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Abstract 

Traffic signal controls play a vital role in urban road traffic networks. Compared with 

fixed-time signal control, which is solely based on historical data, real time signal control is 

flexible and responsive to varying traffic conditions, and hence promises better performance 

and robustness in managing traffic congestion. Real time signal control can be divided into 

model-based and model-free approaches. The former requires a traffic model (analytical or 

simulation-based) in the generation, optimisation and evaluation of signal control plans, 

which means that its efficacy in real-world deployment depends on the validity and accuracy 

of the underlying traffic model. Model-free real time signal control, on the other hand, is 

constructed based on expert experience and empirical observations. Most of the existing 

model-free real time signal controls, however, focus on learning-based and rule-based 

approaches, and either lack interpretability or are non-optimised. 

This thesis proposes a surrogate-based real time signal control and optimisation framework, 

that can determine signal decisions in a centralised manner without the use of any traffic 

model. Surrogate models offer analytical and efficient approximations of complex models or 

black-box processes by fitting their input-output structures with appropriate mathematical 

tools. Current research on surrogate-based optimisation is limited to strategic and off-line 

optimisation, which only approximates the relationship between decisions and outputs under 

highly specific conditions based on certain traffic simulation models and is still to be 

attempted for real time optimisation. This thesis proposes a framework for surrogate-based 

real time signal control, by constructing a response surface that encompasses, (1) traffic states, 

(2) control parameters, and (3) network performance indicators at the same time.  

A series of comprehensive evaluations are conducted to assess the effectiveness, robustness 

and computational efficiency of the surrogate-based real time signal control. In the numerical 

test, the Kriging model is selected to approximate the traffic dynamics of the test network. 

The results show that this Kriging-based real time signal control can increase the total 

throughput by 5.3% and reduce the average delay by 8.1% compared with the fixed-time 
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baseline signal plan. In addition, the optimisation time can be reduced by more than 99% if 

the simulation model is replaced by a Kriging model. The proposed signal controller is further 

investigated via multi-scenario analyses involving different levels of information availability, 

network saturation and traffic uncertainty, which shows the robustness and reliability of the 

controller. Moreover, the influence of the baseline signal on the Kriging-based signal control 

can be eliminated by a series of off-line updates. 

By virtue of the model-free nature and the adaptive learning capability of the surrogate model, 

the Kriging-based real time signal control can adapt to systematic network changes (such as 

seasonal variations in traffic demand). The adaptive Kriging-based real time signal control 

can update the response surface according to the feedback from the actual traffic environment. 

The test results show that the adaptive Kriging-based real time signal control maintains the 

signal control performance better in response to systematic network changes than either 

fixed-time signal control or non-adaptive Kriging-based signal control.  
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Chapter 1   

Introduction 

This chapter presents a brief background of the research, highlighting its aim and objectives, 

and concluding with a description of the structure of this thesis.  

1.1 Background 

Greater urbanisation and rapid population growth worldwide has meant that an increasing 

number of cities are suffering from severe traffic congestion. BITRE (2015) showed that the 

annual ‘avoidable’ social costs of congestion for eight Australian state capitals had increased 

from $12.8 billion in 2010 to $16.5 billion in 2015. In Schrank, Eisele & Lomax’s (2019) 

report, meanwhile, traffic congestion in urban areas of the USA resulted in a national 

congestion cost of $179 billion in 2017, growing to $237 billion by 2025. Traffic congestion 

can also lead to other negative externalities. Wang, Quddus & Ison (2003) found that 

congestion and frequency of fatal/killed and serious injury (KSI) accidents were positively 

related, based on data collected on the M25 and surrounding major roads in the UK. 

Congestion can also result in an increase in vehicle emissions due to factors such as frequent 

stop-and-go (De Vlieger, De Keukeleere & Kretzschmar, 2000; Choudhary & Gokhale, 2016; 

Kellner, 2016). 

Conventionally, there are three main measures to alleviate traffic congestion: traffic network 

design, implementation of transport policy, and traffic control management. Since traffic 

congestion is mainly caused by an imbalance between traffic demand and supply it can be 

mitigated either by increasing supply or reducing demand (Bagloee & Sarvi, 2016). Inthis 

context, traffic network design addresses the congestion problem by increasing network 

capacity through the construction of new, and renovation of legacy, infrastructure. Intuitively, 

the construction of new infrastructure should be able to solve the congestion problem. In 

practice, however, it is just a temporary solution, since the balance between demand and 
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supply in the traffic system will again be disrupted as extra demand is induced by the increase 

in supply (Goodwin & Noland, 2003). Additionally, the construction of new infrastructure is 

often restricted by limited land resources in urban areas, high capital costs and disruption to 

traffic networks during construction.   

The implementation of transport policies seek to solve the problem of traffic congestion at its 

source by regulating traffic demand. Transport policies alleviate congestion by reducing the 

number of vehicles in the network and redistributing the traffic demand spatially and 

temporally. Transport policies include Road Space Rationing (Lu, 2015), congestion charges 

(Bagloee & Sarvi, 2016) and the promotion of public transport (Thøgersen, 2009). The main 

obstacle to the implementation of transport policy is the lack of public support. This is 

because of the potential of policy to have a negative impact on the interests of certain sections 

of society. It is therefore crucial to account for acceptability and equity during the design of a 

new policy (Wu et al., 2012). Moreover, a traffic network is a delicate system, with the 

implementation of a new policy causing a chain effect that makes it very challenging to 

quantify the influence of a new policy and predict whether a desirable outcome can be 

achieved. 

Traffic control management aims to facilitate maximal usage of the existing infrastructure. In 

contrast to traffic network design, traffic control management is reversible. In addition, it does 

not cause apparent damage to the interests of anyone and thus faces less resistance than the 

implementation of a new policy. These characteristics make traffic control management easy 

to implement and revise regularly. For these reasons, considerable research effort is dedicated 

to traffic control management as a way of addressing the congestion problem.  

Among the variety of traffic control tools available, signal control is most heavily researched. 

