18,054 research outputs found

    State of the art of the Fontan strategy for treatment of univentricular heart disease [version 1; referees: 2 approved]

    Get PDF
    In patients with a functionally univentricular heart, the Fontan strategy achieves separation of the systemic and pulmonary circulation and reduction of ventricular volume overload. Contemporary modifications of surgical techniques have significantly improved survival. However, the resulting Fontan physiology is associated with high morbidity. In this review, we discuss the state of the art of the Fontan strategy by assessing survival and risk factors for mortality. Complications of the Fontan circulation, such as cardiac arrhythmia, thromboembolism, and protein-losing enteropathy, are discussed. Common surgical and catheter-based interventions following Fontan completion are outlined. We describe functional status measurements such as quality of life and developmental outcomes in the contemporary Fontan patient. The current role of drug therapy in the Fontan patient is explored. Furthermore, we assess the current use and outcomes of mechanical circulatory support in the Fontan circulation and novel surgical innovations. Despite large improvements in outcomes for contemporary Fontan patients, a large burden of disease exists in this patient population. Continued efforts to improve outcomes are warranted. Several remaining challenges in the Fontan field are outlined

    Survival Data and Predictors of Functional Outcome an Average of 15 Years after the Fontan Procedure: The Pediatric Heart Network Fontan Cohort

    Full text link
    ObjectiveMulticenter longitudinal outcome data for Fontan patients surviving into adulthood are lacking. The aim of this study was to better understand contemporary outcomes in Fontan survivors by collecting follow‐up data in a previously well‐characterized cohort.DesignBaseline data from the Fontan Cross‐Sectional Study (Fontan 1) were previously obtained in 546 Fontan survivors aged 11.9 ± 3.4 years. We assessed current transplant‐free survival status in all subjects 6.8 ± 0.4 years after the Fontan 1 study. Anatomic, clinical, and surgical data were collected along with socioeconomic status and access to health care.ResultsThirty subjects (5%) died or underwent transplantation since Fontan 1. Subjects with both an elevated (>21 pg/mL) brain natriuretic peptide and a low Child Health Questionnaire physical summary score (<44) measured at Fontan 1 were significantly more likely to die or undergo transplant than the remainder, with a hazard ratio of 6.2 (2.9–13.5). Among 516 Fontan survivors, 427 (83%) enrolled in this follow‐up study (Fontan 2) at 18.4 ± 3.4 years of age. Although mean scores on functional health status questionnaires were lower than the general population, individual scores were within the normal range in 78% and 88% of subjects for the Child Health Questionnaire physical and psychosocial summary score, and 97% and 91% for the SF‐36 physical and mental aggregate score, respectively. Since Fontan surgery, 119 (28%) had additional cardiac surgery; 55% of these (n = 66) in the interim between Fontan 1 and Fontan 2. A catheter intervention occurred in 242 (57%); 32% of these (n = 78) after Fontan 1. Arrhythmia requiring treatment developed in 118 (28%) after Fontan surgery; 58% of these (n = 68) since Fontan 1.ConclusionsWe found 95% interim transplant‐free survival for Fontan survivors over an average of 7 years of follow‐up. Continued longitudinal investigation into adulthood is necessary to better understand the determinants of long‐term outcomes and to improve functional health status.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/110738/1/chd12193.pd

    Can a Home-based Cardiac Physical Activity Program Improve the Physical Function Quality of Life in Children with Fontan Circulation?

    Get PDF
    Objective Patients after Fontan operation for complex congenital heart disease (CHD) have decreased exercise capacity and report reduced health-related quality of life (HRQOL). Studies suggest hospital-based cardiac physical activity programs can improve HRQOL and exercise capacity in patients with CHD; however, these programs have variable adherence rates. The impact of a home-based cardiac physical activity program in Fontan survivors is unclear. This pilot study evaluated the safety, feasibility, and benefits of an innovative home-based physical activity program on HRQOL in Fontan patients. Methods A total of 14 children, 8–12 years, with Fontan circulation enrolled in a 12-week moderate/high intensity home-based cardiac physical activity program, which included a home exercise routine and 3 formalized in-person exercise sessions at 0, 6, and 12 weeks. Subjects and parents completed validated questionnaires to assess HRQOL. The Shuttle Test Run was used to measure exercise capacity. A Fitbit Flex Activity Monitor was used to assess adherence to the home activity program. Results Of the 14 patients, 57% were male and 36% had a dominant left ventricle. Overall, 93% completed the program. There were no adverse events. Parents reported significant improvement in their child\u27s overall HRQOL (P \u3c .01), physical function (P \u3c .01), school function (P = .01), and psychosocial function (P  \u3c .01). Patients reported no improvement in HRQOL. Exercise capacity, measured by total shuttles and exercise time in the Shuttle Test Run and calculated VO2max, improved progressively from baseline to the 6 and 12 week follow up sessions. Monthly Fitbit data suggested adherence to the program. Conclusion This 12-week home-based cardiac physical activity program is safe and feasible in preteen Fontan patients. Parent proxy-reported HRQOL and objective measures of exercise capacity significantly improved. A 6-month follow up session is scheduled to assess sustainability. A larger study is needed to determine the applicability and reproducibility of these findings in other age groups and forms of complex CHD

    Francis Fontan

    Get PDF

    Effect of Fontan Fenestration on Regional Venous Oxygen Saturation During Exercise: Further Insights Into Fontan Fenestration Closure

