27 research outputs found

    FlyEx, the quantitative atlas on segmentation gene expression at cellular resolution

    Get PDF
    The datasets on gene expression are the valuable source of information about the functional state of an organism. Recently, we have acquired the large dataset on expression of segmentation genes in the Drosophila blastoderm. To provide efficient access to the data, we have developed the FlyEx database (http://urchin.spbcas.ru/flyex). FlyEx contains 4716 images of 14 segmentation gene expression patterns obtained from 1579 embryos and 9 500 000 quantitative data records. Reference data are available for all segmentation genes in cycles 11–13 and all temporal classes of cycle 14A. FlyEx supports operations on images of gene expression patterns. The database can be used to examine the quality of data, analyze the dynamics of formation of segmentation gene expression domains, as well as to estimate the variability of gene expression patterns. Currently, a user is able to monitor and analyze the dynamics of formation of segmentation gene expression domains over the whole period of segment determination, that amounts to 1.5 h of development. FlyEx supports the data downloads and construction of personal reference datasets, that makes it possible to more effectively use and analyze data

    mRNA diffusion explains protein gradients in Drosophila early development

    Get PDF
    We propose a new model describing the production and the establishment of the stable gradient of the Bicoid protein along the antero-posterior axis of the embryo of _Drosophila_. In this model, we consider that _bicoid_ mRNA diffuses along the antero-posterior axis of the embryo and the protein is produced in the ribosomes localized near the syncytial nuclei. Bicoid protein stays localized near the syncytial nuclei as observed in experiments.We calibrate the parameters of the mathematical model with experimental data taken during the cleavage stages 11 to 14 of the developing embryo of _Drosophila_. We obtain good agreement between the experimental and the model gradients, with relative errors in the range 5-8%. The inferred diffusion coefficient of _bicoid_ mRNA is in the range 4.6 x 10^-12^ - 1.5 x10^-11^ m^2^s^-1^, in agreement with the theoretical predictions and experimental measurements for the diffusion of macromolecules in the cytoplasm. We show that the model based on the mRNA diffusion hypothesis is consistent with the known observational data, supporting the recent experimental findings of the gradient of _bicoid_ mRNA in _Drosophila_ [Spirov _et al._ (2009) _Development_ 136:605-614]

    Image Processing Challenges in the Creation of Spatiotemporal Gene Expression Atlases of Developing Embryos

    Get PDF
    To properly understand and model animal embryogenesis it is crucial to obtain detailed measurements, both in time and space, about their gene expression domains and cell dynamics. Such challenge has been confronted in recent years by a surge of atlases which integrate a statistically relevant number of different individuals to get robust, complete information about their spatiotemporal locations of gene patterns. This paper will discuss the fundamental image analysis strategies required to build such models and the most common problems found along the way. We also discuss the main challenges and future goals in the field

    The Role of Regulated mRNA Stability in Establishing Bicoid Morphogen Gradient in Drosophila Embryonic Development

    Get PDF
    The Bicoid morphogen is amongst the earliest triggers of differential spatial pattern of gene expression and subsequent cell fate determination in the embryonic development of Drosophila. This maternally deposited morphogen is thought to diffuse in the embryo, establishing a concentration gradient which is sensed by downstream genes. In most model based analyses of this process, the translation of the bicoid mRNA is thought to take place at a fixed rate from the anterior pole of the embryo and a supply of the resulting protein at a constant rate is assumed. Is this process of morphogen generation a passive one as assumed in the modelling literature so far, or would available data support an alternate hypothesis that the stability of the mRNA is regulated by active processes? We introduce a model in which the stability of the maternal mRNA is regulated by being held constant for a length of time, followed by rapid degradation. With this more realistic model of the source, we have analysed three computational models of spatial morphogen propagation along the anterior-posterior axis: (a) passive diffusion modelled as a deterministic differential equation, (b) diffusion enhanced by a cytoplasmic flow term; and (c) diffusion modelled by stochastic simulation of the corresponding chemical reactions. Parameter estimation on these models by matching to publicly available data on spatio-temporal Bicoid profiles suggests strong support for regulated stability over either a constant supply rate or one where the maternal mRNA is permitted to degrade in a passive manner

    The Drosophila Gap Gene Network Is Composed of Two Parallel Toggle Switches

    Get PDF
    Drosophila “gap” genes provide the first response to maternal gradients in the early fly embryo. Gap genes are expressed in a series of broad bands across the embryo during first hours of development. The gene network controlling the gap gene expression patterns includes inputs from maternal gradients and mutual repression between the gap genes themselves. In this study we propose a modular design for the gap gene network, involving two relatively independent network domains. The core of each network domain includes a toggle switch corresponding to a pair of mutually repressive gap genes, operated in space by maternal inputs. The toggle switches present in the gap network are evocative of the phage lambda switch, but they are operated positionally (in space) by the maternal gradients, so the synthesis rates for the competing components change along the embryo anterior-posterior axis. Dynamic model, constructed based on the proposed principle, with elements of fractional site occupancy, required 5–7 parameters to fit quantitative spatial expression data for gap gradients. The identified model solutions (parameter combinations) reproduced major dynamic features of the gap gradient system and explained gap expression in a variety of segmentation mutants

    A Software Tool to Model Genetic Regulatory Networks. Applications to the Modeling of Threshold Phenomena and of Spatial Patterning in Drosophila

    Get PDF
    We present a general methodology in order to build mathematical models of genetic regulatory networks. This approach is based on the mass action law and on the Jacob and Monod operon model. The mathematical models are built symbolically by the Mathematica software package GeneticNetworks. This package accepts as input the interaction graphs of the transcriptional activators and repressors of a biological process and, as output, gives the mathematical model in the form of a system of ordinary differential equations. All the relevant biological parameters are chosen automatically by the software. Within this framework, we show that concentration dependent threshold effects in biology emerge from the catalytic properties of genes and its associated conservation laws. We apply this methodology to the segment patterning in Drosophila early development and we calibrate the genetic transcriptional network responsible for the patterning of the gap gene proteins Hunchback and Knirps, along the antero-posterior axis of the Drosophila embryo. In this approach, the zygotically produced proteins Hunchback and Knirps do not diffuse along the antero-posterior axis of the embryo of Drosophila, developing a spatial pattern due to concentration dependent thresholds. This shows that patterning at the gap genes stage can be explained by the concentration gradients along the embryo of the transcriptional regulators
    corecore