arthroscope between the experts and novices. The unnecessary arthroscope

movements may have been generated as a result of motor overflow, which can occur in effort-

ful actions [28, 29]. It was also observed in [30] that an unsuccessful navigation in cadaver

models using an arthroscope generates large number of fluctuations in the applied force. The

arthroscopic tasks studied here were comprehended as complicated motor activities for many

of the novices. The statistical significant difference between novices and experts and the ap-

proximately similar accuracy levels that various classifiers provided for each task, support the

presence of a strong relationship between the normalized energy-based metrics and level of ex-

pertise. The comparison between the energy-based metrics and the combination of time, path

length, and maximum force showed that higher accuracy levels can be achieved for all three

tasks studied using energy-based metrics in conjunction with some of the classifiers such as

SVM.

4.4.2 Instrument, Arthroscope, or Both?

The maximum accuracy of 95% was obtained for all three input conditions, Fig. 4.5. However,

the overall accuracy levels for different tasks were lower when the arthroscope’s metrics were

the only inputs to the classifiers. Regarding the arthroscope’s metrics, it should be considered

that these metrics were developed based on the motion parameters only and the work-based

metric was not calculated. This indicates the importance of measuring force for surgical skills

assessment, which is in accordance with the results found in [18, 31]. The inferior results of

skills assessment based on the arthroscope’s metrics can be due to the absence of a work-based

metric in the assessment or because of the secondary role of the arthroscope in performing the
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tasks. However, for other tasks that require further navigation of the arthroscope, more accurate

identification might be obtained by incorporating the arthroscope’s metrics.

4.4.3 Classifiers

The classifiers investigated in this study are among the machine learning algorithms that do not

require heavy computations. These classifiers provided approximately similar results. How-

ever, the KNN and LDA have demonstrated the minimum accuracy and precision among the

classifiers used. The LDA reduces the dimension of the input data and in this procedure tries

to maximize the distance between the mean values of the two groups. However, the difference

between the mean values of the two groups is not usually the best criterion of discrimination.

Since normality is among the assumptions of the LDA, another reason for the low accuracy

of this classifier may be the non-normal distribution of some of the normalized energy-based

metrics. The KNN classifiers do not require a particular distribution of the samples, but has

shortcomings such as sensitivity to the local structure of the data and the curse of dimensional-

ity. In addition, the performance of KNN is affected by the value of K, which in our study was

limited due to the limited number of experts.

SVM and NN provided promising results. The range of accuracy of NN was 89%–95%.

In this study, a simple configuration was considered for the NN to prevent overfitting. This

method is robust to an increase in the number of inputs and is also capable of learning non-

linear relationships. However, a dependency on the initial conditions and a large computational

burden can be cited as disadvantages of this method. SVM provides a unique solution for

classification and offers a reasonable computational time. This method provides the highest

accuracy levels (95%) but when considering the arthroscope’s metrics for Task 2, SVM did not

demonstrate a high accuracy.

The results of our study are comparable to the results of previous studies in surgical skills

assessment. According to our results, the groups of novices and experts can be discriminated

with 95% accuracy, which is slightly higher than the results reported in [17, 20] (92%) and is

slightly lower than the results of [18] (100%). However, it should be noted that these results

also depend on the tasks studied, the diversity of subjects, and data recording methods. The re-

sults of our method, which are also close to the accuracy level of previous studies, demonstrate

the high potential of the proposed metrics and classifiers for surgical skills assessment.
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4.4.4 Tasks

In this study, two probing tasks (Task 1 and Task 2) were investigated in different shoulder

locations. The two non-significant differences between novices and experts were found for

the normalized rotational kinetic energy for Task 2. The difficult posture required to press

the switches in this task increased the complexity of the task, even for some of the expert

subjects. This task might be valuable for studies that also investigate intermediate levels of

expertise. Task 1 and Task 3 demonstrated suitable levels of difficulty for distinguishing the

two levels of expertise. However, performing Task 3 in a wet environment—closer to a real

surgical condition— can possibly increase the difficulty of this task by impacting the degree of

visibility of the anatomical structures.

To summarize, the energy-based metrics were analyzed for the first time for arthroscopic

tasks. In addition, a new energy-based metric, rotational kinetic energy, was proposed and

evaluated. In this study, the role of the arthroscope was secondary relative to the role of the

other instrument in completing the tasks. However, it was shown that even for the arthroscope,

there was a significant difference between experts and novices in terms of the energy-based

metrics. The normalization of the metrics provided additional information about variation in

performance in the novice and expert groups. Furthermore, various machine learning algo-

rithms were evaluated in conjunction with the normalized metrics to establish the appropriate

combination of the proposed metrics, and their performances were evaluated by implementing

various measures. Although this study uses some of the energy-based metrics that were intro-

duced in our earlier study, several new aspects of their use have been investigated for the first

time and have been modified to improve the quality of skills assessment. In addition to the

above novelties and in comparison with other studies in the area of surgical skills assessment,

this study evaluates various machine learning algorithms for the normalized energy-based met-

rics and for arthroscopic tasks.

4.5 Conclusions and Future Work

This study proposed novel performance metrics based on normalized mechanical energy and

work. The incorporation of these metrics for arthroscopic skills assessment was studied. For
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this purpose, various machine learning classifiers were investigated, among which Support

Vector Machines (SVM) and Neural Networks (NN) demonstrated high discrimination capa-

bilities. The validation results showed that these metrics are capable of differentiating between

novices and experts with 95% accuracy. It was also demonstrated that the work-based metrics

can enhance the accuracy of classification. Consequently, it is recommended that force sensing

is incorporated into data recording system to establish a more accurate assessment method.

Overall, our results show that normalized energy based metrics can enhance arthroscopic skills

assessment. The normalization of the metrics using ideal performance metrics allows trainees

to compare their performance with the ideal performance.

One of the future works of this study is to record further performance data for the arthro-

scopic tasks. Larger numbers of samples would provide more comprehensive models of per-

formance at each level of expertise. In particular, more data related to expert performance can

be used to further refine the criteria of expertise. Investigating the use of these metrics for

finer classification of the levels of expertise, including intermediate levels, is another future

direction of this study. In addition, the appropriate form of using the energy-based metrics for

providing feedback and the methods for presenting this data to trainees need to be explored as

part of future work.
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Chapter 5

Muscle Activity Analysis for Surgical

Skills Assessment

5.1 Introduction

Minimally invasive surgery (MIS) requires the handling of long instruments in difficult surgical

postures. It was shown in [1] that the physical workload of MIS is considerably higher than that

required for open surgery. Learning MIS requires learning how to manipulate the instruments

and adjust hand motions. It was shown in [2] that surgeons with higher levels of experience

demonstrate lower levels of fatigue after performing a series of laparoscopic tasks.

