

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: May 15, 2019

Dynamic SDN Controller Load Balancing

Sufiev, Hadar; Haddad, Yoram; Barenboim, Leonid; Soler, José

Published in:
Future Internet

Link to article, DOI:
10.3390/11030075

Publication date:
2019

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Sufiev, H., Haddad, Y., Barenboim, L., & Soler, J. (2019). Dynamic SDN Controller Load Balancing. Future
Internet, 11. https://doi.org/10.3390/11030075

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/199257866?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.3390/�11030075
http://orbit.dtu.dk/en/publications/dynamic-sdn-controller-load-balancing(b79b82ff-e330-4428-81da-02d5058f8422).html

Dynamic SDN Controller Load Balancing1

Hadar Sufiev, Yoram Haddad, Senior Member, IEEE, Leonid Barenboim,2

and Jose Soler, Senior Member, IEEE3

Abstract4

The software defined networking (SDN) paradigm separates the control plane from the data plane, where an5

SDN controller receives requests from its connected switches and manages the operation of the switches under6

its control. Reassignments between switches and their controllers are performed dynamically, in order to balance7

the load over SDN controllers. In order to perform load balancing most dynamic assignment solutions use a8

central element to gather information requests for reassignment of switches. Increasing the number of controllers9

causes a scalability problem, when one super controller is used for all controllers and gathers information from all10

switches. In a large network, the distances between the controllers is sometimes a constraint for assigning them11

switches. In this paper, a new approach is presented to solve the well-known load balancing problem in the SDN12

control plane. This approach implies less load on the central element and meeting the maximum distance constraint13

allowed between controllers. An architecture with two levels of load balancing is defined. At the top level, the main14

component called Super Controller, arranges the controllers in clusters, so that there is a balance between the loads15

of the clusters. At the bottom level, in each cluster there is a dedicate controller called Master Controller, which16

performs a reassignment of the switches in order to balance the loads between the controllers. We provide a two-17

phase algorithm, called, Dynamic Controllers Clustering algorithm, for the top level of load balancing operation.18

The load balancing operation takes place at regular intervals. The length of the cycle in which the operation19

is performed can be shorter, since the top-level operation can run independently of the bottom level operation.20

Shortening cycle time allows for more accurate results of load balancing. Theoretical analysis demonstrates that21

our algorithm provides a near-optimal solution. Simulation results show that our dynamic clustering improves fixed22

clustering by a multiplicative factor of 5.23

Index Terms24

Multi Controllers; Architecture; SDN; Load Balancing25

I. Introduction26

In a software defined network (SDN) architecture [1] the logical separation between control plane and27

data plane, in the architecture and functional behavior of network nodes, is dissociated, allowing for28

centralization of all the logic related to control plane procedures in a so-called SDN Controller. In turn,29

this allows for simplified network nodes designed and streamlined for data plane performance. Such an30

architecture enables developers to devise new algorithms to be collocated at the SDN controller, which31

are able to manage the network and change its functionality [2], [3]. Even though only one controller32

may handle the traffic for a small network [4], this is not realistic when we deal with large network at33

the internet scale since each controller has limited processing power, therefore multiple controllers are34

required to respond to all requests on large networks [5], [6], [7]. One approach to achieve this goal is to35

use multiple same instantiations of a single controller [8], where each instantiation of the SDN controller36

does basically the same work as the others, each switch being linked to one SDN controller. Handling37

multiple controllers gave rise to some important question namely: where to place the controllers and how38

to match each control to a switch .These questions are not only relevant during the network deployment39

based on static’s information [9], [10] but should also been considered regularly due to the network40

dynamic nature [11]. In this paper we dealt with the matching problem aforementioned. We proposed41

a novel muli-tier architecture for SDN control plane which can adapt itself to dynamic traffic load and42

therefore provides a dynamic load balancing.43

Hadar Sufiev and Yoram Haddad are with the Department of Computer Science, Jerusalem College of Technology, Jerusalem, Israel e-mail:
haddad@jct.ac.il; Leonid Barenboim is with The Open University of Israel, Raanana, Israel and Jose Soler is with Technical University of
Denmark (DTU), Lyngby, Denmark

1

The rest of this paper is organized as follows. In section II we present the state of the art in dealing44

with load balancing at the control plane level in SDN. Then in section III we present the updated DCF45

architecture used to develop our clustering algorithm. In section IV, the problem is formulated and its46

hardness explained. The Two-phase DCC algorithm, with the running time analysis and optimality analysis47

are provided in section V. Simulations results are discussed in Section VI. Finally, our conclusions are48

provided in section VII.49

II. RelatedWorks50

The problems of how to provide enough controllers to satisfy the traffic demand, and where to place51

them, were studied in [12], [13], [4]. The controllers can be organized hierarchically, where each controller52

has its own network sections that determines the flows it can serve [14], [15], [16], or in a flat manner53

where each controller can serve all types of incoming requests [17], [18], [19]. In any case every switch54

needs a primary controller (it can as well have more, as secondary/redundant). In most network N >> M,55

where N is the number of switches and M is the number of controllers, Therefore, each controller has a56

set of switches that are linked to it. The dynamic requests rate from switches can create a bottleneck at57

some controllers because each controller has limited processing capabilities. Therefore if the number of58

switches request is too large, the requests will have to wait in the queue before being processed by the59

controller which will cause long response times for the switches. To prevent the aforementioned issue,60

switches are dynamically reassigned to controllers according to their request rates [18], [20], [21]. This61

achieves a balance between the loads that the controllers have.62

In general, these load-balancing methods split the timeline into multiple time slots (TSs) in which the63

load balancing methods are executed. At the beginning of each TS, these methods propose to run a load64

balancing algorithm based on the input gathered in the previous TS. Therefore, these methods assume the65

input is also relevant for the current TS. The load-balancing algorithm is executed by a central element66

called the Super Controller (SC). Some of the methods presented in the literature are adapted to dynamic67

traffics [19], [18]. They suggest changing the number of controllers and their locations, turning them on and68

off, in each cycle according to the dynamic traffic. In addition to load balancing, some other methods [6],69

[18] deal with additional objectives such as minimal set-up time and maximal utilization, which indirectly70

help to balance loads between controllers.1 Changing the controller location causes reassignment of all its71

switches, thus, such approaches are designed for networks where time complexity is not a critical issue.72

However, in our work, we do consider time sensitive networks, and therefore, we adopted a different73

approach that causes less noise in the network, whereby the controllers remain fixed and the reassignment74

of switches is performed only if necessary in the ongoing TS (as detailed further in this paper).75

In [18], [20], [21] the SC run the algorithm that reassigns switches according to the dynamic information76

(e.g. switch requests per second) it gathers each time cycle (finding the optimal time cycle duration is77

the goal of our future works and is not considered in this paper) from all controllers, and changes the78

default controllers of switches. Note that each controller should publish its load information periodically79

to allow SC to partition the loads properly.80

In [20] a load balancing strategy called “Balance flow” focuses on controller load balancing such that (1)81

the flow-requests are dynamically distributed among controllers to achieve quick response, (2) the load82

on an overloaded controller is automatically transferred to appropriate low-loaded controllers to maximize83

controller utilization. This approach requires each switch to enable to get service from some controllers84

for different flow. The accuracy of the algorithm is achieved by splitting the switch load between some85

controllers according the source and destination of each flow.86

DCP-GK and DCP-SA, are greedy algorithms for Dynamic Controller Placement (DCP) from [18], which87

employ for the reassignment phase, Greedy Knapsack (GK) and Simulated Annealing (SA) respectively,88

1The reassignment protocol between switches and controllers is out of the scope of this paper. Here we focus on the optimization and
algorithmic aspects of the reassignment process. More details on reassignment protocol can be found in [22]. For instance, switch migration
protocol [22] is used for enabling such load shifting between controllers and conforms with the Openflow standard. The reassignment has
no impact on flow table entries.

