19 research outputs found

    Evaluation of Automatic Vehicle Specific Identification (AVSI) in a traffic signal control system

    Get PDF
    Automatic Vehicle Specific Identification (AVSI) is a generic name for advanced vehicle detection systems. By automating the identification of vehicles by sensing the presence of vehicles with roadside detection sites or readers, AVSI is assumed to provide vehicle specific information in traffic signal control systems;In the application of AVSI to traffic signal control systems, as a vehicle passes a reader site, the reader records the arrival time and type of the detected vehicle. The reader would then send the information received to a local microprocessor-based traffic signal controller. The controller\u27s built-in signal control logic would then use the information to adjust traffic signal timing to reflect the present traffic stream\u27s characteristics;The purpose of this research is to evaluate the potential benefits of AVSI at an isolated intersection. The evaluation of the applicability of AVSI at an intersection is accomplished by using a new developed microscopic simulation model. This simulation model is coded in SIMAN simulation language. For the purpose of validating the simulation model, a delay study is conducted at an actual intersection. The validation of the model has established a level of confidence in the obtained simulation results;An important element of this simulation model is the development of a new Vehicle Specific Adaptive (VSA) traffic signal control strategy. VSA control strategy adjusts the signal timing based on AVSI traffic information, that is, it examines individual vehicle performance characteristics before extending a phase green time or implementing a new cycle split;Using the simulation model, the incorporated VSA control strategy is tested against a pretimed control system. The simulation results indicates that through the use of AVSI traffic information, the VSA control logic can improve intersection performance by reducing vehicles stopped delay at an intersection

    Capacity analysis of traffic-actuated intersections

    Get PDF
    Thesis (S.M. in Transportation)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 2002.Includes bibliographical references (p. 84-86).by Zhili Tian.S.M.in Transportatio

    Dynamic Message Sign and Diversion Traffic Optimization

    Get PDF
    This dissertation proposes a Dynamic Message Signs (DMS) diversion control system based on principles of existing Advanced Traveler Information Systems and Advanced Traffic Management Systems (ATMS). The objective of the proposed system is to alleviate total corridor traffic delay by choosing optimized diversion rate and alternative road signal-timing plan. The DMS displays adaptive messages at predefined time interval for guiding certain number of drivers to alternative roads. Messages to be displayed on the DMS are chosen by an on-line optimization model that minimizes corridor traffic delay. The expected diversion rate is assumed following a distribution. An optimization model that considers three traffic delay components: mainline travel delay, alternative road signal control delay, and the travel time difference between the mainline and alternative roads is constructed. Signal timing parameters of alternative road intersections and DMS message level are the decision variables; speeds, flow rates, and other corridor traffic data from detectors serve as inputs of the model. Traffic simulation software, CORSIM, served as a developmental environment and test bed for evaluating the proposed system. MATLAB optimization toolboxes have been applied to solve the proposed model. A CORSIM Run-Time-Extension (RTE) has been developed to exchange data between CORSIM and the adopted MATLAB optimization algorithms (Genetic Algorithm, Pattern Search in direct search toolbox, and Sequential Quadratic Programming). Among the three candidate algorithms, the Sequential Quadratic Programming showed the fastest execution speed and yielded the smallest total delays for numerical examples. TRANSYT-7F, the most credible traffic signal optimization software has been used as a benchmark to verify the proposed model. The total corridor delays obtained from CORSIM with the SQP solutions show average reductions of 8.97%, 14.09%, and 13.09% for heavy, moderate and light traffic congestion levels respectively when compared with TRANSYT-7F optimization results. The maximum model execution time at each MATLAB call is fewer than two minutes, which implies that the system is capable of real world implementation with a DMS message and signal update interval of two minutes

    An agile vehicle-based dynamic user equilibrium scheme for urban traffic signal control