The effect of training level on muscle activity has been studied previously [3–5]. The results

of these studies showed that as skill level increases, muscle activity reduces and trainees learn

to recruit their muscles in a more efficient manner. However, finding appropriate features of

muscle activity as measured through Electromyography (EMG) has not been investigated in

these studies. In addition, the work to date has only considered the effect of training for robotic

surgery. The use of muscle activity features to distinguish between subjects with various levels

of expertise has not been explored for manual MIS. Specifically for arthroscopy, muscle activity

has not been studied to the best of our knowledge.

Robotic and manual surgery share several characteristics, such as manipulating long in-

struments through small portals and an indirect sense of contact force with tissue. In manual

surgery, the surgeon receives no assistance, such as tremor compensation or increased de-
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grees of freedom, which results in a more challenging surgical condition than robotics-assisted

surgery. Consequently, muscle activity requirements might be higher for manual surgery.

Section 5.1.1 provides a review of various EMG features that have been defined in previous

studies for different applications of EMG processing.

5.1.1 EMG Features

EMG features can be divided into three groups: frequency-domain features, time-domain fea-

tures, and time-frequency-domain features [6]. Each group of EMG features is explained in the

following sections.

5.1.1.1 Frequency-domain Features

Analyzing the frequency content of EMG signals is a useful approach for investigating muscle

activity. Overall, frequency-domain features represent muscle fatigue and muscle recruitment

and are extracted from the power spectrum of the signal. Various features have been reviewed

in [6, 7]. The most widely used features are described here.

Mean frequency The mean frequency or central frequency ( fc) is the weighted mean of the

frequency from the EMG signal, in which the weights for each frequency are defined as the

power densities at the corresponding frequency, divided by the sum of the power densities for

the total range of frequencies [6, 8], as follows:

fc =
∑

N
j=1 f jPj

∑
N
j=1 Pj

, (5.1)

where Pj and f j are the jth samples of power density and frequency, respectively, and N is the

total number of points in the power spectrum of the signal.

Median frequency The median frequency ( fmed) of the power spectrum is the frequency at

which the sum of the power density from 0 to fmed equals the sum of the power density from

fmed to the maximum frequency of the power spectrum, as follows:
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fmed :
fmed

∑
j=1

Pj =
fmax

∑
j= fmed

Pj, (5.2)

where P is power density, and fmed and fmax are the median and maximum frequencies of the

power spectrum. A higher median frequency is associated with faster performance and less

muscle fatigue [3].

Mean power The average of the power spectrum density is proposed in the literature as a

feature of EMG signals [6].

Total power The sum of power density or energy of the power spectrum was one of the

frequency-domain features used in [6].

Bandwidth Frequency bandwidth is the difference between the maximum and the minimum

frequency at which the power spectrum is half of its maximum level, which provides the 3 dB

bandwidth of the signal. Bandwidth is proportional to the range of muscles that are involved

in the performance [3].

Spectral moments Moments of the power spectrum are other features of EMG signals that

have been used. The first, second, and third moments have been recognized as the most infor-

mative moments [6], as follows:

SM1 =
N

∑
j=1

f jPj,

SM2 =
N

∑
j=1

f 2
j Pj,

SM3 =
N

∑
j=1

f 3
j Pj,

Variance of central frequency This feature is calculated based on the power spectrum of

the signal according to the following formula [6, 9]:
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VCF =
1

∑
N
j=1Pj

N

∑
j=1

Pj( f j− fc)
2, (5.3)

where fc is the mean frequency and is calculated according to Eq. 5.1.

5.1.1.2 Time-domain Features

Time-domain features depend on the amplitude of the signal. There are four main categories

that can be specified for these features as described below:

a) Direct dependence on signal amplitude The following features belong to this group:

• IEMG—Integral of the absolute value of the EMG amplitude [4, 10].

• MAV or EMGR—Average of the absolute value of the EMG amplitude. This metric was

named Mean Absolute Value (MAV) in [6] and was called EMG Rate (EMGR) in [4].

• MAV1 and MAV2—Weighted mean absolute value. For instance, a weight of 0.5 for the

beginning and end of the task and a weight of 1 for the rest of the task can be considered

[6]. Two versions of this feature are defined in [6, 7], as follows:

MAV1 =
1
N

N

∑
i=1

wi |xi| ;

wi =

 1, for 0.25N ≤ i≤ 0.75N

0.5, otherwise.

MAV2 =
1
N

N

∑
i=1

wi |xi| ;

wi =



1, for 0.25N ≤ i≤ 0.75N

4i
N , for i < 0.25N

4(i−N)
N , otherwise,
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where x is EMG signal amplitude, and N is the number of samples of the EMG signal.

• RMS—Root Mean Square of the EMG amplitude [11].

• VAR—Variance of the EMG signal (VAR) [6, 7].

• TM—The nth order temporal moment of the signal. In different studies, n has been a

number between 1 and 5 [12], as follows:

TMn =

∣∣∣∣∣ 1
N

N

∑
j=1

xn
j

∣∣∣∣∣ , (5.4)

where x j is the ith sample of the EMG signal.

• LOG—Log-detector, which is based on the logarithm of the amplitude. This feature was

defined in [13] as follows:

LOG = e
1
N ∑

N
i=1 log(|xi|)) (5.5)

b) Slope of the amplitude and changes in the sign of the signal Zero Crossing (ZC) and

Slope Sign Change (SSC) are examples of the features in this group. These features usually

include a threshold criteria to avoid the effect of noise on the feature:

• ZC is the number of times that the amplitude of the EMG signal changes from negative

to positive or vice versa.

• SSC is the number of times that the amplitude changes more than a certain threshold

twice in three consecutive samples, as follows:

SSC =
N−1

∑
i=2

[ f [(xi− xi−1)× (xi− xi+1)]];

f (x) =

1, for x > threshold

0, otherwise.



CHAPTER 5. MUSCLE ACTIVITY ANALYSIS FOR SURGICAL SKILLS ASSESSMENT 94

These features represent the frequency content of the signal in the time domain [6, 7].

c) Amplitude during the task A histogram is a feature that is derived based on the distri-

bution of different levels of EMG amplitude during the task. In this feature, the total range of

muscle activity is divided into a specified number of bins; and the number of data samples that

are placed in each bin are calculated [6, 14].

d) Time-series models of the signal Autoregressive (AR) coefficients and Cepstral coeffi-

cients are examples of this group of features. These features indirectly depend on the ampli-

tude.

• In AR models, each sample of EMG is modeled by a linear combination of the previous

data points with added white noise [6, 11, 14]:

xi =
P

∑
p=1

apxi−p +wi, (5.6)

where xi is the ith sample of the EMG signal, ap is the pth coefficient of the AR model, P

is the order of the model, and w is white noise. The order of the AR model was suggested

in [6, 11] to be 4 for EMG signals.