2

Approach Balance Flow SMT DCP-assignment phase Hybrid flow
Time complexity O(max((N2) · log(N2),N2 · M)) O(M · N · logN) O(M · N · logN) O(N · M2)

TABLE I: Time complexity comparison

dynamically changing the number of controllers and their locations under different conditions, then,89

reassign switches to controllers.90

Contrary to the methods in [18], [20], the algorithm suggested by [21] , called Switches Matching Transfer91

(SMT) , takes into account the overhead derived from the switch-to-controller and controller-to-switch92

messages. This method achieves good results as shown in [21].93

In the approaches mentioned earlier in this section, all the balancing work is performed in the SC, thus,94

the load on the super controller can cause a scalability problem. This motivated the architecture defined95

in [23] called “Hybrid Flow”, where controllers are grouped into fixed clusters. In order to reduce the96

load on the SC, the reassignment process is performed by the controllers in each cluster, where the SC97

is used only to gather load data and send it to/from the controllers. “Hybrid Flow” suffers from long run98

time caused by the dependency that exists between the SC operation and other controllers operations.99

When the number of controllers or switches increases, the time required for the balancing operation100

increases as well. Table I summarizes the time complexity of the methods mention above.101

The running time of the central element algorithm defines the bound on the time-cycle length. Thus,102

the bigger the increase of the run time in the central element (i.e., causing a larger time cycle), the lower103

is the accuracy achieved in the load balancing operation. This is crucial in dynamic networks that need104

to react to frequent changes in loads [24].105

In a previous work [25], [26] ,a new architecture called Dynamic Cluster Flow (DCF) [25] was pre-106

sented. DCF facilitates a decrease in the running time of the balance algorithm. The DCF architecture107

partitions controllers into clusters. The architecture defines two levels of load balancing: A high level108

called ”Clustering”, and an operational level called ”Reassignment”. A super controller performs the109

”Clustering”, by re-clustering the controllers in order to balance their global loads. The ”Reassignment”110

level is under the responsibility of each cluster that balances the load between its controllers by reassigning111

switches according to their request rate. For communication between the two levels, each controller has a112

Cluster Vector (CV), which contains the addresses of all the controllers in its cluster. This CV, which is113

updated by the SC each time cycle, allows the two levels to run in different independent elements, where114

the ”Clustering” operation runs at start time of each unit.115

In [26] we presented a heuristic for the ”Clustering” operation which balances between clusters according116

to the loads with a time complexity of O(M2), and suggest to use the method presented in [23] for the117

”Reassignment” level. In this initial architecture, the ”Reassignment” level is not sufficiently flexible for118

various algorithms, which served as a motivation for us to extend it.119

In this paper, the target is to leverage on previous work [25], [26] and achieve load balancing among120

controllers. This is done by taking into account: network scalability, algorithm flexibility, minor complexity,121

better optimization and overhead reduction. To achieve the above objectives, we use the DCF architecture,122

and considered distance and load at the ”Clustering” level that influence the overhead and response time123

at the ”Reassignment” level, respectively.124

Towards that target, the DCF architecture has been updated to enable the application of existing125

algorithms [18], [20], [21], [23] in the ”Reassignment” process in each cluster. Furthermore a clustering126

algorithm has been developed that takes into account the controller-to-controller distances in the load127

balancing operation. The problem has been formulated as an optimization problem, aiming at minimizing128

the difference between cluster loads with constraints on the controller-to-controller distance. This is a129

challenging problem due to these opposite objectives. We assume that each controller has the same limit130

capacity in terms of requests per second that it can manage. The controllers are dynamically mapped to131

clusters when traffic changes. The challenge is to develop an efficient algorithm for the mentioned problem132

i.e. re-clustering in response to variations of network conditions, even in large-scale SDN networks. We133

3

propose a novel Dynamic Controllers Clustering (further denoted as DCC) algorithm by defining our134

problem as a K-Center problem at the first phase and developing, in a second phase, a replacement135

rule to swap controllers between clusters. The idea for the second phase is inspired by Game Theory.136

The replacements shrink the gap between cluster loads while not exceeding the constraint of controller-137

to-controller distances within the cluster. We assume that M controllers are sufficient for handling the138

maximal request rate in the network (as mentioned earlier, there are already many works that found the139

optimal number of controllers).140

Our architecture and model are different from aforementioned existing works since we enable not only141

dynamicity inside the cluster but also between clusters which didn’t exist before.142

III. Network Architecture143

A. Dynamic Cluster Flow Architecture144

In the architecture we presented in [25], [26] we considered always only one controller called Super145

Controller (SC) that is connected to all other controllers in the control plane. In this sense, we considered146

a two-tier hierarchy where the SC is in the top tier and all other controllers are in the lower tier. The SC147

gathers load information from all controllers and is responsible for grouping the controllers into clusters148

according to their load. For each cluster, the SC handles a Cluster Vector (CV), which includes the149

addresses of all the controllers inside the given cluster. The CV provides each controller inside a cluster150

the ability to identify to which controller it can transfer part of its overload. In order for each controller to151

intelligently decide where to transfer its load, an efficient communication scheme between the controllers is152

necessary. Because each overloaded controller that requires the help of other controller becomes dependent153

on the other controller which itself can be also overloaded etc. This whole interdependency requires a154

complete and synchronized coordination between all the controllers.155

B. Three level load balancing architecture156

In this paper, we consider the architecture, presented in [25], [26] as briefly presented in the previous157

section but we add a new additional intermediate tier.158

Thus we consider a three-tier hierarchy, where the SC is in the top tier, some Master Controllers in159

the intermediate tier and all other controllers are in the lower tier. In figure 1 we show an illustration of160

our proposed architecture with an example of reclustering process where in green we see the master of161

each cluster and SC denotes the super controller. In this three-tier architecture, we observe two levels of162

load operations: ”Clustering” and ”Reassignments”. In the top level of ”Clustering”, the SC organizes163

the controllers into clusters. In the lower level of ”Reassignments”, for each cluster, there is a Master164

Controller (MC) responsible for the load balancing inside the cluster by reassigned switches to controllers165

dynamically. In order to define the problem of the ”Clustering” for the high level of the load balancing166

operation, two aspects are considered: first, the minimal differences between clusters’ loads are set as167

targets, and second, the minimal distances between controllers in each cluster.168