    Get PDF
    Traffic Signal Control (TSC) is a fundamental task in modern intelligent transport systems. TSC is often formulated as a bi-level optimization problem, comprised by the signal timing at the upper level and the Dynamic User Equilibrium (DUE) traffic assignment at the lower level. Since DUE is non-convex, existing methods either formulate approximation models or adopt traffic simulators. However, approximation models may oversimplify the practical situations, while traffic simulators are usually time-consuming. This paper formulates a vehicle-based DUE (vDUE) model and proposes an agile method that can simultaneously maintain the computational simplicity and the traffic dynamics for the traffic assignment. Further, an agile TSC system is built by combining the vDUE at the lower level for the traffic assignment with an adaptive differential evolution algorithm at the upper level for the signal timing optimization. To enhance the effectiveness of optimization, the TSC problem formulation is also improved to make it better characterize the practical requirements. In the experiments undertaken, comparisons of different TSC methods are carried out on both real-world and synthetic transportation networks. The experimental results validate the effectiveness of the proposed agile TSC system in various traffic situations

    Heterogenous motorised traffic flow modelling using cellular automata

    Get PDF
    Traffic congestion is a major problem in most major cities around the world with few signs that this is diminishing, despite management efforts. In planning traffic management and control strategies at urban and inter urban level, understanding the factors involved in vehicular progression is vital. Most work to date has, however, been restricted to single vehicle-type traffic. Study of heterogeneous traffic movements for urban single and multi-lane roads has been limited, even for developed countries and motorised traffic mix, (with a broader spectrum of vehicle type applicable for cities in the developing world). The aim of the research, presented in this thesis, was thus to propose and develop a model for heterogeneous motorised traffic, applicable to situations, involving common urban and interurban road features in the western or developed world. A further aim of the work was to provide a basis for comparison with current models for homogeneous vehicle type. A two-component cellular automata (2-CA) methodology is used to examine traffic patterns for single-lane, multi-lane controlled and uncontrolled intersections and roundabouts. In this heterogeneous model (binary mix), space mapping rules are used for each vehicle type, namely long (double-unit length) and short (single-unit length) vehicles. Vehicle type is randomly categorised as long (LV) or short (SV) with different fractions considered. Update rules are defined based on given and neighbouring cell states at each time step, on manoeuvre complexity and on acceptable space criteria for different vehicle types. Inclusion of heterogeneous traffic units increases the algorithm complexity as different criteria apply to different cellular elements, but mixed traffic is clearly more reflective of the real-world situation. The impact of vehicle mix on the overall performance of an intersection and roundabout (one-lane one-way, one-lane two-way and two-lane two-way) has been examined. The model for mixed traffic was also compared to similar models for homogeneous vehicle type, with throughput, queue length and other metrics explored. The relationship between arrival rates on the entrance roads and throughput for mixed traffic was studied and it was found that, as for the homogeneous case, critical arrival rates can be identified for various traffic conditions. Investigation of performance metrics for heterogeneous traffic (short and long vehicles), can be shown to reproduce main aspects of real-world configuration performance. This has been validated, using local Dublin traffic data. The 2-CA model can be shown to simulate successfully both homogeneous and heterogeneous traffic over a range of parameter values for arrival, turning rates, different urban configurations and a distribution of vehicle types. The developed model has potential to extend its use to linked transport network elements and can also incorporate further motorised and non-motorised vehicle diversity for various road configurations. It is anticipated that detailed studies, such as those presented here, can support efforts on traffic management and aid in the design of optimisation strategies for traffic flow

    Artificial Intelligence Applications to Critical Transportation Issues

    Full text link

    Applying Machine Learning Techniques to Improve Safety and Mobility of Urban Transportation Systems Using Infrastructure- and Vehicle-Based Sensors