• Cepstrum coefficients have been recognized as strong features of EMG signals [11].

Cepstrum coefficients can be extracted from AR coefficients as follows:

cn =

−a1 if n = 1

−an−∑
n−1
k=1

(
1− 1

n

)
ancn−k if n > 1

, (5.7)

where cn and an are the nth cepstrum and AR coefficients.

In a study by Tkach et al. [13], the robustness of various time-domain features to disturbances

were investigated with respect to the accuracy of classifying EMG signals. According to this

study, AR coefficients and cepstrum coefficients are the most robust time-domain features.
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5.1.1.3 Time-frequency-domain Features

Time-frequency domain features include the features that are defined based on the Short Time

Fourier Transform (STFT) and the Wavelet Transform. These features represent the power

spectrum over time. It was found in [15] that the wavelet coefficients are more appropriate

than the STFT for investigating EMG features. Wavelet coefficients can be obtained by the

following formula:

W (s,τ) =
1√

s

∫
f (t)ψ∗

(
t− τ

s

)
dt, (5.8)

where s and τ are scaling and transition parameters, t is time, f (t) is the EMG signal at each

instant of time, and ψ is the mother wavelet. Various mother wavelets such as Daubechies4,

Cauchy, and Morelet have been used in previous studies [7, 16].

Further assessment ability can be achieved by incorporating hand movements in the assess-

ment to interpret surgical gestures. Hand gestures can be investigated through analysis of the

acceleration of the hands while performing surgical tasks. In Section 5.1.2, the metrics that

were developed based on acceleration data are discussed briefly.

5.1.2 Acceleration-based Metrics

Acceleration metrics are mainly defined as the following:

• Mean acceleration—the average of acceleration magnitude during task performance

• Maximum/peak acceleration—the maximum value of the magnitude of the acceleration

• Consistency of acceleration—determined by calculating the standard deviation of the

acceleration

• Integral of Acceleration Vector (IAV)—this metric is calculated according to the follow-

ing formula [17]

IAV =
end

∑
i=start

√
(ax2)+(ay2)+(az2) , (5.9)
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where ax, ay, and az are acceleration in x, y, and z directions.

5.1.3 Objectives

The hypothesis explored in this chapter was that muscle activity can be an indicating factor of

surgical dexterity. The objective of this study was to explore various features of EMG signals

and to identify the features that demonstrate the highest correlation with surgical psychomotor

skills. This took place in the context of evaluating the use of these features for the development

of metrics for surgical skills assessment. In addition, hand movements were explored in this

study, as described in the following section.

5.2 Materials and Methods

The experimental design for recording a data set for arthroscopic task performance, the data

recording system, and the data processing methods are explained in this section.

5.2.1 Experimental Design

The same experimental design that was explained in Chapter 4 was used for data collection.

A brief summary is provided herein. Three arthroscopic tasks, including two probing tasks

and one grasping task (Fig. 5.1(b, c, d)), were performed on a physical shoulder simulator

(Fig. 5.1(a)). These tasks required pressing two top-actuated switches positioned at the middle

and at the top of the glenoid (Task 1), pressing a similar switch underneath the acromion

and another switch underneath the coracoid process (Task 2), and grasping a loose body and

removing it from the joint capsule (Task 3). The probing and grasping tasks were performed

using an arthroscopic probe and an arthroscopic grasper, respectively. The probe/grasper were

held in the left hand and an arthroscope was held in the right hand for all of the participants.

In this study, 26 participants, consisting of 18 novices and 8 experts, performed the tasks. The

novice subjects did not have previous experience with scoping or any other MIS procedure.

The appropriate view of the arthroscope was set for the novice subjects before starting the task.

The expert group consisted of arthroscopic surgeons and orthopaedic fellows. Each participant

performed a pre-practice test, which involved performing all three tasks. Then, they were
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(a)

(b) (c) (d)

Figure 5.1: The experimental setup (a), and the three tasks of this study: b) Task 1, c) Task 2,
and d) Task 3.

allowed to practice these tasks for up to 30 minutes. Finally, a post-practice test was done to

evaluate the improvement of participants when performing these tasks. In these trials, 4 experts

performed the tasks in the post-practice trial. The post-practice test for experts was performed

without practicing. This experimental procedure was approved by the Human Research Ethics

Board of Western University.

During the trials, muscle activity and acceleration of the forearm were recorded and ana-

lyzed. Before starting the tasks, the resting muscle activity of each participant was recorded for

normalization so that the signals could be normalized. The data recording system is explained

in the following subsection. Sensorized arthroscopic instruments were used to collect the ap-

plied force at the tip of the instrument and the position of the tip of the instrument. These data

were investigated and the results have already been described in Chapter 4.
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(a) (b) (c)

Figure 5.2: EMG and acceleration recording system: (a) Myo channel assignment, b) position-
ing the armband with respect to the epiconyle bone, and c) recording data while performing
arthroscopic tasks.

5.2.2 Data Recording System

In order to record muscle activity, Myo armbands (Thalmic Labs, Waterloo) were used. These

armbands have recently been utilized primarily in studies that are related to gesture recognition

[18–21]. Myo armbands have 8 separate EMG sensors. The EMG signals of each sensor are

referred to as Channel 1 to Channel 8. The assignment of channel numbers to each sensor is

shown in Figure 5.2 (a). An anatomical landmark was used to align the armbands and maintain

a consistent measurement for all subjects. The armbands were placed on the widest part of

the forearm and the EMG sensor with the Myo logo was aligned with the lateral epicondyle

bone (Fig. 5.2(b)). The LED below the logo was placed towards the distal side of the arm.

The recorded muscle activity is the result of activation of the major forearm muscles. The

approximate assignment of channels to forearm mucles is as follows:

– Channel 1: pronator teres and/or brachioradialis,

– Channel 2: brachioradialis,

– Channel 3: extensor carpi radialis,

– Channel 4: extensor digitorium,

– Channel 5: extensor carpi ulnaris

– Channel 6: flexor carpi ulnaris

– Channel 7: flexor digitorium

– Channel 8: flexor carpi radialis and/or pronator teres.
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However, corsstalk might affect the measured signals and due to slight movement of the fore-

arm, these assignments might shift around about one channel. The sensor assignments were

determined based on the instructions provided in [22]. The EMG signals captured by these sen-

sors are converted to unitless values in the range of -128 to +128. These data were transferred

to a desktop computer through the Bluetooth protocol and were recorded at a frequency of 200

Hz [23]. In addition to EMG sensors, each armband is equipped with an Inertial Measurement

Unit (IMU), which records acceleration data at 50 Hz. These data can be used for tracking the

orientation of the forearm. Software simultaneously records muscle and spatial data from two

armbands, corresponding to the left and right hands.