Traffic signals are essential components of traffic systems. The first traffic signal was 

implemented in 1914, in the USA, initially designed to regulate the safe movement of 

vehicles in different directions at intersections. After a century of development, current signal 

control strategies can be classified into: 
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 Fixed-time signal control, which selects the appropriate signal plan from a set of 

pre-stored plans according to a given schedule. Since these plans are all generated 

off-line based on the traffic pattern obtained from historical data, they cannot adapt to 

short-term fluctuations of traffic flow and can suffer from an ‘ageing’ problem due to 

systematic changes in the traffic network. On the other hand, fixed-time signal control 

does not need any detectors and consequently has a low construction cost, which is the 

main reason that most of the cities still use it.  

 Actuated signal control, which decides whether to extend or terminate the current green 

stage depending on local vehicle actuation to achieve the efficient use of green time. The 

current green phase extends when vehicles are detected until a maximum green time is 

reached or until no vehicle is detected on that approach. The signal plan is only adjusted 

by traffic demands passively and locally, however, rather than according to a given 

objective. Actuated signal control performs best under light traffic.  

 Real time signal control, which adjusts its signal plan according to the real time traffic 

conditions. Real time traffic data collected by detectors, not limited to vehicle actuation, 

are input to the embedded signal optimisation algorithm for decision making, such that 

the new signal plan can achieve its pre-set objective under the current traffic conditions. 

 

Figure 1.1 Development of real time signal control (Wang et al., 2018) 
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Of these three types of signal control, real time signal control is more flexible and effective in 

accommodating unpredictable traffic conditions, and it is for this reason that real time signal 

controls have been heavily researched in recent years. Real time signal control can be used to 

optimise a variety of objectives, including travel time reduction (Li et al., 2004; Sun et al., 

2006; Christofa & Skabardonic, 2011), throughput maximisation (Liu et al., 2015) and 

emission minimisation (Rakha et al., 2000; Li et al., 2004; Han et al., 2016a). 

Wang et al. (2018) summarised the development of real time signal control and divided it into 

five generations, as shown in Figure 1.1, based on the work of Gartner, Stamatiadis & Tarnoff 

(1995). The first generation is fixed-time signals that can only alter the signal plan according 

to a fixed schedule, and where no signal plan can be generated on-line. The second generation 

can be considered as the beginning of real time signal control. From this generation, signal 

control systems could change the signal plan on-line according to the prevailing real time 

traffic conditions. The third generation has a similar mechanism to that of the second 

generation, with the only difference being that this (third) generation allows the signal plan to 

change continuously in an acyclic manner. Besides the three generations summarised by 

Gartner, Stamatiadis & Tarnoff (1995), Wang et al. (2018) added another two generations. In 

the fourth generation, real time signal control is integrated with other traffic control 

management strategies such that they can cooperate efficiently. The fifth generation involves 

a significant innovation, being the start of model-free real time signal control.  

According to the evolution of signal control discussed above, real time signal control can be 

classified into model-based approaches (from generation 2 to generation 4) and model-free 

approaches (generation 5) depending on whether a traffic model is required to interpret the 

traffic dynamics during the optimisation.  

The model-based approach requires a traffic model to interpret the traffic dynamics of the 

network such that network performance under different signal plans can be estimated. 

Therefore, the performance of model-based signal control depends on the validity and 

accuracy of the underlying model. It is challenging, however, to construct an accurate traffic 

model that can well capture the complex interactions between the various components in the 
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traffic system with incomplete knowledge of the underlying problem. In addition, the 

embedded traffic model in model-based real time signal control limits the flexibility in the 

selection of inputs and objectives. Moreover, there is no systematic guideline for the 

calibration of model-based signal control, meaning that calibration needs to be carried out 

manually through a trial-and-error process, which acts as a barrier to frequent updates to the 

underlying model. 

On the other hand, model-free real time signal control generates signal control decisions 

wholly based on expert experience and empirical observations, without being informed by 

any traffic model. At present, the research on model-free real time signal control is mainly 

rule-based and learning-based. In the case of the former, the signal plan is altered when a 

specific pre-determined rule is activated. It is often difficult to determine the appropriate rules 

for the traffic network, however, which limits the applicability of rule-based approaches. This 

drawback can be addressed by the learning-based approach. Learning-based signal control 

learns the interaction between traffic states and signal control directly. Moreover, it can 

update itself based on feedback from the traffic environment. The learning-based approach, 

however, lacks interpretability, and its reliability and transferability remain questionable due 

to the absence of analytical insights.  

Another model-free method, still to be applied to real time signal control, is surrogate 

modelling. A surrogate model is built with sample data and yields insight into the functional 

relationship between the inputs and outputs (Barton & Meckesheimer, 2006; Jakobsson et al., 

2010; Chen et al., 2014a) through an analytical and tractable mathematical representation, 

such that the value of any point can be estimated without the need for a traffic model. A 

surrogate model can replace the actual model or the physical process (Simpson et al., 2001; 

Gartiselov, 2012) while providing computational efficiency and mathematical tractability. 

Wang et al. (2018) highlighted that the future trend in real time signal control would be 

model-free instead of model-based, using real time monitoring data instead of forecast data 

and automatically controlled instead of manually controlled. This shows that model-free real 

time signal control has great potential and is worthy of further investigation. 
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1.2 Aim and objectives 

Given the limitations of existing real time signal control approaches discussed above, this 

research aims to propose a new real time signal control system based on surrogate modelling, 

which has the potential to improve network-level performance in a real time computational 

environment. The following objectives have been formulated to deliver the aim of this thesis. 

1. Undertake a critical review of the literature on existing real time signal control systems 

and methods to identify their limitations. 

2. Undertake a critical review of existing surrogate modelling techniques and 

surrogate-based traffic optimisation to illustrate the potential and feasibility of combining 

surrogate modelling with real time signal control and optimisation. 

3. Develop a framework to interpret the state-control-objective relationship analytically 

using Kriging as the surrogate model, and develop an infill and training strategy to 

construct the Kriging-based response surface. The resulting surrogate model will be used 

for real time signal optimisation, in such a way that it can quickly generate near-optimal 

signal control parameters with given traffic states as the input. 

4. Based on the surrogate model developed in Objective 3, perform real time optimisation 

via a modified Particle Swarm Optimisation (PSO) algorithm, which offers an efficient 

trade-off between computational time and solution optimality, and account for the 

estimation error of the surrogate model within the optimisation procedure. 

5. Test, validate and assess the surrogate-based real time signal control developed in 

Objectives 3 and 4, using traffic simulations of a real-world road network, and compare 

the results with the benchmark. Assess the robustness of the proposed real time signal 

control by applying it under different scenarios with variable levels of information 

availability, demand and demand variability.   