    Get PDF
    The importance of sensing technologies in the field of transportation is ever increasing. Rapid improvements of cloud computing, Internet of Vehicles (IoV), and intelligent transport system (ITS) enables fast acquisition of sensor data with immediate processing. Machine learning algorithms provide a way to classify or predict outcomes in a selective and timely fashion. High accuracy and increased volatility are the main features of various learning algorithms. In this dissertation, we aim to use infrastructure- and vehicle-based sensors to improve safety and mobility of urban transportation systems. Smartphone sensors were used in the first study to estimate vehicle trajectory using lane change classification. It addresses the research gap in trajectory estimation since all previous studies focused on estimating trajectories at roadway segments only. Being a mobile application-based system, it can readily be used as on-board unit emulators in vehicles that have little or no connectivity. Secondly, smartphone sensors were also used to identify several transportation modes. While this has been studied extensively in the last decade, our method integrates a data augmentation method to overcome the class imbalance problem. Results show that using a balanced dataset improves the classification accuracy of transportation modes. Thirdly, infrastructure-based sensors like the loop detectors and video detectors were used to predict traffic signal states. This system can aid in resolving the complex signal retiming steps that is conventionally used to improve the performance of an intersection. The methodology was transferred to a different intersection where excellent results were achieved. Fourthly, magnetic vehicle detection system (MVDS) was used to generate traffic patterns in crash and non-crash events. Variational Autoencoder was used for the first time in this study as a data generation tool. The results related to sensitivity and specificity were improved by up to 8% as compared to other state-of-the-art data augmentation methods

    Surrogate model for real time signal control: theories and applications

    Get PDF
    Traffic signal controls play a vital role in urban road traffic networks. Compared with fixed-time signal control, which is solely based on historical data, real time signal control is flexible and responsive to varying traffic conditions, and hence promises better performance and robustness in managing traffic congestion. Real time signal control can be divided into model-based and model-free approaches. The former requires a traffic model (analytical or simulation-based) in the generation, optimisation and evaluation of signal control plans, which means that its efficacy in real-world deployment depends on the validity and accuracy of the underlying traffic model. Model-free real time signal control, on the other hand, is constructed based on expert experience and empirical observations. Most of the existing model-free real time signal controls, however, focus on learning-based and rule-based approaches, and either lack interpretability or are non-optimised. This thesis proposes a surrogate-based real time signal control and optimisation framework, that can determine signal decisions in a centralised manner without the use of any traffic model. Surrogate models offer analytical and efficient approximations of complex models or black-box processes by fitting their input-output structures with appropriate mathematical tools. Current research on surrogate-based optimisation is limited to strategic and off-line optimisation, which only approximates the relationship between decisions and outputs under highly specific conditions based on certain traffic simulation models and is still to be attempted for real time optimisation. This thesis proposes a framework for surrogate-based real time signal control, by constructing a response surface that encompasses, (1) traffic states, (2) control parameters, and (3) network performance indicators at the same time. A series of comprehensive evaluations are conducted to assess the effectiveness, robustness and computational efficiency of the surrogate-based real time signal control. In the numerical test, the Kriging model is selected to approximate the traffic dynamics of the test network. The results show that this Kriging-based real time signal control can increase the total throughput by 5.3% and reduce the average delay by 8.1% compared with the fixed-time baseline signal plan. In addition, the optimisation time can be reduced by more than 99% if the simulation model is replaced by a Kriging model. The proposed signal controller is further investigated via multi-scenario analyses involving different levels of information availability, network saturation and traffic uncertainty, which shows the robustness and reliability of the controller. Moreover, the influence of the baseline signal on the Kriging-based signal control can be eliminated by a series of off-line updates. By virtue of the model-free nature and the adaptive learning capability of the surrogate model, the Kriging-based real time signal control can adapt to systematic network changes (such as seasonal variations in traffic demand). The adaptive Kriging-based real time signal control can update the response surface according to the feedback from the actual traffic environment. The test results show that the adaptive Kriging-based real time signal control maintains the signal control performance better in response to systematic network changes than either fixed-time signal control or non-adaptive Kriging-based signal control.Open Acces

    Computational intelligence-based traffic signal timing optimization

    Full text link
     Traffic congestion has explicit effects on productivity and efficiency, as well as side effects on environmental sustainability and health. Controlling traffic flows at intersections is recognized as a beneficial technique, to decrease daily travel times. This thesis applies computational intelligence to optimize traffic signals\u27 timing and reduce urban traffic
    corecore