5.2.3 Data Processing

Before extracting features of the EMG signals, it was necessary to pre-process the signals

to remove noise and obtain a smooth signal. According to [24], the presence of very low

frequencies in the EMG signal, which lie in the range of 1–5 Hz, is usually due to low frequency

noise and should be removed by filtering. Zero offset removal and high pass filtering of the

signal, with a cut-off frequency of 5 Hz, were first performed. Following that, the signal was

smoothed by a moving average method. In this method, a linear envelope/window moves

along the signal, and the RMS value that is divided by length of the window is calculated for

the data points that place inside the window [25]. The window length determines the level

of smoothing: larger windows result in smoother signals; however, some information might

be lost by applying large windows. Smaller windows preserve the shape and information of

the signal, but do not provide considerable smoothing. Small size windows, such as 20 ms,

are appropriate for studying fast movements and large windows, such as 500 ms, are preferred

for studying stationary motions. Overlapped windows combine the benefits of these two types

of windows. In this study, 75% overlap was established. To determine an appropriate window

length, windows with various lengths from 20 ms to 100 ms were investigated for a data sample.

As can be seen in Fig. 5.3, a window length of 40 ms provides appropriate smoothness and

can also track rapid changes in the amplitude of the signal. All of the signal processing and

subsequent feature extraction were performed in MATLAB.
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(a)

Figure 5.3: Mean RMS of a sample EMG signal for various lengths of linear envelope.

5.3 Metric Development and Evaluation

In this section, the development of metrics based on muscle activity and hand movement is

described. Sections 5.3.1 and 5.3.2 describe the details that were considered for using EMG

features as performance metrics and the pre-processing of the acceleration data. Sections 5.3.3

and 5.3.4 describe the method of combining the features that showed the best results and the

evaluation method, respectively.

5.3.1 EMG Features as Performance Metrics

The EMG features and the acceleration metrics reviewed in Sections 5.1.1 and 5.1.2 were

considered as potential performance metrics and their ability to distinguish between subjects

with various levels of expertise was evaluated. All of these features were calculated for the

three tasks performed in this study, for the eight EMG channels and one IMU for each hand.
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Normalization of the EMG amplitude with respect to each subject’s minimum muscle activity

was performed prior to calculating these features. Most of the features did not require specific

settings. However, the following details were considered for the histogram, AR, cepstrum, and

wavelet coefficients.

– Histogram: the range of EMG signals that are recorded with the Myo armbands is be-

tween -128 and +128. In the current study, the absolute value of the EMG signals was

considered and the range of 0 to 128 was divided into 8 bins with an equal length of 16.

– AR coefficients: as was suggested in [6, 11], the order of the AR model was four.

– Cespstrum coefficients: similar to the AR coefficients, an order of four was used for

this feature. In addition, the first coefficient was excluded from the analysis, as this

coefficient provides the same information as the first coefficient of the AR model.

– Wavelet coefficients: a Daubechies4 mother wavelet was used and the mean value of the

first five wavelet coefficients was calculated.

5.3.2 Acceleration-based Metrics

The acceleration signals were prepared for further analysis by first calculating the square root

of the sum of the squares (SRSS), which allows the magnitude of the acceleration to be investi-

gated. Following that, the acceleration-based metrics reviewed in Section 5.1.2 were calculated

for the left and right hands.

5.3.3 Combination of EMG-based Metrics and Acceleration-based Met-

rics for Classification

The optimal performance metric based on hand movements and muscle activation should in-

corporate various features of motion and EMG signals. The superior features for the purpose

of surgical skills assessment were identified in a two-step method. First, the overall pattern

of change in the correlation with level of expertise was evaluated for the eight channels of

the Myo armbands. The channels that showed the highest correlation over all of the features
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were selected. Second, for those channels, the metrics that demonstrated a statistically signif-

icant correlation with level of experience, with the magnitude higher than 0.5, were extracted.

Support Vector Machines (SVM) were used to develop a model of proficiency based on EMG

features and acceleration metrics. This classifier demonstrated a robust, fast, and unique clas-

sification according to the results of Chapter 4. A Gaussian Radial Basis Function (RBF) was

used for the kernel function of the SVM.

5.3.4 Metric Evaluation

As mentioned in Section 5.3.3, the correlation of each metric with level of experience was cal-

culated. The Spearman’s rho measure was selected to quantify the correlation. In addition, the

Mann-Whitney U test was performed on all of the metrics to explore their ability to differen-

tiate between novices and experts. The Statistical Package for the Social Sciences, Version 24

(SPSS, Chicago, IL, USA) was used for analysis. An additional statistical analysis was per-

formed to examine the ability of these features to differentiate between pre-tests and post-tests.

This analysis was performed using the General Linear Model/Repeated Measures test of SPSS.

In addition, the classification and the suitability of the combination of these features for use

in skills assessment was evaluated through a leave-one-subject-out (LOSO) cross validation.

Four measures were employed to quantify the validation: accuracy, precision, recall, and F1

score. These measures and the LOSO cross validation method are explained in Section 4.2.4.1.

Separate evaluations were performed based on the metrics for the left and right hands.

5.4 Results and Discussion

All of the metrics that were reported in [6] were investigated in the current study. However,

many of the proposed metrics did not show a significant correlation with level of experience.

In this section, the results of each group of metrics are explained, and the results of the clas-

sification are reported. Two approaches were considered for evaluation of the metrics: 1)

investigating their ability to show a difference between experts and novices, and 2) investigat-

ing their ability to show a difference between pre-test and post-test performance. Overall, for

Task 1, Channels 1, 2, 4, 7, and 8 demonstrated higher correlations with level of experience.
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For Task 2, Channels 1, 2, 4, and 5 were the most powerful sensor locations; and for Task 3,

Channels 1, 2, 3, 5, 7, and 8 provided the best results in terms of correlation.

5.4.1 Time-domain EMG-based Metrics

Among the time-domain features that were reviewed in Section 5.1.1.2, AR coefficients, his-

togram, cepstral coefficients, and SSC demonstrated superior differentiation ability between

different levels of experience. The results of these metrics are explained in detail in the follow-

ing paragraphs. In addition, ZC and AAC showed significant differences, but since a consistent

result was not found for these metrics, they have not been discussed in this section.

AR coefficients AR coefficients demonstrated a high correlation with level of expertise for

all three tasks of this study. The AR coefficients are plotted in Fig. 5.4 for the novice and

expert subjects and for the most powerful channels of each task. As can be seen, AR-1 and

AR-4 demonstrated higher values for the expert subjects for Tasks 1 and 2. AR-2 and AR-3

demonstrated smaller values for the experts for Tasks 1 and 2. The trend of AR coefficients

for Task 3 is the opposite of the trend that exists in Tasks 1 and 2, i.e., experts produce higher

coefficients for Tasks 2 and 3, and produced smaller coefficients for Task 3. This inverse trend

might be due to the different requirement of this task, which was working with the grasper

instrument versus holding a probe. As muscle contraction affects the EMG spectrum, it also

alters the AR coefficients [14]. Consequently, these coefficients indicate the state of muscle

contraction. Interpreting AR-1 for Task 3 is not easy, since there is a large overlap between the

results of experts and novices. The best correlation with level of expertise for this meatric was

-0.767 for AR-1 for Task 1.