6. Identify the influence of the initial baseline signal used for surrogate modelling in 
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Objective 3 and real time signal control in Objective 4. Develop an adaptive baseline 

signal update strategy to mitigate the influence of the initial baseline signal. 

7. Develop a surrogate-based real time signal control with an adaptive response surface that 

can self-update according to the feedback from the traffic network, such that it can 

accommodate systematic changes in demand. 

1.3 Thesis structure 

The thesis consists of six chapters, organised as follows: 

Chapter 2 reviews six developed real time signal control systems and introduces their 

operational mechanisms. The current research on real time signal controls is classified 

according to their optimisation methods. The advantages and drawbacks of each method are 

reviewed. Then it reviews the state-of-the-art in surrogate modelling techniques and presents 

a detailed description of the three most widely-used models: the Response Surface Model, 

Radial Basis Function and Kriging. Three main approaches to the infill strategies are 

presented, forming the basis of the selection of the surrogate model and infill strategy in 

Chapter 3. Chapter 2 also reviews the literature related to surrogate-based optimisation, 

highlighting that the surrogate model can approximate the complicated control-objective 

relationship accurately and reduce the optimisation time. This leads to the conclusion that 

surrogate modelling has great potential for application to a real time signal control system. 

Chapter 3 compares the surrogate modelling techniques for the fixed-time and real time 

problems, and identifies the challenges of constructing a response surface to approximate the 

state-control-objective relationship for the real time control problem. Based on the surrogate 

modelling techniques reviewed in Chapter 2, the conventional surrogate modelling 

techniques are modified to construct a surrogate model for real time signal control. The whole 

process includes a sampling of traffic state variables and signal control variables, surrogate 

model construction and infill strategy. The approximation accuracy and estimation efficiency 

of the proposed surrogate modelling technique is assessed by carrying out a test on a small 
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network. 

Chapter 4 proposes a surrogate-based real time signal control system that applies the 

surrogate model prepared in Chapter 3. It starts with the introduction to the standard process 

of Particle Swarm Optimisation (PSO). A modified Particle Swarm Optimisation (PSO) is 

specially designed for the surrogate-based real time signal control system to account for the 

estimation error and reduce the convergence time. The performance of the proposed real time 

signal control system on network management is assessed in terms of total throughput, 

average delay and weighted throughput. Multi-scenario analysis is conducted to explore the 

performance of the proposed surrogate-based real time signal control more fully under 

different scenarios, including the number of traffic variables, demand level and demand 

variability, as well as the influence of the sensitivity to estimation error and the baseline 

signal. 

Chapter 5 proposes an adaptive baseline signal update strategy to solve a problem identified 

in Chapter 4, namely a deterioration in the performance of the proposed real time signal 

control due to the improper selection of a baseline signal. Moreover, the real time signal 

control developed in Chapter 4 has a fixed response surface, which limits its ability to adapt 

to systematic changes in demand. By identifying the possible influences of the systematic 

changes of demand on real time signal control, a surrogate-based real time signal control with 

an adaptive response surface is developed, which can update the surrogate model and baseline 

signal according to the information collected during the optimisation. Sensitivity analysis is 

conducted to assess the influence of two major factors in the response surface update strategy: 

update frequency, and the number of infill points. 

Chapter 6 revisits the objectives listed in Chapter 1 and concludes the research undertaken in 

this thesis. Furthermore, recommendations for future research are presented.   
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Chapter 2  

State-of-the-art in real time signal control and surrogate 

modelling 

This chapter first reviews the state-of-the-art of real time signal controls in Section 2.1 to 

provide an overview of the current status of their development. The underlying operational 

mechanisms are discussed to show the advantages and disadvantages of each method. Then, 

in Section 2.2, a review of surrogate models is presented to compare the different surrogate 

modelling techniques and infill strategies, thus showing the potential to integrate surrogate 

models with real time signal control. Following this, Section 2.3 introduces the 

surrogate-based optimisation applications in the context of traffic control so as to confirm that 

surrogate-based real time traffic control is reasonable. 

2.1 Real time signal control 

This section reviews the state-of-the-art of real time signal control. It starts with an 

introduction to two fundamental features of real time signal control. Section 2.1.1 reviews the 

six most widely-used real time signal control systems, while section 2.1.2 reviews theoretical 

studies on real time signal controls. 

Figure 2.1 shows an overview of the structure of real time signal control, which defines how 

multiple intersections are controlled by the same real time signal control system. The structure 

of real time signal control can be broadly divided into isolated and coordinated controls, 

which are distinguished by whether the interaction between intersections is considered when 

making decisions for each intersection. Since all intersections are controlled independently, 

isolated signal control is easier to implement than coordinated control, but is incapable of 

managing traffic flow at a network level. 
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Depending on whether all the decisions are made by a central computer or intersection 

controllers, coordinated control can be further classified into  

 Centralised control 

 Distributed control  

 Hierarchical control.  

In centralised control, a central computer is responsible for the decision making across the 

entire network through a centralised control algorithm that seeks to maximise network-level 

performance. All the data collected by local controllers are transmitted to the central computer 

for processing, and then once decisions are made, they are sent back to each controller. This 

operational mechanism makes centralised real time signal control sensitive to the working 

state of the central computer and transmission system. Any failure of the central computer or 

transmission system results in the whole or part of the traffic network being forced to adopt a 

backup signal plan, which is usually non-adaptive. 

In contrast, the distributed system is more robust since intersection controllers make decisions, 

based on the local traffic conditions and information provided by adjacent intersections. A 

distributed system can be easily expanded but cannot be applied to accommodate a 

network-level objective. Hierarchical systems have the advantages of both centralised and 

distributed systems. Its controllers are multi-level and have their own control algorithms, and 

the parameters can be determined at various levels. 

 

Figure 2.1 An overview of real time signal control structures 
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2.1.1 Developed real time signal control systems 

Real time signal control systems have been extensively developed and implemented, given 

their potential for regulating the traffic flow and hence improving network performance. Most 

of these developed real time signal control systems use traffic models to estimate the arrival 

of vehicles and to choose between alternative decisions. In order to calibrate a real time signal 

control system, therefore, it is necessary to understand traffic dynamics. 

