23 research outputs found

    Effects of High-Definition Transcranial Direct Current Stimulation (HD-tDCS) of the Intraparietal Sulcus and Dorsolateral Prefrontal Cortex on Working Memory and Divided Attention

    Get PDF
    Objective: There is a need to elucidate the underlying neural mechanisms subserving working memory and divided attention functioning. Recent neuroimaging studies provide evidence for anatomical co-localization of both functions. In the present study we used a functional intervention, whereby we applied a novel type of focalised, non-invasive brain stimulation, High-Definition transcranial Direct Current Stimulation (HD-tDCS), to the regions subserving these processes, the left intraparietal sulcus (IPS) and left dorsolateral prefrontal cortex (LDLPFC). Our aim was therefore to modulate activity in these regions using HD-tDCS and thereby assess their relevance for working memory, divided attention and their shared sub-processes.Method: 78 participants were evenly randomized to one of three conditions in a single blind, parallel group study design. Anodal or sham HD-tDCS was applied to either the left IPS or LDLPFC while participants completed a verbal working memory task, a divided attention task, and two tasks measuring subcomponents of working memory (updating and maintenance).Results: Focalised stimulation of the IPS and LDLPFC did not significantly modulate performance compared to sham stimulation. However, moderate effect sizes were obtained for at least one HD-tDCS condition relative to sham for all tasks, warranting further research into the functional importance of the IPS in subserving these abilities.Conclusions: The current results may be useful for informing future tDCS studies for modulating working memory and divided attention functioning

    Effects of Long-Lasting High-Definition Transcranial Direct Current Stimulation in Chronic Disorders of Consciousness: A Pilot Study

    Get PDF
    Transcranial direct current stimulation (tDCS) recently was shown to benefit rehabilitation of patients with disorders of consciousness (DOC). However, high-Definition tDCS (HD-tDCS) has not been applied in DOC. In this study, we tried to use HD-tDCS protocol (2 mA, 20 min, the precuneus, and sustaining 14 days) to rehabilitate 11 patients with DOC. Electroencephalography (EEG) and Coma Recovery Scale–Revised (CRS-R) scores were recorded at before (T0), after a single session (T1), after 7 days’ (T2), and 14 days’ HD-tDCS (T3) to assess the modulation effects. EEG coherence was measured to evaluate functional connectivity during the experiment. It showed that 9 patients’ scores increased compared with the baseline. The central-parietal coherence significantly decreased in the delta band in patients with DOC. EEG coherence might be useful for assessing the effect of HD-tDCS in patients with DOC. Long-lasting HD-tDCS over the precuneus is promising for the treatment of patients with DOC

    Stimulation of dorsolateral prefrontal cortex Enhances adaptive cognitive control: a high-definition transcranial direct current stimulation study

    Get PDF
    Conflict adaptation is a hallmark effect of adaptive cognitive control and refers to the adjustment of control to the level of previously experienced conflict. Conflict monitoring theory assumes that the dorsolateral prefrontal cortex (DLPFC) is causally involved in this adjustment. However,to date, evidence in humans is predominantly correlational, and heterogeneous with respecttothe lateralization of control in the DLPFC. We used high-definition transcranial direct current stimulation (HD-tDCS), which allows for more focal current delivery than conventional tDCS, to clarify the causal involvement of the DLPFC in conflict adaptation. Specifically, we investigated the regional specificity and lateralization of potential beneficial stimulation effects on conflict adaptation during a visual flanker task. One hundred twenty healthy participants were assigned to four HD-tDCS conditions: left or right DLPFC or left or right primary motor cortex (M1). Each group underwent both active and sham HD-tDCS in crossover, double-blind designs. We obtained a sizeable conflict adaptation effect (measured as the modulation of the flanker effect as a function of previous response conflict) in all groups and conditions. However,this effect was larger under active HD-tDCSthan under sham stimulation in both DLPFC groups. In contrast, active stimulation had no effect on conflict adaptation in the M1 groups. In sum, the present results indicate that the DLPFC plays a causal role in adaptive cognitive control, but that the involvement of DLPFC in control is not restricted to the left or right hemisphere. Moreover, our study confirms the potential of HD-tDCS to modulate cognition in a regionally specific manner

    A systematic review and meta-analysis of the effects of transcranial direct current stimulation (tDCS) on episodic memory