Histogram The EMG signal histogram, normalized over the minimum muscle activity of the

related subject, is plotted in Fig. 5.5 for a random expert and a random novice subject. As can

be seen, the distribution of most of the Myo channels are different for a novice and an expert

subject. This difference is more significant for Channels 1, 2, 3, 5, 6, and 8. According to these

results, novice subjects demonstrated minimum muscle activity for a considerable duration of

the task. In addition, a significant difference was found between the novices and experts for
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(d)

Figure 5.4: AR coefficients for Tasks 1, 2, and 3, for the Myo channels specified in the hor-
izontal axis. The statistically significant features are shown with a line beneath the channel
number.
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(a)

(b)

Figure 5.5: Percentage of data samples in each range of EMG amplitude, considering the left
hand, for Task 1 for a) a novice and b) an expert subject.
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the highest range of amplitude, which was 113–128. In this range, experts demonstrated a

larger number of samples, i.e., a positive correlation was obtained. Regarding the difference

between pre-test and post-test, the histogram showed significant differences in Tasks 1 and 3.

Cepstral coefficients This feature also demonstrated high correlations with level of exper-

tise. As the cepstral coefficients are calculated based on the AR coefficients, high correlations

were expected for these features. In some cases, cesptral coefficients improved the amount of

correlation that was obtained by the AR model. The cepstral coefficients calculated for the left

hand for the most significant channels are shown in Table 5.1.

Table 5.1: Spearman’s rho correlation with level of experience for cepstral coefficients, con-
sidering the left hand, for the Myo channels with higher levels of correlation. C1–C4 stand for
the first to the 4th order cepstral coefficients. Statistically significant values are shown in bold.

Task Myo Channel C1 C2 C3 C4

1

1 -0.767 0.734 0.400 -0.117
2 -0.517 0.484 0.0834 -0.234
4 -0.501 0.534 0.100 -0.317
7 0.184 -0.134 0.484 -0.551

2
1 -0.511 0.322 0.587 -0.738
2 -0.492 0.303 0.435 -0.341
3 -0.302 0.114 0.662 -0.416

3
1 0.086 -0.124 -0.482 0.395
5 -0.124 0.124 -0.445 0.470

SSC This metric showed a significant difference between experts and novices (Table 5.2).

All of the 8 sensors of the armband showed significant correlations for Task 3. No difference

between pre- and post-tests was found in terms of SSC.

Overall, the higher amplitude of EMG signals represents a higher amount of muscle recruit-

ment and increased strain. On the other hand, low amplitude EMG signals are not necessarily

associated with less effort. Small EMG amplitude might be due to exhaustion and decreased

muscle power. This effect produces additional complexity in processing EMG signals in sur-
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Table 5.2: Spearman’s rho correlation with level of experience for SSC, considering the left
hand (Task1, Task 2, Task 3). Statistically significant values are shown in bold.

Myo channel SSC
1 (-0.417, -0.445, -0.507)
2 (-0.484, -0.487, -0.519)
3 (-0.417, -0.264, -0.507)
4 (-0.367 -0.222 -0.667)
5 (-0.300 -0.236 -0.469)
6 (-0.417, -0.278, -0.531)
7 (-0.567, -0.361, -0.556)
8 (-0.701 , -0.445, -0.605)

gical performance. For the subjects that required relatively longer time to complete the task,

the reduced amplitude of EMG might be misinterpreted with efficiency in muscle recruitment.

Consequently, features that do not depend on the amplitude of the signal should be included in

the analysis.

5.4.2 Frequency-domain EMG-based Metrics

The frequency-domain features, explained in Section 5.1.1.1, were calculated for the data set

recorded in this study. The MNP, TTP, fc, and fmed demonstrated the highest correlation with

level of experience among the frequency-domain features. The results of these metrics are

provided in the following paragraphs. Other frequency-domain features did not provide a con-

sistent trend for all of the tasks. Overall, the number of significant correlations in frequency

domain features were larger for Task 3.

MNP Mean power is one of the frequency-based metrics that demonstrated significant cor-

relations with the level of experience for all three tasks of this study (Table 5.3). However,

this metric showed a significant difference between pre-test and post-test only for Task 3. The

results of pre- and post-tests for Task 3 are shown in Table 5.4.

Since Task 3 was the easiest task, novice subjects might have a significant improvement in

their post-test performance. In particular, at the post-test of Task 3, the novice subjects had the

highest amount of experience in manipulating arthroscopic instruments and the highest famil-
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iarity with the shoulder model. It can be inferred from these results that the MNP metric can

show the difference between levels of expertise in cases where there exists a large difference

between the performance of different groups.

TTP This metric showed significant correlations for Task 1 and Task 3 (Table 5.3).

fc & fmed Mean and median frequency demonstrated an increasing trend with the increase in

level of experience for most of the Myo channels. These metrics showed a significant difference

between experts and novices for a few channels of Tasks 2 and 3 (Table 5.3). Low frequencies

of action potential of muscles can be associated with continued stress on the muscles [26].

In terms of bandwidth, a negative correlation was demonstrated for most of the channels for

the tasks of this study. This observation indicates that expert subjects might recruit a smaller

range of muscle fibers; however, for this metric few significant correlations with the level of

experience were obtained.

5.4.3 Time-frequency-domain EMG-based Metrics

Four levels of wavelet decomposition were investigated in this study. The variation among

different level coefficients for various channels was relatively large. However, the detailed co-

efficient 2 and 4 (CD-2 and CD-4) demonstrated significant correlations with level of expertise

for Task 1 and 3 for the specified channels in Table 5.5. The CD2 was also able to identify the

difference between pre-test and post-tests for Tasks 2 and 3 (Table 5.6).

Table 5.3: Spearman’s rho correlation with level of experience for the left hand (Task1, Task 2,
Task 3). Statistically significant values are shown in bold.