These real time signal control systems differ in system type, objectives and optimisation 

mechanisms. In the following part, a review is undertaken of the most widely-used real time 

signal control systems: the Sydney Coordinated Adaptive Traffic System (SCATS) (Sims & 

Dobinson, 1980; Lowrie, 1982); the Split, Cycle and Offset Optimisation Technique (SCOOT) 

(Hunt et al., 1981; Hunt et al., 1982); Traffic-responsive Urban Control (TUC) (Diakaki, 

Papageorgiou & McLean, 1999); Optimised Policies for Adaptive Control (OPAC) (Gartner, 

1983); Programmation Dynamique (PRODYN) (Henry, Farges & Tuffal, 1983; Farges, 

Khoudour & Lesort, 1990) and the Real time Hierarchical Optimised Distributed and 

Effective System (RHODES) (Mirchandani & Head, 2001). Their fundamental characteristics 

are summarised in Table 2.1. 

 
System 

Type 
Objective 

Arrival 

Prediction 
Cyclic Decision Type 

Optimisation 

Methodology 

SCATS Distributed 

Minimise 

delay/stop 

or 

Maximise 

throughput 

  
Predetermined 

signal plan 
Plan selection 

SCOOT Distributed 

Minimise 

queue 

length and 

stop 

  

Incremental 

change of 

cycle time, 

split and offset 

Hill Climbing 

TUC Centralised 
Minimise 

the risk of 

saturation 

  
Cycle time, 

split and offset 

Linear-Quadratic 

regulator/ 
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and 

spillback 

Feedback-based 

algorithm/ 

Decentralised 

feedback control 

OPAC Hierarchical 

Minimise 

delay and 

stop 

  
Phase 

switching plan 

Optimal 

Sequential 

Constrained 

Search/Dynamic 

Programming 

PRODYN 
Hierarchical/ 

Distributed 

Minimise 

delay 
  

Phase 

switching plan 

Forward 

dynamic 

programming 

RHODES Hierarchical 

Minimise 

delay, stop 

and queue 

  
Phase 

switching plan 

Dynamic 

programming 

Table 2.1 A review of developed real time signal control systems 

Sydney Coordinated Adaptive Traffic System 

The Sydney Coordinated Adaptive Traffic System (SCATS) was developed by the Roads and 

Traffic Authority of New South Wales, Australia, for signal control in Sydney (Sims & 

Dobinson, 1980; Lowrie, 1982). It can adjust the cycle length, phase split and offsets 

according to real time traffic data, and adapt to time-varying traffic conditions. It selects the 

signal plan that optimises the objective from a suite of pre-determined plans stored in its 

database. SCATS adopts three different objectives depending upon the traffic conditions, 

respectively: minimisation of stops under light traffic, minimisation of delay under medium 

traffic, and maximisation of throughput under heavy traffic.  

SCATS uses a central computer, regional computers and intersection computers to control a 

large-scale network at three levels. Figure 2.2 shows the communication between the three 

control levels. Typically, the central computer does not participate in the normal operation of 

signal control, but only stores all the traffic data in the database and monitors the status of all 

components in the system. It can, however, manually adjust the control parameters, dynamic 
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functions and mode of the lower level computers, and even realise remote control if necessary. 

This hierarchical structure provides the central computer with the capability to check all the 

information stored in the lower level controllers so as to monitor the operational status of the 

entire system.  

 

Figure 2.2 Hierarchical system of SCATS 

Only the regional computers can make real time decisions according to the pre-processed 

information provided by the intersection computers. A region controlled by the same regional 

computer is called a system. As each regional computer only decides the signal setting for the 

intersections in the system it controls, SCATS is hence a distributed system, even though it 

has a hierarchical structure. It can be divided into several subsystems, including 1 to 10 

intersections. Each subsystem works as the smallest control unit, assuming that the traffic 

condition within it is uniform. The allocation of subsystems is decided and stored in advance, 

according to the level of interdependence between signalised intersections. Although the 

signal plan is determined for each subsystem rather than for each intersection, SCATS does 

allow the intersection computer to make some small adjustments, known as tactical control. 

The minimum cycle length, maximum cycle length and geometrically optimal cycle length 

are defined for each subsystem. The subsystems can be linked with other subsystems that 

have similar traffic conditions, and the linked subsystems can be split if necessary. Four 

linking plans are provided to define the conditions for subsystem linkage.  
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Each regional computer selects the most appropriate cycle length, green split plan, offset plan 

and linking plan for its corresponding subsystem. The cycle length can control the degree of 

saturation within the subsystem, whereas the green split balances the degree of saturation at 

the critical intersection. Offsets can enhance the objectives indirectly by forming a platoon of 

vehicles.  

SCATS, however, does not contain any optimisation algorithm and instead compares the 

performance of the stored plans based on the real time traffic conditions to make a decision.  

Split, Cycle and Offset Optimisation Technique 

The Split, Cycle and Offset Optimisation Technique (SCOOT) was developed by the 

Transport and Road Research Laboratory (TRRL) in the UK in 1980 (Hunt et al., 1981; Hunt 

et al., 1982). It is a distributed real time adaptive signal control system with the same 

underlying principles as the Traffic Network Study Tool (TRANSYT), which is a traffic 

simulation and signal optimisation program developed by Robertson (1969). TRANSYT can 

only achieve signal optimisation off-line, while SCOOT, its extension, can update the signal 

plan on-line to adapt to time-varying traffic conditions (Robertson, 1986; Robertson & 

Bretherton, 1991). Unlike other signal control systems, SCOOT changes the split, cycle time 

and offset incrementally based on short-term flow variations. The fact that these changes are 

small and incremental, however, limits SCOOT’s adaptability. 

SCOOT makes its decisions according to two performance indicators: total queue length and 

number of stops. The delay is closely related to queue length, and is reduced at the same time 

as the queue length decreases. The number of stops affects energy consumption, safety and 

driving experience. The weighted sum of these two indicators (queue length and number of 

stops) is expressed as the overall performance indicator (i.e. objective) of SCOOT, and the 

weighting parameter is user-defined. 

SCOOT uses sensors positioned at the upstream end of each link to collect traffic data. The 

data collected is then converted into the Cyclic Flow Profile (CFP), which is the average 

traffic flow passing through the detectors in each time step of the cycle. For SCOOT, cycle 
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time is divided into several four-second time steps, and the CFP can be periodically updated. 