In this paper, we do not propose a new method for performing load balancing inside each cluster since169

many efficient algorithms already exist, for instance see [18], [20], [21]. However, the method employed,170

which is designed for the top level in which clusters are rearranged (as described in the next section), is171

sufficiently generic that it will operate with any of the existing load-balancing algorithms.172

At the start of each time cycle, the MC sends to the SC the Cluster Vector Loads (CVL), which includes173

the load of each controller inside the cluster. Then the SC may update the CV of each cluster in order to174

balance the load of some overloaded clusters, and may also update who is the new the new MC of some175

cluster. In parallel to the ”Clustering” operation performed by the SC, the ”Reassignments” operations176

of the load balancing are performed by the MS independently.177

Due to the three level DCF architecture, the load balancing runtime of both the SC and MC is very low,178

and enables a reduction in the TS duration accordingly. Thus the greater the reduction in the timeline,179

the greater the accuracy achieved [25].180

4

Fig. 1: Three-tier control plane

IV. DCC Problem Formulation181

In this section, the assignment problem of controllers to clusters is presented. This problem is considered182

here as a minimization problem with constraints.183

A. Notations184

We consider a control plane C with M controllers, denoted by C = {C1,C2, ..., CM} where Ci is a single185

controller. We assume that the processing power of each controller is the same and equal to P, which186

stands for the number of requests per second that it can handle. Let di j be the distance (number of hops)187

between Ci and C j. We denote by Gi the ith cluster and by G = {G1,G2, ..., GK}, the set of all clusters.188

We assume that M
K is an integer and is actually the number of controllers per cluster. Thus, the size of the189

CV is M
K , i.e. we assume that each cluster consist of the same number of controllers. Y denotes a matrix,190

handled by SC, which consists of the matching of each controller to a single cluster. Each column of Y191

represents a cluster and each row a controller.192

Figure 2 shows an example of such a matrix Y(9X3) corresponding to nine controllers split into three193

clusters. On the left part we see Y matrix before re-clustering process and on the right after it is completed.194

Thanks to Y one can know which controller is in which cluster as follows. If a controller is included in a195

cluster then in the corresponding row of the controller and corresponding column of the cluster the value196

will be 1 otherwise it will be 0. For instance, we see that before re-clustering controller number 5 is in197

cluster b. After re-clustering (on the right matrix) we see that controller 5 is no longer in b but has been198

moved to cluster c.199

Therefore, Y is a binary MXK matrix as follows:200

Y(t)i j =

{
0 C j ∈ Gi

1 else

}
(1)

∀1≤ j≤M

K∑
i=1

Y(t)i j = 1 and ∀1≤ j≤K

M∑
i=1

Y(t)i j = K (2)

5

Fig. 2: Y matrix examples before and after re-clustering

Symbol Semantics
C j jth controller
Gi ith cluster
P the number of requests a controller can handle per second
di j Minimal hop distance between Ci and C j

Y (t) ji Y (t) ji = 1 if jth controller is in cluster i in time slot t, else Y (t) ji = 1
l (t) j Controller load - Average flow request of jth controller per second in time slot t
SC Super Controller - collects controllers’ loads from masters and re-clustering

TABLE II: Key notations

The load of controller j in time slot t is denoted l (t) j. This information arrives to the SC from the201

controllers. Its value is the average of requests per second from all the switches associated to the controller,202

in time slot t. CVLi denotes the Cluster Vector Load of Masteri. The SC contains the addresses of the203

masters for each cycle in the Master Vector (MV). Table II summarizes the key notations for ease of204

reference.205

B. Clusters’ Load Differences206

As we mentioned in section III, the first aspect of the high-level load balancing is to achieve balanced207

clusters (in this paper we assume that all controllers have the same processing capabilities, therefore208

balanced clusters is the overall optimal allocation). For this purpose, the gaps between their loads must be209

narrowed. A cluster load is defined as the sum of the controllers’ average loads included in it, as follows:210

6

θ (t)i =

M∑
j=1

l (t) j Y (t) ji (3)

Where i is the cluster number and M is the number of controllers in the cluster.211

To measure how much a cluster load is far from other clusters’ loads, we derive the global cluster’s load212

average:213

Avg =

∑M
j l (t) j

K
(4)

Where, k is the number of clusters.214

Then, we define the distance of a cluster’s load from the global average’s load (denoted above Avg) as:215

ϑ (t)i = |θ (t)i − Avg| (5)

In a second step, we define a metric that measures the total load difference between clusters’ load as216

follows:217

ς (t) =

∑k
i=1 ϑ (t)i

K
(6)

C. Distances between controllers within same cluster218

In this section, we focus on the second aspect of the high level load balancing (mentioned in section219

III-B). The rationale behind this distance optimization is as follows. Since in the initialization phase,220

switches are matched to the closest controller, then when we perform load balancing inside the same221

cluster we want the other controllers to be also close to each other, otherwise this would imply that the222

switch might be now matched to a new controller far from it. For that purpose we define the maximal223

distance between controllers within the same cluster (over all the clusters) as follows:224

η (t) = max1≤c≤K max1≤i, j≤M di jY (t)ic Y (t) jc (7)

Where c is the cluster number, and i, j are the controllers in cluster c.225

Obviously, the best result would be to reach the minimum n(t) possible. Because if the controllers are226

close to each other, then the overhead consisting of the message exchanged between them will be less227

significant whereas if they are far from each other, then a multihop path will be required which will clearly228

impact the traffic on the control plane. However if the constraint on n(t) is too strict this might not allow229

us enough flexibility to perform load balancing. Therefore we propose to define the minimum distance230

required to provide enough flexibility for the load balancing operation, denoted as ”minMaxDistance”.231

If the value of minMaxDistance is not large enough, it is possible to adjust it by adding an offset to it.232

Finally we denote by Cnt the constraint on the maximal distance as follows:233

Cnt = maxDistance + offset (8)

D. Optimization Problem: Dynamic Controllers’ Clustering234

Our goal is to find the best clustering assignment as defined by Y(t) which minimize ς (t) (Eq.6) and at235

the same time fulfills the distance constraint (Eq. 8). Therefore, the problem can be formulated as follows:236

237

Minimize ς (t) (9)

7

subject to:238

M∑
j

Y (t) ji =
M
K

, ∀i (10)

239
K∑
j

Y (t) ji = 1 , ∀ j (11)

240
η (t) < Cnt (12)

Y (t)i j ∈ 0, 1 , ∀i, j

Equation 10 ensures that each cluster has exactly M/K controllers at a given time while Equation 11241

ensures that each controller is assigned to exactly one cluster at a time. Equation 12 puts a constraint on242

the maximum distance between controllers within same cluster.243

Regarding the distance constraint, the problem is a variant of a k-Center problem [27].244

On the other hand, the load balancing problem is a variant of a coalition-formation game problem [28],245

where the network structure and the cost of cooperation play major roles.246

These two general problems are NP-Complete because finding an optimal partition requires iterating247

over all the partitions of the player set, where the number of these partitions grows exponentially with the248

number of players, and is given by a value known as the Bell Number [29]. Hence, finding an optimal249

partition in general is computationally intractable and impractical (unless P = NP).250