Myo channel MNP TTP fc fmed

1 (0.567, 0.361, 0.494) (-0.517, -0.389, -0.445) (0.267, -0.057, 0.074) (0.234, 0.076, 0.111)
2 (0.601, 0.278, 0.445) (-0.384, -0.403, -0.321) (0.384, 0.246, 0.482) (0.317, 0.284, 0.482)
3 (0.601, 0.445, 0.494) (-0.184, -0.153, -0.235) (0.100, 0.378, 0.445) (0.050, 0.341, 0.408)
4 (0.517, 0.431, 0.482) (-0.217, -0.139, -0.408) (0.300, -0.227, 0.062) (0.367, -0.132, 0.099)
5 (0.584, 0.487, 0.593) (-0.267, 0.083, -0.222) (-0.075, -0.227, -0.012) (-0.133, -0.189, -0.099)
6 (0.484, 0.639, 0.667) (-0.450, -0.056, -0.284) (-0.083, 0.303, 0.321) (-0.017, 0.246, 0.259)
7 (0.417, 0.584, 0.544) (-0.35, -0.014, -0.284) (0.317, 0.492, 0.222) (0.384, 0.473, 0.074)
8 (0.584, 0.320, 0.346) (-0.534, -0.348, -0.507) (0.234, -0.095, 0.049) (0.133, -0.057, 0.148)
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Table 5.4: Mean and standard deviation of the MNP metric for pre- and post-tests of novice
subjects, for their left hand. The results of Myo channels with statistically significant difference
between pre- and post-tests are shown in bold.

Myo Channel Pre-test
mean ± StDev

Post-test
mean ± StDev p value

1 0.084 ± 0.056 0.105 ± 0.058 0.076
2 0.051 ± 0.023 0.070 ± 0.043 0.045
3 0.073 ± 0.051 0.099 ± 0.071 0.078
4 0.102 ± 0.061 0.139 ± 0.080 0.028
5 0.082 ± 0.061 0.104 ± 0.066 0.046
6 0.084 ± 0.056 0.110 ± 0.072 0.046
7 0.079 ± 0.051 0.114 ± 0.074 0.054
8 0.133 ± 0.117 0.161 ± 0.118 0.189

5.4.4 Acceleration

Comparing the mean value of acceleration for pre- and post-tests, the novice group showed

smaller mean values of acceleration in the post-test. However, this difference was only signifi-

cant for Task 3. Range of acceleration, maximum acceleration, and consistency of acceleration

demonstrated significant improvements for the post-test compared to the pre-test (Fig. 5.6).

The only significant difference between experts and novices was found for Task 1, for both

of the left and right hands (Table 5.7). It was noticed that for Task 2 and Task 3, there was a

large standard deviation in the expert group with some experts demonstrating lower levels of

acceleration metrics, while some experts showed the maximum value among all of the subjects.

Since no reasonable cause was identified for excluding them, these samples were included in

the analysis. Further investigation of hand movement is required to obtain more knowledge in

this regard. A possible solution could be segmenting various parts of the task to recognize the

reason behind this variation in the expert group.

Comparing the acceleration metrics with the EMG metrics indicates that trainees can im-

prove their hand motions rapidly in consecutive trials. However, for learning fine gestures,

which might influence EMG activity, a larger number of practice sessions is required.
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Table 5.5: Spearman’s rho correlation with level of experience for CD-4 and CD-2 coefficients
of the wavelet transform, considering the left hand for Tasks 1 and 3. Statistically significant
values are shown in bold.

Task Myo channel CD-4 CD-2

1
1 0.117 -0.551
3 -0.534 -0.317
4 -0.701 0.167

3
3 0.432 0.210
5 0.432 0.296
8 -0.358 -0.457

Table 5.6: Mean and standard deviation of the CD-2 wavelet coefficient metric for pre- and
post-tests of novice subjects, for their left hand. The results of Myo channels with statistically
significant difference between pre- and post-tests are shown in bold.

Task Myo Channel Pre-test
mean ± StDev

Post-test
mean ± StDev p value

2 5 3.781 ± 14.472 -4.554 ± 17.971 0.007
8 -1.264 ± 31.863 3.070 ± 24.612 0.046

3 1 22.041 ± 49.611 -14.853 ± 63.825 0.036

Table 5.7: Acceleration metrics for Task 1. N stands for novices and E stands for experts.

Hand Group
Acc. Mean (m/s)
mean ± StDev p value

Acc. Range (m/s)
mean ± StDev p value

Acc. Max (m/s)
mean ± StDev p value

Acc. StDev (m/s)
mean ± StDev p value

L
ef

t

N 1.018 ± 0.022 0.031 0.625 ± 0.217 0.010 1.437 ± 0.162 0.006 0.043 ± 0.015
0.197

E 1.00 ± 0.014 0.404 ± 0.145 1.246 ± 0.146 0.035 ± 0.014

R
ig

ht

N 0.975 ± 0.010
1.000

0.524 ± 0.225 0.019 1.375 ± 0.190 0.025 0.050 ± 0.029
0.133

E 0.974 ± 0.008 0.2744 ± 0.186 1.188 ± 0.172 0.026 ± 0.019
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(a)

(b)

(c)

Figure 5.6: Acceleration-based metrics, including mean, range, maximum (max), and standard
deviation (StDev) for pre- and post-tests of the novice subjects, for their left hand: a) Task 1,
b) Task 2, and c) Task 3. The metrics with a statistically significant difference between pre-
and post-tests are indicated with a * sign.
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5.4.5 Feature Selection

The correlation of features with level of experience was calculated for the eight channels from

the Myo armbands. Investigating these channels for the time and frequency domain metrics,

resulted in choosing different channels for each task. For Task 1, Channels 1, 2, 4, 7, and 8 were

selected for the left hand. For Task 2, Channels 1, 2, 4, and 5 were included in the analysis.

For Task 3, Channels 1, 2, 3, 7, and 8 were the superior EMG channels. The features that

demonstrated correlations higher than 0.5 were included in the final feature set. The number of

features that were finally extracted for Tasks 1, 2, and 3 were 38, 19, and 15 for the left hand

and were 23, 15, and 14 for the right hand.

5.4.6 Classification

Due to frequent activation of the sleep mode of the Myo armbands, when there was no gesture,

the right hand data for some of the subjects were excluded from the analysis. The number

of subjects whose data was excluded for Tasks 1, 2, and 3 was 9, 10, and 3, respectively.

In order to provide more detailed analysis, a separate evaluation of subject classification was

performed for the left and right hands. The results of the classification for the left and right

hands separately are presented in Table 5.8. As can be seen, higher levels of accuracy were

obtained for the left hand. This was expected as the main part of the task was performed

with the left hand and also the numbers of valid data samples were larger, which increases the

training power of the SVM model. However, the right-hand metrics also provided accuracy

levels higher than 82%. This indicates that the performance of the hand that is indirectly

involved in the task might also play an important role in identifying the level of expertise of

trainees.