The CFP is used to simulate vehicles approaching the intersections downstream. The impact 

of any signal plan change can be estimated by the queue size, and the queue discharge can be 

simulated easily given the estimated arrival pattern. SCOOT optimises the split, cycle time 

and offset separately, following different rules in each of these three optimisation processes.  

The split optimiser aims to find the optimal way to allocate the green time to each 

approaching link to an intersection. It compares the degree of saturation for each link, that is, 

the ratio of the demand flow to the maximum possible discharge flow. The signal plan is 

revised to minimise the degree of saturation at each intersection. Another aspect that needs to 

be taken into account is congestion, with congested links being given a longer green time. All 

the decisions are made a few seconds before the phase transition, allowing up to four seconds’ 

alteration to optimise the overall performance indicator. 

The offset optimiser estimates the link delay and stops for all the upstream and downstream 

links connected to the intersection, selecting the offset that can minimise the total delay and 

stops. The selection of offset also accounts for the congestion by giving congested links 

higher priority. The offset is revised once a cycle. 

The cycle time can be extended when the intersection has a high degree of saturation and 

reduced otherwise. This decision is made by the cycle optimiser. The cycle time must not be 

greater than the maximum permitted cycle time, nor shorter than the minimum practical cycle 

time of the critical intersection in the region. The minimum practical cycle time of each 

intersection is also updated periodically based on the degree of saturation. If any link to the 

intersection has a higher degree of saturation than the ideal saturation level, the minimum 

practical cycle time increases by a small amount. Meanwhile, if all the links have a degree of 

saturation below the ideal saturation level, the minimum practical cycle time is reduced 

slightly. The cycle time can be adjusted by 4, 8 or 16 seconds within the boundary. The cycle 

optimiser is the only one of SCOOT’s three optimisers that can be used to deal with large 

changes in traffic conditions. 
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Traffic-responsive Urban Control 

Traffic-responsive Urban Control (TUC) was developed as part of the 

Integrated-Traffic-responsive Urban Control (IN-TUC) for the M8 motorway corridor in 

Glasgow, and belongs to the European Telematics Applications in Transport project 

TABASCO (Telematics Applications in Bavaria, Scotland and Others) (Diakaki, 

Papageorgiou & McLean, 1999). IN-TUC combines ramp metering, variable message signs 

and signal control. In this system, only split optimisation is considered in signal control 

(Diakaki, 1999) but TUC has subsequently been extended to include separate cycle and offset 

optimisations (Diakaki et al., 2003). 

In order to describe the traffic flow process, TUC adopts the store-and-forward modelling 

method, which simulates traffic dynamics in a continuous manner without using discrete 

variables (Aboudolas, Papageorigiou & Kosmatopoulos, 2009). For simplicity, the outflow of 

each link is limited to binary variables equal to the saturation flow, or zero. In other words, 

when the link has the right to move, and downstream has space to accommodate the released 

traffic, the outflow is equal to saturation flow; otherwise, it is zero. This means that the 

average outflow in each cycle can be easily calculated in this model. The store-and-forward 

approach is similar to the cell transmission model (CTM) but more straightforward. The time 

step required must not be shorter than the cycle time, and each link is regarded as a cell. Even 

though it ignores the within-link traffic flow dynamics and short-term queue length 

fluctuations due to signal changes, it reduces computational complexity. 

 
Figure 2.3 Optimisation system of TUC 
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As shown in Figure 2.3, the data collected are first input into a cycle optimiser and offset 

optimiser. With the obtained cycle time and offset, the optimal split can be determined. TUC 

assumes that the entire network shares the same cycle time. The cycle optimiser adopts a 

feedback-based algorithm. This is based on the concept that a longer cycle time will increase 

the capacity of the network since the proportion of lost time is reduced, but when the network 

is undersaturated, it leads to a longer waiting time, which can cause an extra delay. The actual 

cycle time is therefore half of the calculated cycle time when all the links to the intersection 

have a low saturation flow. 

The offset optimiser aims to form green waves along the arterials. The offset optimisation is 

realised in a decentralised manner by calculating the offset of each couple of adjacent 

intersections on the same arterial individually. For each pair of intersections, two waves—the 

flow wave due to the upstream signal change, and the kinematic wave due to the downstream 

signal change are considered, together with the current queue length. The offset is the 

weighted sum of the time that the two waves arrive at the end of the queue. In order to realise 

the coordination between intersections based on the offset, a temporal transient cycle time is 

adopted for the intersections along the arterial. 

Given the cycle time and transient cycle time, the Linear-Quadratic (LQ) approach (Diakaki, 

Papageogiou & Aboudolas, 2002; Dinopoulou, Diakaki & Papageogiou, 2006) is used to 

determine the green split based on the current traffic state and a pre-defined fixed signal plan. 

LQ optimisation also needs a constant feedback gain matrix. Although the construction of this 

gain matrix is time consuming, especially for a large-scale traffic network, it is calculated 

off-line and hence does not affect the efficiency of on-line optimisation. The ultimate goal of 

the split optimiser is to minimise the risk of oversaturation and queue spillback, which can be 

achieved by minimising and balancing the relative occupancies of the links connected to each 

intersection. 

Optimised Policies for Adaptive Control 

The Optimised Policies for Adaptive Control (OPAC) was developed by the University of 
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Massachusetts, Lowell and sponsored by the US Federal Highway Administration (FHWA) 

(Gartner, 1983). It is a truly demand-responsive real time signal control that can adapt to the 

time-varying traffic conditions. In addition, this system is under acyclic control, meaning that 

it is unconstrained by the fixed control period, a rigid structure and extrapolation of existing 

concepts. Furthermore, dynamic programming (DP) (Bellman, 1957) converts the signal 

optimisation problem into a direct minimisation of a performance indicator, that is, the 

weighted sum of delay and stops. The development of OPAC has experienced four main 

generations, from fixed time to real time control, and from an isolated intersection to a 

coordinated network (Gartner, Pooran & Andrews, 2001; Gartner, Pooran & Andrews, 2002). 