In this paper, we propose an approximation algorithm to solve these problems. We adapt the K-Center251

problem solution for initial clustering, and use game theoretic techniques to satisfy our objective function252

with the distance constraint.253

V. DCC Two Phase Algorithm254

In this section, we divide the DCC problem into two phases and present our solutions for each of them.255

In the first phase, we define the initial clusters. We show some possibilities for the initialization that refer256

to distances between controllers and load differences between clusters. In the second phase, we improve257

the results. We further reduce the differences of cluster loads without violating the distance constraint by258

means of our replacement algorithm. We also discuss the connections between these two phases, and the259

advantages of using this two-phase approach for optimizing the overall performance.260

A. Phase 1: Initial Clustering261

The aim of initial clustering is to enable the best start that provides the best result for the second phase.262

There are two possibilities for the initialization. The first possibility is to focus on the distance, that is,263

seeking an initial clustering which satisfy the distance constraint while the second possibility is to focus264

on minimizing load difference between clusters.265

1) Initial clustering with the distance constraint: Most of the control messages concerning the cluster266

load balancing operation are generated due to the communication between the controllers and their MC.267

Thus, we use the K-Center problem solution to find the closer MC [30], [27]. In this problem, C =268

{C1,C2, ..., CK} is the center’s set and P = {P1, P2, ..., PM} contains M controllers. We define PC =269

(d (p1,C) , d (p2,C) , . . . , d (pM,C)) , where the ith coordinate of PC is the distance of pi to its closest270

center in C. The k-Center inputs are: a set P of M points and an integer number K, where M ∈ N,271

K < M. The goal is to find a set of k points C ⊆ P such that the maximum distance between a point in P272

and its closest point in C is minimized. The network is a complete graph, and the distance definition [see273

Table II] satisfies the triangle inequality. Thus, we can use an approximate solution to the k-Center problem274

to find MCs. Given a set of centers, C, the k-center clustering price of P by C is ‖PC‖∞ = maxp∈Pd (p,C).275

Algorithm 1 is an algorithm similar to the one used in [31]. This algorithm computes a set of k centers,276

8

with a 2-approximation to the optimal k-center clustering of P, i.e., ‖PK‖∞ ≤ 2opt∞ (P,K) with O(MK)277

time and O(M) space complexity [31].278

Algorithm 1 Find masters by 2-approximation greedy k-center solution
input: P = {p1, p2, ..., pM} controllers set, controller-to-controller matrix distances
output: C = {c1, c2, ..., cK} masters set
procedure:

1: C ← ∅
2: c1 ← pi // an arbitrary point pi from
3: C ← C ∪ c1

4: for i = 1 : K do
5: for all p ∈ P do
6: di[p]← minc∈C d(p, c)
7: end for
8: ci ← maxp∈P di[p]
9: C ← C ∪ ci

10: end for
11: return C // The master set

In Line 2 the algorithm chooses a random controller as the first master. In Lines 4-6 the algorithm279

computes the distances of all other controllers from the masters chosen in previous iteration. In each280

iteration,in line 9, another master is added to the collection, after calculating the controller located in the281

farthest radius of all controllers already included in the master group, in line 8. After (K − 1) iterations282

in line 11 the set of masters is ready.283

After that Algorithm 1 finds K masters, we partition controllers between the masters by keeping the284

number of controllers in each group under M/K as illustrated in Heuristic 2.285

As depicted in Heuristic 2, lines 1-2 prepare set S that contains the list of controllers to assign. lines 3-5286

define the initial empty clusters with one master for each one. Lines 7-15 (while loop) are the candidate287

clusters which have less than M/K controllers, and each controller is assigned to the nearest master of288

these candidates. After the controllers are organized into clusters, we check the maximal distance between289

any two controllers in lines 16-19; this value is used for the ”maxDistance” (that was used for Eq. 8).290

9

Heuristic 2 Distance initialization
input:
C = {c1, c2, ..., cM} Controller list
M = {m1,m2, ...,mk} masters list
controller-to-controller matrix distances
output:
CL = {cl1, cl2, ..., clk} Clusters list, where CLi = {cli1, cli2, ..., cli(m/k)}

maxDistance - maximum distance between controllers in a cluster.
procedure:

1: S ← C
2: S ← S − M
3: for i = 1 : K do
4: CLi ← Mi

5: end for
6: Candidates← CL
7: while S , ∅ do
8: Cnext ← The next controller in S
9: CLnear ← Find the nearest master from Candidates list

10: CLnear ← CLnext ∪CLnear

11: S ← S −Cnext

12: if | CLnear |= M/K then
13: Candidates← Candidates −CLnear

14: end if
15: end while
16: for all CLi ∈ CL do
17: maxDistanceCLi ← max distance between two controllers in CLi

18: end for
19: maxDistance← maximum of all maxDistanceCLi

20: return CL,maxDistance

Regarding the time complexity, Lines 1-6 take O(K) time. For each controller Line 8-12 checks the291

distance of a controller from all candidates, which takes O(M ∗ K) time. In lines 16-18 for each cluster292

the heuristic checks the maximum distance between any two controllers in the cluster.There are M/K2
293

different distances for all clusters, thus taking O(M2) time. Line 19 takes O(K) time (K < M). The initial294

process with Heuristic 2 entails an O(M2) time complexity.295

Heuristic 2 is based on the distances between the controllers. When the controllers’ position is fixed, the296

distances do not change. Consequently, heuristic 2 can be calculated only one time (i.e., before the first297

cycle) and the results are used for the remaining cycles.298

2) Initial clustering based on load only: If the overhead generated by additional traffic to distant299

controllers is not an issue (for example due to broadband link) then we should consider this type of300

initialization, which put an emphasis on the controllers’ load. In this case, we must arrange the controllers301

into clusters according to their loads. To achieve a well-distributed load for all the clusters we want to302

reach a ”min − max”, i.e., we would like to minimize the load in the most loaded cluster. As mentioned303

earlier (in IV-A) we assume the same number of controllers in each cluster. We enforce this via a constraint304

on the size of each cluster (see further Heuristic 3).305

In the following, we present a greedy technique to partition the controllers into clusters (Heuristic 3). The306

basic idea is that in each iteration it fills the less loaded clusters with the most loaded controller.307

In Heuristic 3, line 1 sorts the controllers by loads. In Line 2-9, each controller, starting with the heaviest308

one, is matched to the group with the minimum cost function, Costg(C), if the group size is less than K,309

10

where310

Costg(C) = CurrentClusterS um + Cload. (13)
The ”CurrentClusterS um” is the sum of the controllers’ loads already handled by cluster g, and Cload311

is the controller’s load that will be handled by that cluster. Regarding the time complexity, sorting M312

controllers takes O(M · log2M) time. Adding each controller to the current smallest group takes M · K313

operations. Therefore, heuristic 3 has O(max(M · K,M · lgM)) time complexity.314

315

Heuristic 3 Load initialization
input:
C = {c1, c2, ..., cM} Controller list
Masters CVLi’s (average flow-request number (loads) for each controller)
integer K for number of clusters
output:
P = {p1, p2, ..., pK} Clusters list, where Pi = {ci1, ci2, ..., ci(M/K)}
procedure:

1: S ortedListC ← descending order of controllers list according to their loads
2: Candidates← P
3: for all c ∈ S ortedListC do
4: Pmin ← the cluster with minimal Costg(C) from candidates
5: Pmin ← Pmin cupC
6: if | Pmin |= M/K then
7: Candidates← Candidates − Pmin
8: end if
9: end for

10: return P

B. Initial Clustering as Input to the Second Phase316

The outcomes of the two types of initialization, namely ”distance” and ”load”, presented so far (section317

V-A) are used as an input for the second phase.318

It should be noted that since the ”maxDistance” constraint is an output of the initialization based on the319

distance (Heuristic 2), the first phase is mandatory in case the distance constraint is tight. On the other320

hand, the initialization based on the load (Heuristic 3) is not essential to being perform load balancing in321

the second phase, but it can accelerate convergence in the second phase.322

C. Phase 2: Decreasing Load Differences using a Replacement Rule323

In the second phase, we apply the coalition game theory [28]. We can define a rule to transfer participants324

from one coalition to another. The outcome of the initial clustering process is a partition denoted Θ325

defined on a set C that divides C into K clusters with M/K controllers for each cluster. Each controller is326

associated with one cluster. Hence, the controllers that are connected to the same cluster can be considered327

participants in a given coalition.328

We now leverage the coalition game-theory in order to minimize the load differences between clusters or329

to improve it if an initial load balancing clustering has been performed such as in V-A2330

A coalition structure is defined by a sequence B = {B1, B2, . . . , Bl} where each Bi is a coalition. In331

general, a coalition game is defined by the triplet (N, v, B), where v is a characteristic function, N are the332

elements to be grouped and B is a coalition structure that partitions the N elements [28]. In our problem333

the M controllers are the elements, G is the coalition structure, where each group of controllers Gi is334

a coalition. Therefore, in our problem we can define the coalition game by the triplet (M, v,G) where335

v = ς (t). The second phase can be considered as a coalition formation game. In a coalition formation336

game each element can change its coalition providing this can increase its benefit as we will define in337

the following. For this purpose, we define the Replacement Value (RV) as follows:338

339

RV(Ci,C j, a, b,Cnt) =

0 n(t)new ≥ Cnt
0 belowAverage is true
0 aboveAverage is true

sumnew − sumold else

 (14)

11

Fig. 3: Clusters loads after replacement on the same side with reference to the average

Where sumnew = ϑ(t)anew + ϑ(t)bnew and sumold = ϑ(t)aold + ϑ(t)bold . belowAverage is true where (ϑ(t)aold ≤340

Avg)&(ϑ(t)bold ≤ Avg) and aboveAverage is true where (ϑ(t)aold ≥ Avg)&(ϑ(t)bold ≥ Avg). Each replacement341

involves two controllers Ci and C j with loads Cl (t)i and l (t) j, respectively, and two clusters a and b with342

loads La and Lb, respectively. We use the notations ”old” and ”new” to indicate a value before and after343

the replacement.344

345

When n (t)new ≥ Cnt(see Equations 7 and 8), the controllers, after the replacement, are organized into346

clusters such that the maximum distance between controllers within a particular cluster exceeds the distance347

constraint Cnt. In this case, the value of the RV is set to zero, because the replacement is not relevant at all.348

349

When (ϑ(t)aold ≤ Avg)&(ϑ(t)bold ≤ Avg) or (ϑ(t)aold ≥ Avg)&(ϑ(t)bold ≥ Avg) (see Equations 4 and 5),350

ς(t)old = ς(t)new (see Equation 6). When one of the cluster’s load moves to another side of the global351

average then we have ς (t)new ≥ ς (t)old. With both options, ς (t)old do not improve and therefore the RV is352

set to zero.353

354

Figure 3 and Figure 4 provide an illustration of these two options. The dotted line denotes the average355

of all clusters.356

In Figure 3, the sum of the loads’ distances from the global average, before the replacement is x+y. After357

the replacement the sum is (x − (l(t)i + l(t) j) + y + (l(t)i + l(t) j) = x + y. In the other symmetrical options,358

the result is the same.359

In Figure 4 the sum of distances from the global average, before the replacement is x + y, and this sum360

after the replacement is (x + (l(t)i + l(t) j) + (l(t)i + l(t) j) − y > x + y. In the other symmetrical options, the361

result is the same.362

In Equation 14, If none of the first three conditions are met, RV is calculated by (ϑ (t)anew + ϑ (t)bnew)− (ϑ (t)aold + ϑ (t)bold),363

a value that can be greater than or less than zero. Using the RV , we define the following ”ReplacementRule”:364

Definition 1. Replacement Rule. In a partition Θ, a controller ci has incentive to replace its coalition a365

with controller c j from coalition b (forming the new coalitions anew =
(
aold\ci

)
∪c j and bnew =

(
bold\c j

)
∪ci366

if it satisfies both of the following conditions: (1) The two clusters anew and bnew that participate in the367

replacement do not exceed their capacity K ·P. (2) The RV satisfies: RV
(
Ci,C j, a, b,Cnt

)
< 0 RV defined368

in Equation 14)369

In order to minimize the load difference between the clusters we find iteratively a pair of controllers370

12

Fig. 4: Clusters’ loads after replacement on different sides with reference to the average

with minimum RV , which then implement the corresponding replacement. This is repeated until all RV’s371

are larger than or equal to zero: RV
(
Ci,C j, a, b,Cnt

)
> 0. Algorithm 4 describes the replacement procedure.372

373

Regarding the time complexity of lines 1 in algorithm 4, i.e., find the best replacement, it takes:374

M
k (k − 1) + M

k (k − 2) + ... + M
k (k − (k − 1)) = M2

k2 ·
k(k−1)

2 =
M2(k−1)

2k = o
(
M2

)
time.375

Line 3 invokes the replacement within O(1) time. Since in each iteration the algorithm chooses the best376

solution, there will be a maximum of M/2 iterations in the loop of lines 2-5. Thus, in the worst case377

Algorithm 4 takes an O(M3) time complexity. In practice, the number of iterations is much smaller, as378

can be seen in the simulation section.379

380

Procedure 4 Replacements
input:
CL = {cl1, cl2, ..., clK} Clusters list, where CLi = {cli1, cli2, ..., cli(M/K)}
distance constraint Cnt
output:
CL = {cl1, cl2, ..., clK} Clusters list after replacements
procedure:

1: bestVal← minci∈CLx,c j∈CLy,x,y,1≤x,y,≤k RV(ci, c j,CLx,CLy,Cnt)
2: while bestVal < 0 do
3: invoke replacement RV
4: bestVal← minci∈CLx,c j∈CLy,x,y,1≤x,y,≤k RV(ci, c j,CLx,CLy,Cnt)
5: end while
6: return CL

D. Dynamic Controller Clustering Full Algorithm381

Now we present the algorithm that includes the two stages of initialization and replacement, in order382

to obtain clusters in which the loads are balanced.383

13

Algorithm 5 DCC Algorithm
input:
nt Network contain C = {c1, c2, ..., cM} Controller list, and distances between controllers.
K and M for the number of clusters and controllers, respectively
constaintActive to indicate that it meets the controller-to-controller distance constraint
o f f set to calculate the distance constraint (optional).
output:
P = {p1, p2, ..., pk} Clusters list, where Pi = {ci1, ci2, ..., ci(m/k)}
procedure:

1: if constaintActive = true then
2: Masters← Algorithm1(nt)
3: (initialDistanceClusters,maxDistance) ← Heuristic2(C,Masters)
4: Cnt ← maxDistance + o f f set
5: f inalPartition← Algorithm4(initialDistanceClusters,true,Cnt)
6: else
7: initialS tructure← Cluster structure from the previous cycle
8: initialLoadsOnly← Heuristic3(c)
9: initialWithReplacement ← Algorithm4(initialLoadsOnly, f alse)

10: ReplacementOnly← Algorithm4(initialS tructure, f alse)
11: f inalPartition← best solution from(initialLoadsOnly, initialWithReplacement, ReplacementOnly)
12: end if
13: return f inalPartition

The DCC Algorithm runs the appropriate initial clustering, according to a Boolean flag called ”constraintActive”,384

indicating whether the distance between the controllers should be considered or not (Line 1). If the flag is385

true, the distance initialization procedure (Heuristic 2) is called (line 3). Using the ”maxDistance” output386

from Heuristic 2, the DCC calculates the Cnt = maxDistance + o f f set (Line 4). Using the partition and387

Cnt outputs, the DCC runs the ”replacementprocedure” (Algorithm 4) (Line 5).388

389

The DCC can run the second option without any distance constraint (Line 6). In Line 11 it chooses the390

best solution in such cases, (referring to the minimal load differences) from the following three options:391

(1) Partition by loads only (Line 8);(2) Start partition by loads and improve with replacements (Line 9)392

(3) Partition by replacements only (using the previous cycle partition) (Line 10).393

394

Regarding the time complexity, DCC uses heuristic 2, heuristic 3, algorithm 1 and algorithm 4, thus it395

has a O
(
M3

)
time complexity.396

E. Optimality Analysis397

In this section, our aim is to prove how close our algorithm is to the optimum. Because the capacity of398

controllers is identical, the minimal difference between clusters is achieved when the controllers’ loads are399

equally distributed among the clusters, where the clusters’ loads are equal to the global average, namely400

ς (t) = 0. Since in the second phase, i.e., in the replacements, the DCC full algorithm is the one that sets401

the final partition and therefore determines the optimality, it is enough to provide proof of this.402

As mentioned before, the replacement process is finished when all RV ′s are 0, at which time any403

replacement of any two controllers will not improve the result. Figure 5 shows the situation for each404

two clusters at the end of the algorithm.405

For each two clusters, where the load of one cluster is above the general average and the load of the406

second cluster is below the general average, the following formula holds:407

ϑ(t)a + ϑ(t)b = La − Lb ≤ l(t)i − l(t) j,∀ci ∈ a, c j ∈ b (15)
We begin by considering the most loaded cluster and the most under-loaded cluster. When the cluster408

size is g, we define X1 to contain the lowest g/2 controllers, and X2 to contain the next lowest g/2409

controllers. In the same way, we define Y1 to contain the highest g/2 controllers and Y2 to contain the410

next highest g/2 controllers. In the worst case, the upper cluster has the controllers from the Y1 group411

and the lower cluster has the controllers from the X1 group. Since the loads of the clusters are balanced,412

14

Fig. 5: The loads of each two clusters at the end of all replacements

Algorithm 1 Find Masters O(M · K)
Heuristic 2 Distance Initialization O(M2)
Heuristic 3 Load Initialization O(max(M · lg M,M · K))

Algorithm 4 Replacements O(M2)
Algorithm 5 General DCC O(M3)

TABLE III: Time Complexity of heuristics and algorithm used for DCC

one half of the controllers in the upper cluster are from X1, and the other half of controllers in the lower413

cluster are controllers from Y1.414

According to Formula 15, we can take the lowest difference between a controller in the upper cluster415

and a controller in the lower cluster to obtain a bound on the sum of the distance of loads of these two416

clusters from the overall average. The sum of distances from the overall average of these two clusters is417

equal to or smaller than the difference between the two controllers, i.e., between the one with the lowest418

load of the g most loaded controller and the one with the highest load of the g lowest controllers.419

ϑ (t)most_loaded + ϑ (t)most_under_loaded ≤ l (t)g_th_bigger − l (t)g_th_smaller (16)
The bound derived in (Eq. 16) is for the two most distant clusters. Since a bound for the whole network420

(i.e. for all the clusters is needed) we just have to to multiply this bound by the number of clusters pairs421

we have in the network. There are k clusters in the networks so k/2 pairs of clusters, therefore the bound422

in (Eq. 16) is multiplied by K/2 in order to determine a bound for . However, to obtain a more stringent423

bound, we can consider bounds of other cluster pairs, and summarize all bounds as follows:424

di f f erenceBound ≤

M
2g∑

i=1

(
sortList(M−ig) − sortListig

)
(17)

The sortList indicates the load list of the controllers sorted in ascending order, M. In table III we show425

a summary of the time complexity of each of the algorithms we developed in this paper. Explanation on426

how each time complexity has been derived can be found in the corresponding sections.427

15

Fig. 6: Difference bound and the final difference results

VI. Simulations428

We simulated a network, with several clusters and one super controller. The controllers are randomly429

deployed over the network. The number of flows (the controller load) of each controller is also randomly430

chosen. The purpose of the simulation is to show that our DCC algorithm (see section V-D) meets the431

difference bound (defined in section V-E), and the number of replacements bound while providing better432

results than the fixed clustering method. The simulator we used has been developed with Visual Studio433

environment in .Net . This simulator enables to choose the number of controllers, the distance between434

each of them and the loads on each controller. In order to consider a global topology the simulator435

enables also to perform a random deployment of the controllers and also to allocate random load on each436

controller. We used this latter option to generate each scenario in the following figures.437

First we begin by showing that the bound for the s(t) function is met.We used 30 controllers divided438

into 5 clusters. We ran 60 different scenarios. In each scenario, we used a random topology, and random439

controllers’ loads. Figure 6 shows the optimality bound (Eq. 15), which appears as a dashed line, and the440

actual results for the differences achieved after all replacements. For each cluster, we chose randomly a441

minimalNumber in the range [20,10000], and set the controllers’ loads for this cluster randomly in a range442

of [minimalNumber, innerBalance]. We set the innerBalance to 40. X In such a way, we get unbalance443

between clusters, and a balance in each cluster. The balance in each cluster simulated the master operation.444

The innerBalance set the quality of the balance inside the cluster. Our algorithm balanced the load between445

clusters and showed the different results that indicates the quality of the balance. The distances between446

controllers were randomly chosen in a range of [1,100].447

We ran these simulations with different clusters size of: 2,3,5,10 and 15. The results showed that when448

the cluster size increases, the distance of the different bound from the actual bound also increases. We449

can also see that when the cluster size is too big (15) or too small (2) the final results are less balanced.450

The reason is because too small cluster size does not contain enough controllers for flexible balancing,451

and too big cluster do not allow flexibility between clusters since it decreases the number of clusters.452