The first two tasks of this study were similar, in the sense that both of them were probing

tasks and that the subjects had to press top-actuated switches. The level of difficulty of Task 2

was perceived to be the highest in the opinion of the participants. The results of cross validation

demonstrated 100% accuracy for this task. The third task was perceived the easiest task among

the tasks studied in this project, according to the participant’s impression. The lowest accuracy

was obtained for this task. From these results, it can be concluded that the more difficult the
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task, the more suitable the EMG and acceleration metrics are for skills assessment.

Table 5.8: Accuracy, precision, recall, and F1 score as percentages based on Myo features for
the left and right hands.

Task Hand Accuracy (%) Precision(%) Recall(%) F1 score(%)

1
Left 90.48 85.71 85.71 85.71

Right 82.35 83.33 71.43 76.92

2
Left 100.00 100.00 100.00 100.00

Right 87.50 83.33 83.33 83.33

3
Left 88.00 100.00 57.14 72.73

Right 82.61 62.50 83.33 71.43

Regarding the statistical analysis performed in this chapter, a correction to the level of

significance to account for multiple comparisons was applied. To this end, Bonferroni and

Benjamini-Hochberg correction methods were utilized for p value correction. Using these

methods, the correlation with the level of experience was found to be significant for the AR

coefficients, cepstral coefficients, wavelet coeffficients, MNP, fc, fmed, and SSC. However, the

number of significant correlations was reduced when considering the corrected p values. In

addition, classification was repeated using the significant features according to the corrected p

values as inputs to the SVM model. It was found in this analysis that classification accuracy

was reduced by excluding the EMG features with non-significant high correlations (higher

than 0.5). The reduced accuracy in classification shows that valuable information exists in the

features that were ignored due to not meeting the corrected p value criteria. Adjusting the

level of significance decreases the probability of Type I error (false positive) and increases the

probability of Type II error (false negative). In this study, the consequence of performing a Type

I error means that no difference is found between subjects with various levels of experience;

however, the consequence of making a Type II error results in neglecting the information about
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surgical proficiency that might exist in some of the EMG features. The reduced accuracy of

classification when correcting the p value supports the possibility of making a Type II error. In

this study, the objective was to explore a variety of EMG features and recognize the features

that are related to surgical proficiency. Consequently, the statistical analysis was performed

considering a 0.05 level of significance instead of the corrected value. More powerful statistical

analysis is possible with the availability of a larger sample size. This will be pursued in our

future work.

5.5 Conclusions

This study evaluated the use of EMG and forearm movements in arthroscopic skills assessment.

The use of these metrics was evaluated to differentiate between expert and novice subjects and

also to track the improvement of trainees over two trials. According to the results, surgical

proficiency affects muscle activity. EMG features such as AR coefficients, histogram, wavelet

coefficients, and MNP demonstrate various EMG features related to surgical skill. It was also

found that practice has a significant effect on forearm motions, which can be detected by ac-

celeration metrics.

In conclusion, Myo armbands are easy to use devices that can be incorporated into surgi-

cal assessment systems. However, the activity of other groups of muscles, such as trapezius,

biceps, and triceps, should be investigated in future studies.
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Chapter 6

Concluding Remarks and Future Work

The main goal of this thesis was to improve motor skills assessment in arthroscopy. In Chapter

2, the current state of arthroscopic skills assessment methods was reviewed. In addition, studies

in other areas of MIS, which can be related to arthroscopy and/or for which there exists the

potential to adapt them to arthroscopy, were reviewed. The important shortcomings of these

studies were the lack of an appropriate assessment method that investigates various features of

performance, from kinematic to physiological parameters, instead of limiting the assessment

to commonly used metrics such as task completion time, path length, etc.

In this thesis, performance metrics were developed inspired by the concept of energy expen-

diture by using the measured contact force and tip position of the instruments. These metrics

are named energy-based metrics; however, the metrics do not represent the amount of energy

expenditure. They were inspired by definition of potential energy, kinetic energy, and work.

Accurate measurement of energy expenditure requires more complicated analysis to investi-

gate motions of the instruments at different points, an accurate centre of mass calculations,

and force sensing along the shaft of the instrument. This is left as future work. The results of

this thesis demonstrated the ability of energy-based metrics for arthroscopic and laparoscopic

skills assessment. In addition, optimization methods, such as GA and machine learning al-

gorithms, can be used to define expertise criteria and to differentiate between trainees with

various levels of expertise. In addition, the muscle activity and the movement of the forearm

were investigated to explore the relationship between various features of EMG signals and sur-

gical dexterity. These features showed different muscle activity for experts and novices and
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were capable of classifying trainees with 100% accuracy for one of the arthroscopic tasks.

Overall, to develop a comprehensive assessment method, various parameters obtained by

measuring instrument motion, hand motion, contact force between the instrument and the sur-

gical setup, and muscle activity should be included. The metrics proposed in this thesis can be

calculated automatically in a reasonable amount of time. These metrics can be used to evaluate

and determine the proficiency levels of trainees, provide feedback and, consequently, enhance

the effectiveness of surgical simulators. Although these metrics were mainly investigated for

arthroscopy, they can be adapted to other surgical procedures.

6.1 Contributions

This thesis demonstrated the benefits of incorporating energy expenditure and muscle activity

into surgical assessment methods, and their high ability to identify fine variations in perfor-

mance with different levels of dexterity. The main contributions of this project are as follows:

• In this thesis, novel objective performance metrics were proposed based on mechani-

cal energy expenditure and work. The basic energy expenditure metrics were potential

energy, translational kinetic energy, rotational kinetic energy, and work. These metrics

showed statistically significant differences between experts and novices for arthroscopic

and laparoscopic tasks.

• Another contribution of this thesis was an optimized two-step method for combining the

basic energy-based metrics and the use of this two-step method for trainee classification.

Specific combinations of the basic metrics were established for differentiating between

1) novices and experts, 2) two sub-levels of novices, and 3) two sub-levels of experts.

In this method, the difference between novices and experts was maximized in the first

step, and the difference between sub-levels of novices and experts was maximized in the

second step. The results showed that the two-step method can increase accuracy when

determining the level of expertise of trainees. Dividing this process into two steps allows

exploring the fine variations in metrics caused by differences in subjects’ detailed levels

of expertise.
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• Various machine learning algorithms were explored for use in conjunction with the basic

energy-based metrics. The goal of using these algorithms was to explore the non-linear

dynamics that exist between the energy-based metrics as a function of the various levels

of expertise. When exploring arthroscopic skills, the NN and SVM methods were able

to more accurately identify levels of expertise, with levels of accuracy as high as 95%.

• Performing a thorough analysis of various EMG features for arthroscopic skills assess-

ment was another significant contribution of this project. The results of this thesis

showed that muscle activity can be an indication of surgical proficiency and increase the

accuracy of surgical skills assessment. Muscle activity had not been utilized for classi-

fying trainees into their level of expertise. In particular for arthroscopy, these parameters

have not been investigated in any related study.