OPAC-1 is the first generation that uses DP with an infinite horizon and is designed for 

isolated control. The inputs to OPAC-1 are the initial queues of each link. The entire horizon 

is divided into infinite time steps lasting five seconds. OPAC-1 assumes that the arrivals are 

known, such that backward DP can be applied. In practice, however, it is impossible to predict 

the arrivals over the entire control period. Another reason that limits OPAC-1 to a fixed-time 

control is the extensive computational resources required by the need to evaluate all the 

possible phase switching combinations. While OPAC-1 is therefore not applicable for real 

time signal control, it is a good benchmark for future generations. 

In order to reduce the computational burden, OPAC-2 accommodates certain simplifications 

to reduce the size of the state space. Specifically, the control period is divided into several 

stages with n intervals, which are typically two to five seconds. Furthermore, instead of using 

the phase duration of decision making as in OPAC-1, OPAC-2 determines the switching time, 

in terms of a time step, so as to minimise the delay over the whole stage. The optimisation 

problem is solved by an optimal sequential constrained search, which chooses the optimal 

solution from all possible combinations. In order to reduce the number of possible 

combinations, phase switching can occur at least once and up to three times for each stage. 

Even though OPAC-2 is more time-efficient than OPAC-1, the requirement for a complete 

knowledge of the arrivals in the entire stage limits its applicability to real time control. 

OPAC-3 is the first version capable of real time signal control. It adopts the rolling horizon 
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method to relax the requirement relating to the full knowledge of arrivals. OPAC-3 was first 

designed for a two-phase operation and was extended to an eight-phase operation. This 

method allows signal plans to be revised regularly.  

The first three generations of OPAC are designed for isolated intersections only, with the 

fourth generation, however, OPAC was extended to coordinated networks. OPAC-4 is a 

hierarchical system, also known as the virtual fixed-cycle OPAC (OPAC-VFC). It has three 

layers: synchronisation, coordination and local control layers. The synchronisation layer is at 

the highest level and generates the virtual cycle length for the entire network or a group of 

intersections. On the premise of ensuring progression capabilities between adjacent 

intersections, the virtual cycle length is determined to ensure that the critical intersection has 

sufficient capacity. The coordination layer determines the offset of each intersection by taking 

into account the primary signals of adjacent intersections. With the virtual cycle length and 

offsets, the local control layer can generate the optimal phase switching plan for each 

intersection in a manner similar to OPAC-3.  

Programmation Dynamique 

The Programmation Dynamique (PRODYN) is a real time signal control system developed in 

France (Henry, Farges & Tuffal, 1983; Farges, Khoudour & Lesort, 1990). It solves the real 

time signal optimisation problem at an intersection level with a modified forward dynamic 

programming method. There are two versions: the hierarchical PRODYN (PRODYN-H) and 

the decentralised PRODYN (PRODYN-D). While both versions adopt forward dynamic 

programming, they differ in how the intersections in the network are coordinated.  

PRODYN-H is a two-level hierarchical system. The control optimisation of each intersection 

is realised by the lower level, while the coordination of the entire network is achieved by the 

upper level. It uses iteration processes to solve the signal optimisation problem, and although 

this approach can find the optimal signal plan, it is computational demanding, meaning that 

the network size has to be limited to ten intersections. 

PRODYN-D is a distributed system. It is more time-efficient than PRODYN-H since it does 



38 
 

not have a centralised layer, but allows the adjacent intersections to exchange information. 

The level of communication can be controlled by the information shared at the network level. 

For the lowest level of communication, the simulation output of the upstream intersection is 

transmitted to the downstream intersection controller in order to estimate arrivals. Barriere, 

Farges & Henry (1986) detail all the levels.  

Real time Hierarchical Optimised Distributed and Effective System 

The Real time Hierarchical Optimised Distributed and Effective System (RHODES) 

(Mirchandani & Head, 2001) is a hierarchical real time adaptive signal control system. The 

signal optimisation problem is decomposed into several subproblems and solved at each level, 

as shown in Figure 2.4. This hierarchical structure allows RHODES to respond to different 

sources of stochasticity in the network, such as trip generation, route selection, probabilistic 

events (e.g. closure, accidents), and the behaviours of pedestrians and drivers. Since these 

sources of stochasticity can have an impact on the traffic network lasting from a few seconds 

to a few weeks, RHODES has an established hierarchical structure where each level deals 

with the uncertainties at a different time scale. 
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Figure 2.4 System structure of RHODES 

The planning level is the highest level and solves the network loading problem. It simulates 

the traffic flow assignment under stochastic equilibrium, i.e. how drivers choose their routes 

based on the knowledge of travel time, delays and network characteristics. The predicted link 

load, i.e. the output of the planning level, is passed on to the lower levels. The planning level 

is the level with the longest time scale, lasting from hours to weeks. It can show the long-term 

influence on network loading due to changes in network design or traffic flow variation.  

The second level solves the network flow control problem. It uses the APRES-NET model 

(Dell’Olmo & Mirchandani, 1996) to estimate the platoon flow and speed, and the 

REALBAND model (Dell’Olmo & Mirchandani, 1995) to deal with the conflicting signal 

requirements of different platoons approaching the same intersection. The second level can 

control the platoon movements by deciding which platoon is given the right to move, thus 

minimising the delay and stops. It manages the traffic flow of the whole network, and the 

decisions of approximated green time allocations made at the second level are the constraints 

input to the lowest level. 

The lowest level addresses the intersection control problem. Each intersection makes its own 

decision independently based on the observed and predicted arrivals of individual vehicles 

generated by the PREDICT model (Head, 1995). Intersections do not communicate with each 

other, and it is the constraints from the second level that realise network-wide coordination. 

The phase duration is obtained by the Dynamic Programming-based COP (Controlled 

Optimisation of Phases). For each time interval, a decision on whether to switch to the next 

phase is made, and it is these decisions that eventually determine the final phase duration that 

is to be implemented. All these decisions are input into Traffic Signal Actuation, which is the 

signal controller of each intersection. 

2.1.2  Theoretical research on real time signal control 

In addition to the real time signal control systems that have been developed and implemented, 

researchers continue to develop new methods for real time signal control for a variety of 
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purposes. These real time signal controls can be classified into two categories: model-based 

and model-free approaches. Model-based approaches utilise a traffic model to evaluate and 

compare the performance of feasible solutions to support decision making under those 

specific conditions, while model-free approaches describe or learn the rules of the system 

directly without recalling a traffic model during the optimisation. In this thesis, optimisation 

is defined as the approach to find a quite good (i.e. near-optimal solution) or optimum 

solution to the proposed problem (Schneider & Kirkpatric, 2006). 