    Get PDF
    Background: In the past decade, several studies have examined the effects of transcranial direct current stimulation (tDCS) on long-term episodic memory formation and retrieval. These studies yielded conflicting results, likely due to differences in stimulation parameters, experimental design and outcome measures. Objectives: In this work we aimed to assess the robustness of tDCS effects on long-term episodic memory using a meta-analytical approach. Methods: We conducted four meta-analyses to analyse the effects of anodal and cathodal tDCS on memory accuracy and response times. We also used a moderator analysis to examine whether the size of tDCS effects varied as a function of specific stimulation parameters and experimental conditions. Results: Although all selected studies reported a significant effect of tDCS in at least one condition in the published paper, the results of the four meta-analyses showed only statistically non-significant close-to-zero effects. A moderator analysis suggested that for anodal tDCS, the duration of the stimulation and the task used to probe memory moderated the effectiveness of tDCS. For cathodal tDCS, site of stimulation was a significant moderator, although this result was based on few observations. Conclusions: To warrant theoretical advancement and practical implications, more rigorous research is needed to fully understand whether tDCS reliably modulates episodic memory, and the specific circumstances under which this modulation does, and does not, occur

    Modulating Applied Task Performance via Transcranial Electrical Stimulation

    Get PDF
    Basic and applied research are increasingly adopting transcranial electrical stimulation (tES) for modulating perceptual, cognitive, affective, and motor processes. Industry and defense applications of tES hold potential for accelerating training and knowledge acquisition and sustaining work-related performance in the face of fatigue, workload, and stress. This mini-review article describes the promises and perils of tES, and reviews research testing its influence on two broad applied areas: sustaining and dividing attention, and operating in virtual environments. Also included is a discussion of challenges related to viable mechanistic explanations for tES effectiveness, attempts at replication and consideration of null results, and the potential importance of individual differences in predicting tES influences on human performance. Finally, future research directions are proposed to address these challenges and help develop a fuller understanding of tES viability for enhancing real-world performance

    Investigating the effects of tDCS on visual orientation discrimination task performance: “the possible influence of placebo”

    Get PDF
    The non-invasive neuromodulation technique tDCS offers the promise of a low-cost tool for both research and clinical applications in psychology, psychiatry, and neuroscience. However, findings regarding its efficacy are often equivocal. A key issue is that the clinical and cognitive applications studied are often complex and thus effects of tDCS are difficult to predict given its known effects on the basic underlying neurophysiology, namely alterations in cortical inhibition-excitation balance. As such, it may be beneficial to assess the effects of tDCS in tasks whose performance has a clear link to cortical inhibition-excitation balance such as the visual orientation discrimination task (ODT). In prior studies in our laboratory, no practice effects were found during 2 consecutive runs of the ODT, thus in the current investigation, to examine the effects of tDCS, subjects received 10 min of 2 mA occipital tDCS (sham, anode, cathode) between a first and second run of ODT. Surprisingly, subjects’ performance significantly improved in the second run of ODT compared to the first one regardless of the tDCS stimulation type they received (anodal, cathodal, or sham-tDCS). Possible causes for such an improvement could have been due to either a generic “placebo” effect of tDCS (as all subjects received some form of tDCS) or an increased delay period between the two runs of ODT of the current study compared to our previous work (10-min duration required to administer tDCS as opposed to ~ 2 min in previous studies as a “break”). As such, we tested these two possibilities with a subsequent experiment in which subjects received 2-min or 10-min delay between the 2 runs (with no tDCS) or 10 min of sham-tDCS. Only sham-tDCS resulted in improved performance thus these data add to a growing literature suggesting that tDCS has powerful placebo effect that may occur even in the absence of active cortical modulation

    Incomplete evidence that increasing current intensity of tDCS boosts outcomes

    Get PDF
    BACKGROUND: Transcranial direct current stimulation (tDCS) is investigated to modulate neuronal function by applying a fixed low-intensity direct current to scalp. OBJECTIVES: We critically discuss evidence for a monotonic response in effect size with increasing current intensity, with a specific focus on a question if increasing applied current enhance the efficacy of tDCS. METHODS: We analyzed tDCS intensity does-response from different perspectives including biophysical modeling, animal modeling, human neurophysiology, neuroimaging and behavioral/clinical measures. Further, we discuss approaches to design dose-response trials. RESULTS: Physical models predict electric field in the brain increases with applied tDCS intensity. Data from animal studies are lacking since a range of relevant low-intensities is rarely tested. Results from imaging studies are ambiguous while human neurophysiology, including using transcranial magnetic stimulation (TMS) as a probe, suggests a complex state-dependent non-monotonic dose response. The diffusivity of brain current flow produced by conventional tDCS montages complicates this analysis, with relatively few studies on focal High Definition (HD)-tDCS. In behavioral and clinical trials, only a limited range of intensities (1-2 mA), and typically just one intensity, are conventionally tested; moreover, outcomes are subject brain-state dependent. Measurements and models of current flow show that for the same applied current, substantial differences in brain current occur across individuals. Trials are thus subject to inter-individual differences that complicate consideration of population-level dose response. CONCLUSION: The presence or absence of simple dose response does not impact how efficacious a given tDCS dose is for a given indication. Understanding dose-response in human applications of tDCS is needed for protocol optimization including individualized dose to reduce outcome variability, which requires intelligent design of dose-response studies
    corecore