• This thesis explored the use of Myo armbands for surgical skills assessment for the first

time in arthroscopic surgery. The data recorded using these armbands and the process-

ing technique proposed here, demonstrated the ability of using muscle activity signals

to differentiate between two levels of expertise with 100% accuracy. The results of this

study support the idea of performing surgical skills assessment using instruments that

are located outside of the surgical site or outside the patient’s body. A limiting factor in

assessing surgical expertise using parameters such as applied forces is that these assess-

ment methods cannot be transferred to the operating room, due to special preparation

and safety issues for patients, or they require specific setups for use on cadaver models.

The use of these armbands and EMG-based metrics allows evaluation of transfer validity

of the surgical skills learned on simulators to the OR.

Overall, the methods that were investigated in this project advance our knowledge of

the characteristics of dexterous performance and add another perspective to quantifying

surgical proficiency.
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6.2 Future Work

Various studies can be performed to continue this work in future. Future work can include

improving the sensing system, acquiring larger sets of data, and using the current metrics to

guide trainees. In the following paragraphs, these ideas are explained in detail.

• One of the improvements in the proposed metrics can be to include axial force when

calculating energy. Many parts of the tasks of this thesis required applying bending

forces, which are were perpendicular to the shaft of the instrument. However, including

axial force in the calculations of the proposed metrics will enhance accuracy of energy

expenditure calculation and might result in improved performance metrics. For instance,

the Fiber Bragg Sensorized arthroscopic instruments [1,2], that are capable of measuring

axial force might assist in the future.

• Recording and analyzing muscle activity of other groups of muscles that might be in-

volved in MIS performance can increase our knowledge of surgical postures and muscle

recruitment of experts. The additional muscle groups can include trapezius, deltoids, bi-

ceps, triceps, and thenar eminence. Although state-of-the-art features proposed for EMG

signals were investigated in this project, analyzing EMG signals through other process-

ing techniques, such as fractal patterns of muscle activity or modeling the signal with

HMM, can provide additional information.

• The proposed energy-based metrics were evaluated for four levels of experience for the

suturing and knot-tying tasks. However, for the arthroscopy experiment, two levels of

experience were investigated. This was due to the small number of experts and interme-

diates that are available in London, Ontario. Recording a larger number of data samples

from participants with an intermediate level of experience can provide additional infor-

mation on the use of these metrics for arthroscopic skills assessment.

• Investigating the relationship between energy expenditure calculated based on the mea-

sured data at the tip of the instrument and the EMG-based metrics will also be beneficial

in investigating the efficiency of performance.
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• Developing an automatic feedback method based on the proposed metrics and evaluat-

ing its effect on learning surgical skills is also an important step for enhancing surgical

training.

• Another important point of contact between the instrument and the surgical setup is at

the instrument portal. Developing a sensorized trocar or a sensorized instrument capable

of recording force along its shaft, will help to acquire more knowledge on the expended

energy while performing a surgical task.

• Finally, investigating more complex tasks, such as Bankart suture, might be beneficial

for investigating the difference between detailed levels of expertise. For such complex

tasks, it is necessary to divide the performance into its sub-tasks. Separating a of a task

into smaller portions, such as finding the tip of the instrument, reaching a target, and

pressing a switch, can also be helpful for simpler tasks.
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Appendix A

Sensitivity Analysis of Energy-based

Metrics to Additional Mass

The mass in the formulas used to compute the kinetic/potential energy was considered to be a

constant equal to 170 g, which is the mass of each instrument. The mass of the needle, which

is less than 5 g, was negligible compared to that of the instrument. However, the interaction

of the instruments with the setup, directly or through the needle contact, might increase the

effective mass of the instruments and as a consequence increase kinetic/potential energy. In

this appendix, the kinetic/potential energy, which was calculated based on the constant mass

of the instruments, is called the minimum kinetic/potential energy. The following investigation

was performed to estimate the effect of the possible additional mass on these metrics. To start,

it was assumed that if the instrument’s velocity or vertical displacement were small, the effect

of additional mass on kinetic or potential energy, respectively, would be negligible. Moreover,

if the additional mass was not significant, its effect would be negligible as well. The existence

of the additional mass can be shown by the force at the tip of the instrument. Hence, the in-

tervals in which the force was beyond a certain threshold were considered as those in which

an additional mass was being carried. During those intervals, if the velocity/vertical displace-

ment was higher than their corresponding thresholds, then the corresponding data could have a

significant impact on the kinetic/potential energy (Fig. A.1).

Based on the characteristics of the sensorized instruments, specifically their maximum er-

ror and the coupling effect of grasping on bending forces [1], a value of 0.5 N was considered
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Figure A.1: Sample exclusion criteria. The data points that occur when the force is higher than
the red dashed line and velocity is higher than the blue dashed line can have a considerable
effect on kinetic energy and were excluded from the data for partial energy-based metrics.

for the force threshold. To avoid the effect of drift on force analysis, the minimum amount of

force for each trial was added to the threshold of force for that trial. The vertical displacement

or velocity that can produce 1% of the maximum potential energy or maximum kinetic en-

ergy were considered as the threshold for vertical displacement or velocity. Consequently, the

threshold of vertical displacement was considered to be 0.01 × ∆Zmax. Since kinetic energy is

proportional to squared velocity, the threshold for velocity was considered to be 0.1 ×Vmax.

Using the above-mentioned criteria, the percentage of the data that might be affected by a

varying amount of mass was calculated for each trial. The maximum values among the 120

trials for each task and both the left and right hands are shown in Table A.1. The different

percentages of the affected data for kinetic and potential energy are due to having different cri-

teria for each of these energy-based metrics. Altogether, the number of affected data samples

is small enough to ignore. To confirm this statement, the affected parts of data were removed

and the kinetic and potential-based metrics were recalculated. Herein, these metrics are named

partial kinetic/potential-based metrics. The correlation of these metrics with the 4 LOEs are

shown in Table A.1. To compare the partial metrics with the minimum kinetic/potential-based
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metrics, correlations of these metrics with the 4 LOEs are also shown in Table A.1. As can

be seen in the table, removing the part of the data associated with the additional mass does

not change the relationship between these metrics and the level of experience. A sensitivity

analysis was performed by varying the force threshold level by up to 1 N. Using higher thresh-

olds than 0.5 N results in more similar correlations with LOE for the partial and minimum

kinetic/potential-based metrics. Based on the above analysis, extracting the parts of data that

correspond to possible additional mass does not affect the relationship between these metrics

and the LOEs.
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Appendix B

Ethics Approval

The experimental procedure of Chapters 4 and 5 was approved by the Human Research Ethics

Board at Western University as shown in the following figure.

129



CHAPTER B. ETHICS APPROVAL 130

(a)

Figure B.1: Ethics approval from the Human Research Ethics Board at Western University.
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