Model-based approaches 

In model-based approaches, the traffic model can be formulated as a mathematical 

formulation and solved by an exact optimisation approach. The centralised real time signal 

control problems under a macroscopic simulation environment (i.e. Cell Transmission Model 

(CTM)) can be formulated as a Mixed Integer Linear Program (MILP) with binary variables 

and easily solved by commercial solver CPLEX easily (Lin & Wang, 2004). Han et al. (2016a) 

proposed a MILP as the formulation of a link-based simulation model for a centralised real 

time signal optimisation problem with traffic-driven emission as extra constraints. Under the 

consideration of the error due to the reformulation of emission to a linear constraint, MILP 

was solved by robust optimisation. The proposed system was tested on a hypothetical network 

with only ten links. Christofa, Papamichail & Skabardonis (2013) formulated the signal 

control problem as a Mixed Integer Nonlinear Program (MINLP), which could be solved by 

branch-and-bound. Their research was limited to an isolated intersection under undersaturated 

conditions, however, with the traffic dynamics of the intersection simulated based on queuing 

theory. 

The traffic model in model-based approaches can also be a simulation model. To ensure 

computational efficiency, such a model is always solved by a heuristic optimisation method 

which can only lead to a near-optimum rather than a true optimum solution. This heuristic 

optimisation approach is suitable for solving large and complex problems, and one such 

method that has been extensively used for real time signal control is Genetic Algorithm (GA). 

GA can realise centralised real time signal control by using a link-based simulation model to 
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evaluate the performance of the whole network under each feasible solution. Girianna & 

Benekohal (2004) used a simple GA to solve the centralised real time signal control 

optimisation problem of an arterial network with 20 signalised intersections according to the 

net effect of released vehicles and the disutility function. The constraints of signal variables 

were transformed into penalty functions. In order to reduce the convergence time, only a 

small number of populations were generated with the optimisation process being rerun if 

convergence could not be achieved. GA can also solve the acyclic signal control problem. Lee 

et al. (2005) developed a GA-based acyclic adaptive signal control system. Efficiency was 

ensured by calculating the vehicle delay with a simplified link-based simulation model that 

assumed that all vehicles move with a cruise speed and that followed the First-In-First-Out 

principle.  

Sun, Benekohal & Waller (2006) constructed a bi-level problem considering dynamic traffic 

assignment. The upper level represented the decision-making process, and was solved by GA, 

while the lower level captured the user travel behaviour based on the reactive dynamic 

stochastic user optimal principle. Route choice was modelled by the use of Incremental Logit 

Assignment. This bi-level problem is time-consuming since the lower level problem needs to 

be solved a large number of times during the optimisation of the upper-level problem. This 

proposed real time signal control was operated in a centralised manner to minimise the overall 

travel time of the network. 

In summary, the heuristic optimisation approach can deal with the real time optimisation 

problem of a large-scale traffic network in a centralised manner, and more efficiently than the 

exact optimisation approach. Nonetheless, the fact that it needs to calculate the fitness value 

(i.e. the objective function) a considerable number of times with the embedded traffic model 

means that it can only be used with macroscopic traffic models such as CTM, or link-based 

models. 

Model-free approaches 

Model-free approaches are totally independent from the interpretation of traffic dynamics in 

advance. They either describe the rules of controls directly (rule-based approaches) or learn 
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the mapping between traffic state and controls (learning-based approaches). 

 

Rule-based approaches typically do not have an explicit objective to optimise. Dion & 

Hellinga (2002) pointed out that the traffic network actually operates under certain rules, and 

signal changes usually occur after some specific events; an observation that inspired the 

development of rule-based optimisation. Rule-based optimisation techniques are simple and 

straightforward to understand, such that they can solve the problem of high computational 

demand, especially when there are many variables. Nonetheless, it is difficult to express the 

activation conditions for a signal change in a clear and exact numerical way, and thus 

activation rules and conditions are expressed more vaguely using fuzzy logic.  

By using prespecified rules, fuzzy logic converts traffic states to the degree of membership, 

which contributes to the decision making at the intersection level in terms of phase selection 

(Wei et al., 2001), cycle time, phase split and offset (Chiu & Chand, 1993) and phase 

sequence and phase time (Murat & Gedizlioglu, 2005). Fuzzy logic can be integrated with a 

multi-agent control scheme where a specific set of rules is assigned to each agent (i.e. to 

traffic flows following the same signal) and then the final decision is made by allowing all the 

agents to negotiate with each other (Kosonen, 2003). Although the test is carried out at the 

level of an individual intersection, coordination of the signals can be achieved by increasing 

the neighbourhood area. 

Bingham (2001) pointed out that the conventional fuzzy logic system was not adjustable, and 

its parameters could not change according to the time-varying traffic condition. Accordingly, 

a neurofuzzy approach was developed that combined neural networks and fuzzy logic. In this 

approach, the four parameters of the trapezoidal membership function were updated by the 

neural network in order to adapt to different traffic volumes.   

These rule-based optimisation methods do not need a traffic model but instead rely on expert 

knowledge to identify the appropriate rules. Moreover, those rules can only show how the 

traffic should operate, but cannot achieve a maximisation/minimisation of a given objective. 

These weaknesses have led scholars to focus increasingly on learning-based approaches that 
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directly study the relationship between the traffic state and the corresponding optimal solution. 

This learning procedure can be conducted off-line, and once the relationship is established, 

on-line optimisation becomes time-efficient. 

The most widely-used methodology is reinforcement learning (RL), which aims to select the 

optimal action under the current state according to the policy (i.e. mapping of state to action) 

that can maximise the long-term reward (i.e. value function). RL can be classified into three 

categories: critic-only, actor-only and actor-critic. The critic-only, or value-based, approach, 

updates the value functions according to feedback from the external environment. This 

approach has no explicit function of policy and hence an optimisation procedure needs to be 

involved. The actor-only approach is policy-based, with the policy continually being updated 

according to the policy gradient. The actor-critic approach combines the previous two 

approaches such that both the value function and policy are learnt and updated. Most real time 

signal control systems use the critic-only and actor-critic approaches, while the actor-only 

method is seldom used due to its low convergence speed. 