We got similar results when running 50 controllers with cluster sizes: 2,5,10,25.453

As the number of controllers increases, the distance between the difference bound and the actual difference454

increases. This is because the bound is calculated according to the worst case scenario. Figure 7 shows the455

increase in distance between the actual difference distance from the difference bound when the number456

of controllers increases. The results are for 5 controllers in a cluster with 50 network scenarios.457

We now refer to the number of replacements required. As shown in Figure 8, the actual replacement458

number is lower than the bound. The results are for 30 controllers and 10 clusters over 40 different459

network scenarios (as explained above for fig. 6).460

16

Fig. 7: Distance between the difference bound and actual difference

Fig. 8: Replacements bound and actual number of replacements

The number of clusters affects the number of replacements. As the number of clusters increases, the461

number of replacements increases. Figure 9 shows the average number of replacements over the 30 network462

configurations, with 100 controllers, where the number of clusters increases.463

As noted, the initialization of step 1 in the DCC algorithm reduces the number of replacements required464

in step 2. Figure 10 depicts the number of replacements required, with and without initialization of step465

1. The results are for 75 controllers and 15 clusters over 50 different network scenarios.466

As mentioned previously in Section V-A1 during the initialization we can consider also the constraint467

on the distance (although it is not mandatory and in Section V-A2 we presented an initialization based468

on load only). Thus, if a controller-to-controller maximal distance constraint is important, we have to469

compute the lower bound on the maximal distance. By adding this lower bound to the offset defined by470

the user, an upper bound called ”Cnt” is calculated (Eq.8). Figure 11 shows the final maximal distance471

that remains within the upper and lower bounds. The results are for 30 controllers and 10 clusters with472

offset 20 over 30 network scenarios.473

Finally, we compare our method of dynamic clusters with another method of fixed clusters. As a starting474

point, the controllers are divided into clusters according to the distances between them (heuristic 2). In475

each time cycle, the clusters are rearranged according to the controllers’ loads of the previous time cycle.476

The change in the load status from cycle to cycle is defined by the following transition function:477

f (n) =

{
max(l(t)i + random(range), P) random(0, 1) = 1
max(l(t)i + random(range), 0) else

}

17

Fig. 9: Increase in the number of replacements with an increase in the number of clusters

Fig. 10: Number of replacements with and without initialization

Fig. 11: Maximal distance between lower and upper bounds

18

Fig. 12: Dynamic clusters vs. fix clusters comparing results

No.of controllers No.of clusters Cycles Fixed clustering Dynamic clustering Improvement Factor
16 4 20 319.81 61.64 5.2
44 11 29 999.09 185.33 5.3
70 14 18 1501.95 267.33 5.6
42 14 28 1044.48 209.15 4.9
30 6 22 610 109 5.6

TABLE IV: Dynamic Vs Fixed Clustering in different network topologies

where P is the number of requests per second a controller can handle. The load in each controller478

increases or decreases randomly. We set the range at 20, and P at 1000. Figure 12 depicts the results479

with 50 controllers partitioned into 10 clusters. The results show that the differences between the clusters’480

loads are lower when the clusters are dynamic.481

Following Fig 12, we ran simulation (see Table IV) for different configuration than the one in fig 12,482

where 50 controllers were considered. Here, we simulated the comparison on different random topologies,483

with a different number of controllers and clusters in each topology. The number of cycles we run is also484

randomly chosen. The simulation results indicate that the difference is improved fivefold by the dynamic485

clusters in comparison to the fixed clusters.486

VII. Conclusion487

In this paper, an improved approach to reduce the time complexity of the load balancing in the SDN488

control plane is presented. The goal is to split the requests (from the switches to controllers) among489

different controllers in order to avoid overload on some of them. For this purpose, we leverage a three-490

tier control plane architecture with a Super Controller and Master controllers, which can perform load-491

balancing action independently. Therefore the whole load balancing process can be executed in parallel492

and reduce the time complexity.493

We propose a system (made of multiple algorithms) that assign controllers to clusters with an opti-494

mization and the maximal distance between two controllers in the same clusters.495

We show that using dynamic clusters provide better results than fixed clustering.496

In future research, we plan to explore the optimal cluster size, and allow clusters of different sizes.497

An interesting direction concerns overlapping clusters. Another direction is to examine the required ratio498

between the runtime of the load balancing algorithm and the length of the unit on the timeline. Finally,499

optimal placement of the master controllers in each cluster is also an important open issue.500

19

Acknowledgement501

This research was (partly) funded by the Israel Innovations Authority under the Neptune generic research502

project. Neptune is the Israeli consortium for network programming.503

References504

[1] S. Scott-Hayward, G. O’Callaghan, and S. Sezer, “Sdn security: A survey,” in Future Networks and Services (SDN4FNS), 2013 IEEE505
SDN For. IEEE, 2013, pp. 1–7.506

[2] T. Hu, Z. Guo, P. Yi, T. Baker, and J. Lan, “Multi-controller based software-defined networking: A survey,” IEEE Access, vol. 6, pp.507
15 980–15 996, 2018.508

[3] Y. Zhang, L. Cui, W. Wang, and Y. Zhang, “A survey on software defined networking with multiple509
controllers,” Journal of Network and Computer Applications, vol. 103, pp. 101 – 118, 2018. [Online]. Available:510
http://www.sciencedirect.com/science/article/pii/S1084804517303934511

[4] B. Heller, R. Sherwood, and N. McKeown, “The controller placement problem,” in Proceedings of the first workshop on Hot topics in512
software defined networks. ACM, 2012, pp. 7–12.513

[5] J. Lu, Z. Zhang, T. Hu, P. Yi, and J. Lan, “A survey of controller placement problem in software-defined networking,” IEEE Access,514
pp. 1–1, 2019.515

[6] Y. Hu, W. Wendong, X. Gong, X. Que, and C. Shiduan, “Reliability-aware controller placement for software-defined networks,” in516
Integrated Network Management (IM 2013), 2013 IFIP/IEEE International Symposium on. IEEE, 2013, pp. 672–675.517

[7] S. H. Yeganeh, A. Tootoonchian, and Y. Ganjali, “On scalability of software-defined networking,” IEEE Communications Magazine,518
vol. 51, no. 2, pp. 136–141, 2013.519

[8] A. Tootoonchian and Y. Ganjali, “Hyperflow: A distributed control plane for openflow,” in Proceedings of the 2010 internet network520
management conference on Research on enterprise networking, 2010.521

[9] S. Lange, S. Gebert, T. Zinner, P. Tran-Gia, D. Hock, M. Jarschel, and M. Hoffmann, “Heuristic approaches to the controller placement522
problem in large scale sdn networks,” IEEE Transactions on Network and Service Management, vol. 12, no. 1, pp. 4–17, 2015.523

[10] G. Saadon, Y. Haddad, and N. Simoni, “A survey of application orchestration and oss in next-generation network management,”524
Computer Standards & Interfaces, vol. 62, pp. 17 – 31, 2019.525

[11] S. Auroux, M. Draxler, A. Morelli, and V. Mancuso, “Dynamic network reconfiguration in wireless densenets with the crowd sdn526
architecture,” in Networks and Communications (EuCNC), 2015 European Conference on, June 2015, pp. 144–148.527