    Get PDF
    Fontan fenestration closure is a topic of great debate. The body of data regarding the risks and benefits of fenestration closure is limited yet growing. Previous studies have demonstrated that Fontan patients have less exercise capacity than those with normal cardiovascular anatomy. Differences also have been noted within various subgroups of Fontan patients such as whether Fontan is fenestrated or not. This study aimed to compare trends in regional oxygen saturations using near-infrared spectroscopy (NIRS) in patients with Fontan circulations during ramping exercise to further delineate differences between patients with and without a fenestration. It was hypothesized that Fontan patients with fenestrations have better exercise times, higher absolute regional oxygen venous saturations, and smaller arteriovenous differences than Fontan patients without fenestrations. For this study, 50 consecutive Fontan patients and 51 consecutive patients with normal cardiovascular anatomy were recruited. Placement of NIRS probes was performed to obtain regional oxygen saturations from the brain and the kidney. Readings were obtained at 1-min intervals during rest, exercise, and recovery. A standard Bruce protocol was used with a 5-min recovery period. Absolute regional tissue oxygenation values (rSO2) and arterial-venous oxygen saturation differences (AVDO2) calculated as arterial oxygen saturation (SPO2)—rSO2 for normal versus Fontan patients and for fenestrated versus unfenestrated Fontan patients were compared using independent t tests. When normal and Fontan patients were compared, the Fontan patients had a significantly shorter duration of exercise (9.3 vs 13.2 min; p \u3c 0.001). No statistically significant difference in rSO2 change or AVDO2 was evident at the time of peak exercise, at 2 min into the recovery, or at 5 min into the recovery. A small oxygen debt also was paid back to the brain in the Fontan patients after exercise, as evidenced by a narrower AVDO2 than at baseline. The comparison of Fontan patients with and without fenestration showed no statistically significant difference in exercise time, rSO2 change, or AVDO2. The Fontan patients were noted to have shorter exercise times than the normal patients and also appeared to have an alteration in postexertional regional blood flow. However, when the various Fontan subtypes were compared by presence or absence of a fenestration, no significant differences were noted with regard to change in regional oxygen saturation or arteriovenous oxygen saturation. Thus, for patients with Fontan physiology, closure of the fenestration does not seem to have an impact on the dynamics of regional oxygen extraction during exercise or recovery

    Cavopulmonary assist: Long-term reversal of the Fontan paradox

    Get PDF
    Objective Fontan circulatory inefficiency can be addressed by replacing the missing subpulmonary power source to reverse the Fontan paradox. An implantable cavopulmonary assist device is described that will simultaneously reduce systemic venous pressure and increase pulmonary arterial pressure, improving preload and cardiac output, in a univentricular Fontan circulation on a long-term basis. Methods A rotary blood pump that was based on the von Karman viscous pump was designed for implantation into the total cavopulmonary connection (TCPC). It will impart modest pressure energy to augment Fontan flow without risk of obstruction. In the event of rotational failure, it is designed to default to a passive flow diverter. Pressure-flow performance was characterized in vitro in a Fontan mock circulatory loop with blood analog. Results The pump performed through the fully specified operating range, augmenting flow in all 4 directions of the TCPC. Pressure rise of 6 to 8 mm Hg was readily achieved, ranging to 14 mm Hg at highest speed (5600 rpm). Performance was consistent across a wide range of cardiac outputs. In stalled condition (0 rpm), there was no discernible pressure loss across the TCPC. Conclusions A blood pump technology is described that can reverse the Fontan paradox and may permit a surgical strategy of long-term biventricular maintenance of a univentricular Fontan circulation. The technology is intended for Fontan failure in which right-sided circulatory inefficiencies predominate and ventricular systolic function is preserved. It may also apply before clinical Fontan failure as health maintenance to preempt the progression of Fontan disease

    A Simulation Protocol for Exercise Physiology in Fontan Patients Using a Closed Loop Lumped-Parameter Model

    Get PDF
    Background: Reduced exercise capacity is nearly universal among Fontan patients, though its etiology is not yet fully understood. While previous computational studies have attempted to model Fontan exercise, they did not fully account for global physiologic mechanisms nor directly compare results against clinical and physiologic data. Methods: In this study, we developed a protocol to simulate Fontan lower-body exercise using a closed-loop lumped-parameter model describing the entire circulation. We analyzed clinical exercise data from a cohort of Fontan patients, incorporated previous clinical findings from literature, quantified a comprehensive list of physiological changes during exercise, translated them into a computational model of the Fontan circulation, and designed a general protocol to model Fontan exercise behavior. Using inputs of patient weight, height, and if available, patient-specific reference heart rate (HR) and oxygen consumption, this protocol enables the derivation of a full set of parameters necessary to model a typical Fontan patient of a given body-size over a range of physiologic exercise levels. Results: In light of previous literature data and clinical knowledge, the model successfully produced realistic trends in physiological parameters with exercise level. Applying this method retrospectively to a set of clinical Fontan exercise data, direct comparison between simulation results and clinical data demonstrated that the model successfully reproduced the average exercise response of a cohort of typical Fontan patients. Conclusion: This work is intended to offer a foundation for future advances in modeling Fontan exercise, highlight the needs in clinical data collection, and provide clinicians with quantitative reference exercise physiologies for Fontan patients
    corecore