46 research outputs found

    Will SDN be part of 5G?

    Get PDF
    For many, this is no longer a valid question and the case is considered settled with SDN/NFV (Software Defined Networking/Network Function Virtualization) providing the inevitable innovation enablers solving many outstanding management issues regarding 5G. However, given the monumental task of softwarization of radio access network (RAN) while 5G is just around the corner and some companies have started unveiling their 5G equipment already, the concern is very realistic that we may only see some point solutions involving SDN technology instead of a fully SDN-enabled RAN. This survey paper identifies all important obstacles in the way and looks at the state of the art of the relevant solutions. This survey is different from the previous surveys on SDN-based RAN as it focuses on the salient problems and discusses solutions proposed within and outside SDN literature. Our main focus is on fronthaul, backward compatibility, supposedly disruptive nature of SDN deployment, business cases and monetization of SDN related upgrades, latency of general purpose processors (GPP), and additional security vulnerabilities, softwarization brings along to the RAN. We have also provided a summary of the architectural developments in SDN-based RAN landscape as not all work can be covered under the focused issues. This paper provides a comprehensive survey on the state of the art of SDN-based RAN and clearly points out the gaps in the technology.Comment: 33 pages, 10 figure

    La seguridad en redes SDN y sus aplicaciones

    Get PDF
    Introduction: The review article is the product of the research on Security in SDN networks and their applications, developed at the District University in 2020, presenting the latest advances, that have been made in security. Problem: The security weaknesses that SDN networks have had, due to being a new architecture. This has not allowed traditional networks to be replaced.   Objective: To carry out a review of the state of the art of SDN networks, focusing research on the security of the control layer and its advances. Methodology: The descriptive method is implemented, consulting databases such as Scopus, IEEE and ScienceDirect, using the following search criteria: SDN networks, security in SDN networks, applications with SDN networks and OpenFlow protocol. It is shown as a research sample: the Asian, European and American continents with years of research from 2014 to 2020. Results: Great advances have been made in terms of security for SDN networks, which allows us to see an early solution to the weaknesses that it currently faces.   Conclusion: SDN networks will solve all the challenges they face and will be consolidated as a solid and reliable architecture.   Originality: an important focus is taken on the security of SDN networks and the great development that has occurred in this regard is evident.   Limitations: SDN networks are a new architecture, so their development has been very little and advances in security have been significantly affected.Introducci贸n: El art铆culo de revisi贸n es producto de la investigaci贸n Seguridad en redes SDN y sus aplicaciones, desarrollada en la Universidad Distrital en el a帽o 2020, presentando los 煤ltimos avances que se han logrado en seguridad. Problema: Las debilidades en seguridad que han tenido las redes SDN debido a ser una arquitectura nueva, esto no ha permitido que se reemplacen las redes tradicionales. Objetivo: realizar una revisi贸n del estado del arte de las redes SDN enfocando la investigaci贸n la seguridad de la capa de control y sus avances. Metodolog铆a: se emplea el m茅todo descriptivo, se consultaron bases de datos como Scopus, IEEE y ScienceDirect, utilizando los siguientes criterios de b煤squeda: SDN networks, security in SDN networks, applications with SDN networks y OpenFlow protocol, se tom贸 como muestra de investigaci贸n a los continentes asi谩tico, europeo y americano con a帽os de investigaci贸n desde el a帽o 2014 hasta el a帽o 2020. Resultados: se han desarrollado grandes avances en seguridad para las redes SDN, lo que permite ver una pronta soluci贸n a las debilidades que afronta en la actualidad. Conclusi贸n: las redes SDN lograran resolver todos los retos a los que se enfrentan y se consolidara como una arquitectura s贸lida y confiable. Originalidad: se realiza un enfoque importante en la seguridad de las redes SDN y se evidencia el gran desarrollo que se ha presentado en este aspecto. Limitaciones: las redes SDN son una arquitectura nueva por lo que su desarrollo ha sido muy poco y los avances en seguridad se vieron afectados significativamente

    The Four-C Framework for High Capacity Ultra-Low Latency in 5G Networks: A Review