[12] A. Dixit, F. Hao, S. Mukherjee, T. Lakshman, and R. Kompella, “Towards an elastic distributed sdn controller,” in ACM SIGCOMM528
Computer Communication Review, vol. 43, no. 4. ACM, 2013, pp. 7–12.529

[13] A. Krishnamurthy, S. P. Chandrabose, and A. Gember-Jacobson, “Pratyaastha: an efficient elastic distributed sdn control plane,” in530
Proceedings of the third workshop on Hot topics in software defined networking. ACM, 2014, pp. 133–138.531

[14] Y. Liu, A. Hecker, R. Guerzoni, Z. Despotovic, and S. Beker, “On optimal hierarchical sdn,” in Communications (ICC), 2015 IEEE532
International Conference on. IEEE, 2015, pp. 5374–5379.533

[15] Y. Fu, J. Bi, Z. Chen, K. Gao, B. Zhang, G. Chen, and J. Wu, “A hybrid hierarchical control plane for flow-based large-scale software-534
defined networks,” IEEE Transactions on Network and Service Management, vol. 12, no. 2, pp. 117–131, 2015.535

[16] P. D. Bhole and D. D. Puri, “Distributed hierarchical control plane of software defined networking,” in Computational Intelligence and536
Communication Networks (CICN), 2015 International Conference on. IEEE, 2015, pp. 516–522.537

[17] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodolmolky, and S. Uhlig, “Software-defined networking: A538
comprehensive survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76, 2015.539

[18] M. F. Bari, A. R. Roy, S. R. Chowdhury, Q. Zhang, M. F. Zhani, R. Ahmed, and R. Boutaba, “Dynamic controller provisioning in540
software defined networks,” in Network and Service Management (CNSM), 2013 9th International Conference on. IEEE, 2013, pp.541
18–25.542

[19] B. Görkemli, A. M. Parlakışık, S. Civanlar, A. Ulaş, and A. M. Tekalp, “Dynamic management of control plane performance in543
software-defined networks,” in NetSoft Conference and Workshops (NetSoft), 2016 IEEE. IEEE, 2016, pp. 68–72.544

[20] Y. Hu, W. Wang, X. Gong, X. Que, and S. Cheng, “Balanceflow: controller load balancing for openflow networks,” in Cloud Computing545
and Intelligent Systems (CCIS), 2012 IEEE 2nd International Conference on, vol. 2. IEEE, 2012, pp. 780–785.546

[21] T. Wang, F. Liu, J. Guo, and H. Xu, “Dynamic sdn controller assignment in data center networks: Stable matching with transfers,” in547
Computer Communications, IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on. IEEE, 2016, pp. 1–9.548

[22] A. Dixit, F. Hao, S. Mukherjee, T. Lakshman, and R. R. Kompella, “Elasticon; an elastic distributed sdn controller,” in Architectures549
for Networking and Communications Systems (ANCS), 2014 ACM/IEEE Symposium on. IEEE, 2014, pp. 17–27.550

[23] H. Yao, C. Qiu, C. Zhao, and L. Shi, “A multicontroller load balancing approach in software-defined wireless networks,” International551
Journal of Distributed Sensor Networks, vol. 11, no. 10, p. 454159, 2015.552

[24] H. Kim and N. Feamster, “Improving network management with software defined networking,” IEEE Communications Magazine,553
vol. 51, no. 2, pp. 114–119, 2013.554

[25] H. Sufiev and Y. Haddad, “Dcf: Dynamic cluster flow architecture for sdn control plane,” in Consumer Electronics (ICCE), 2017 IEEE555
International Conference on. IEEE, 2017, pp. 172–173.556

[26] ——, “A dynamic load balancing architecture for sdn,” in Science of Electrical Engineering (ICSEE), IEEE International Conference557
on the. IEEE, 2016, pp. 1–3.558

[27] A. Likas, N. Vlassis, and J. J. Verbeek, “The global k-means clustering algorithm,” Pattern recognition, vol. 36, no. 2, pp. 451–461,559
2003.560

[28] J. P. Kahan and A. Rapoport, Theories of coalition formation. Psychology Press, 2014.561
[29] T. M. Apostol, Introduction to analytic number theory. Springer Science & Business Media, 2013.562
[30] D. S. Hochbaum, Approximation algorithms for NP-hard problems. PWS Publishing Co., 1996.563
[31] A. Lim, B. Rodrigues, F. Wang, and Z. Xu, “k-center problems with minimum coverage,” in International Computing and Combinatorics564

Conference. Springer, 2004, pp. 349–359.565

Hadar Sufiev received her B.Sc. in Software Engineering and Teaching certificate for science and technology for high school , from the566
Jerusalem College of Technology in 2009. She recently received her M.Sc diploma in computer science from the Open University of Israel567
in Sept. 2017. She is now a lecturer at the Jerusalem College of Technology (JCT) in Jerusalem, Israel. Hadar’s current research interests568
include optimization of the SDN control plane.569

20

Yoram Haddad received his BSc, Engineer diploma and MSc (Radiocommunications) from SUPELEC (leading engineering school in Paris,570
France) in 2004 and 2005, and his PhD in computer science and networks from Telecom ParisTech in 2010. He was a Kreitman Post-571
Doctoral Fellow at Ben-Gurion University, Israel between in 2011-2012. He is actually a tenured senior lecturer at the Jerusalem College572
of Technology (JCT) in Jerusalem, Israel. Yoram’s published dozens of papers in international conferences (e.g. SODA,..) and journals. He573
served on the Technical Program Committee of major IEEE conferences and served as a reviewer for top tier Journals. He is the recipient574
of the Henry and Betty Rosenfelder outstanding researcher award for year 2013. Yoram’s main research interests are in the area of Wireless575
Networks and Algorithms for networks. He is especially interested in energy efficient wireless deployment, modeling of wireless networks,576
device-to-device communication, Wireless Software Defined Networks (SDN) and technologies toward 5G cellular networks.577

Leonid Barenboim is a senior lecturer in the Computer Science division of the Open University if Israel. He held post-doctoral positions578
in the Simons Institute at UC Berkeley and the Weizmann Institute of Science. He obtained his PhD from Ben-Gurion University of the579
Negev. His research interests include Wireless Networks, Distributed Algorithms, Dynamic Algorithms, and Big Data. He is a (co)author of580
a monograph and a variety of scientific papers in these fields.581

Jose Soler is Associate Professor in the Networks Technology and Service Platforms group, at DTU Fotonik, Technical University of582
Denmark. MSc in Telecommunication Engineering from Zaragoza University (Spain) in 1999 and PhD degree in Electrical Engineering from583
DTU (Denmark) in 2005. He holds also an MBA from UNED (2016) and a degree in Management from Erhversakademiet Copenhagen584
Business (2010). Previous employee of ITA (Spain), ETRI (South Korea), COM DTU (Denmark) and GoIP International (Denmark). His585
research interests include integration of heterogeneous telecommunication networks and telecommunication software and services. He serves586
as TPC member in an extended number of conferences and journal review panels and has participated in applied-research projects since587
1999.588