    Get PDF
    Network latency will be a critical performance metric for the Fifth Generation (5G) networks expected to be fully rolled out in 2020 through the IMT-2020 project. The multi-user multiple-input multiple-output (MU-MIMO) technology is a key enabler for the 5G massive connectivity criterion, especially from the massive densification perspective. Naturally, it appears that 5G MU-MIMO will face a daunting task to achieve an end-to-end 1 ms ultra-low latency budget if traditional network set-ups criteria are strictly adhered to. Moreover, 5G latency will have added dimensions of scalability and flexibility compared to prior existing deployed technologies. The scalability dimension caters for meeting rapid demand as new applications evolve. While flexibility complements the scalability dimension by investigating novel non-stacked protocol architecture. The goal of this review paper is to deploy ultra-low latency reduction framework for 5G communications considering flexibility and scalability. The Four (4) C framework consisting of cost, complexity, cross-layer and computing is hereby analyzed and discussed. The Four (4) C framework discusses several emerging new technologies of software defined network (SDN), network function virtualization (NFV) and fog networking. This review paper will contribute significantly towards the future implementation of flexible and high capacity ultra-low latency 5G communications

    Management of Software-Defined Networking Powered by Artificial Intelligence

    Get PDF
    Separating data and control planes by Software-Defined Networking (SDN) not only handles networks centrally and smartly. However, through implementing innovative protocols by centralized controllers, it also contributes flexibility to computer networks. The Internet-of-Things (IoT) and the implementation of 5G have increased the number of heterogeneous connected devices, creating a huge amount of data. Hence, the incorporation of Artificial Intelligence (AI) and Machine Learning is significant. Thanks to SDN controllers, which are programmable and versatile enough to incorporate machine learning algorithms to handle the underlying networks while keeping the network abstracted from controller applications. In this chapter, a software-defined networking management system powered by AI (SDNMS-PAI) is proposed for end-to-end (E2E) heterogeneous networks. By applying artificial intelligence to the controller, we will demonstrate this regarding E2E resource management. SDNMS-PAI provides an architecture with a global view of the underlying network and manages the E2E heterogeneous networks with AI learning

    Networks, Communication, and Computing Vol. 2

    Get PDF
    Networks, communications, and computing have become ubiquitous and inseparable parts of everyday life. This book is based on a Special Issue of the Algorithms journal, and it is devoted to the exploration of the many-faceted relationship of networks, communications, and computing. The included papers explore the current state-of-the-art research in these areas, with a particular interest in the interactions among the fields

    Dynamic SDN Controller Load Balancing

    Get PDF
    The software defined networking (SDN) paradigm separates the control plane from the data plane, where an SDN controller receives requests from its connected switches and manages the operation of the switches under its control. Reassignments between switches and their controllers are performed dynamically, in order to balance the load over SDN controllers. In order to perform load balancing, most dynamic assignment solutions use a central element to gather information requests for reassignment of switches. Increasing the number of controllers causes a scalability problem, when one super controller is used for all controllers and gathers information from all switches. In a large network, the distances between the controllers is sometimes a constraint for assigning them switches. In this paper, a new approach is presented to solve the well-known load balancing problem in the SDN control plane. This approach implies less load on the central element and meeting the maximum distance constraint allowed between controllers. An architecture with two levels of load balancing is defined. At the top level, the main component called Super Controller, arranges the controllers in clusters, so that there is a balance between the loads of the clusters. At the bottom level, in each cluster there is a dedicated controller called Master Controller, which performs a reassignment of the switches in order to balance the loads between the controllers. We provide a two-phase algorithm, called Dynamic Controllers Clustering algorithm, for the top level of load balancing operation. The load balancing operation takes place at regular intervals. The length of the cycle in which the operation is performed can be shorter, since the top-level operation can run independently of the bottom level operation. Shortening cycle time allows for more accurate results of load balancing. Theoretical analysis demonstrates that our algorithm provides a near-optimal solution. Simulation results show that our dynamic clustering improves fixed clustering by a multiplicative factor of 5
    corecore