Wiering (2000) and Wiering et al. (2004) proposed a multi-agent critic-only reinforcement 

learning approach to realise real time signal control that can minimise waiting time. Two 

types of agents were considered: vehicles in the system and traffic signals in the network. 

State variables were provided by the vehicles, including their location, final destination and 

the traffic signal they were moving to or waiting at. Since it was impossible to control all the 

traffic lights in a centralised way due to the large state space and control space, the signal 

control system was a distributed one with binary signal control variables (green or red). The 

objective was to minimise the total waiting time of all the vehicles around the junction. The 

look-up table of transition probability was updated continuously according to the actual 

counts from the traffic network. 

 

Khamis & Gomaa (2014) extended Wiering’s work by simulating the vehicle location in 

continuous-time and continuous-space, and by taking acceleration and deceleration into 

account. Their study adopted a Bayesian probability interpretation for the estimation of 
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transition probability. This research was also designed for distributed control. As noted by the 

authors, however, since the method depended on junction controller being able to access 

vehicle location and destination, it would be necessary to have sensors in vehicles that could 

achieve vehicle-to-infrastructure communication, which is impossible at this stage.  

The research above adopts a discrete state space, yet, for the traffic problem, traffic states and 

control decisions are usually continuous, which makes the representation of the value function 

challenging. Hence, a new RL approach has been developed that uses approximation 

functions to represent the state-and-action value function. In this approach, the approximation 

function can be parametric, such as in a linear function (Cai, Wong & Heydecker, 2009; Yin, 

Dridi & EI Moundni, 2015) and tile coding (Abdoos, Mozayani & Bazzan, 2014), or 

nonparametric, such as with Neural Network (Li, Lv & Wang, 2016; Shabestary & Abdulhai, 

2018). 

Since the critic-only approach needs an optimisation procedure, such as the enumeration 

method, computation becomes demanding if the action space is large or continuous. The 

actor-critic method has been proposed as a way of solving this problem. The actor-critic 

approach has two parts: actor and critic. The former is responsible for selecting the action 

based on the current state according to a specific policy. The policy learns from the 

action-value provided by the critic part and is updated to ensure the action selected can bring 

a higher reward. The critic part calculates the action-value, which is used to evaluate the 

performance of the action. This evaluation feedback guides the next update of the actor part, 

such that it can be revised using the gradient that leads to lower variance. 

Chu et al. (2020) used the actor-critic approach A2C to realise real time signal control. The 

traffic signals were operated in a distributed manner due to the large state space and action 

space of the centralised control. The communication between the agents was achieved by two 

approaches. The first approach was to design the local policy accounting for the 

neighbourhood’s policy. The second approach was to calculate the local Q-function by adding 

the weighted sum of the neighbourhoods’ Q-functions. Both the actor and critic parts were 

trained using the deep neural network with long-short term memory (Hochreiter & 
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Schmiduhber, 1997).  

Aslani, Mesgari & Wiering (2017) reviewed the discrete state actor-critic and continuous state 

actor-critic methods. The authors highlighted that the discretisation of the continuous state 

variables and action variable reduced the ability to approximate an accurate value function. 

They therefore proposed that the value function can be approximated by tile coding and radial 

basis functions (RBF) leading to a distributed signal control system which they tested in 

Tehran’s downtown area under different types of disruption. 

The action space increases exponentially with the number of intersections controlled, 

therefore each RL algorithm only manages a single intersection (Wiering, 2000) or a small 

size network (Prashanth & Bhatnagar, 2011). The application of RL-based real time signal 

control can be achieved by using a hierarchical structure (Abdoos, Mozayani & Bazzan, 2013) 

or a distributed structure with information sharing (Salkham et al., 2008). The summary of 

coordination methods of RL-based real time signal control refers to El-Tantawy & Abdulhai 

(2010). 

Besides learning the mapping between the traffic state and signal control via the feedback 

from the traffic network, some research learns the state-control relationship off-line. Liu et al. 

(2015) developed a two-stage real time signal control system using a linear decision rule 

(LDR) which determined the signal plans of the entire traffic network in a centralised manner. 

In LDR, the optimal solution was expressed as a linear function of traffic state. In order to 

account for the influence of uncertainty in traffic flow, the parameters of LDR were 

determined by distributionally robust optimisation (DRO). For a small network, LDR can be 

easily solved by MILP, while for a large network, the parameters can be determined by PSO 

with a link-based macroscopic simulation model for fitness estimation for a large network.  

Song et al. (2019) extended the work of Liu et al. (2015) by formulating the relationship 

between the traffic state and signal control with a nonlinear function, known as the nonlinear 

decision rule (NDR). In their paper, the feedforward neural network and recurrent neural 

network were selected. Off-line training was achieved by PSO, with the fitness function being 
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based on a weighted objective accounting for delay reduction, CO2 and black carbon 

emissions reduction, as estimated by a microscopic simulation model (i.e. S-Paramics). They 

showed that their system was able simultaneously to determine the signal plans of all the 

intersections in the network in a centralised manner. 

2.2 Surrogate modelling 

This section reviews existing real time signal controls, identifying surrogate modelling as a 

possible solution to the real time signal control and optimisation problem. Surrogate models 

can approximate a complicated input-output relationship solely based on observations from 

models or physical processes. An increasing amount of research is being dedicated to the 

surrogate modelling technique and its applications in a variety of domains. This section 

reviews the state-of-the-art of surrogate models to explore their underlying operational 

mechanism. This review of the applications of surrogate models is helpful to identify their 

potential in real time signal control optimisation.  

2.2.1 Surrogate modelling techniques and classifications 

Surrogate models can be broadly classified into physical and functional models (Conn, 

Scheinberg & Vincete, 2009; Osorio & Bierlaire, 2013). Since surrogate models are applied in 

a wide variety of different fields, however, the definitions of ‘physical’ and ‘functional’ 

models are equivocal. Søndergarrd (2003) reviewed existing terminologies for surrogate 

modelling to give clear definitions, and these are adopted in this thesis.   

Physical models are defined as ‘models based on knowledge about the particular physical 

system in question’ (Søndergarrd, 2003). Physical surrogate models are based on the 

knowledge of the underlying problem. They simplify the physical process or the model in a 

physical or numerical way. As a prerequisite, physical surrogate models need a structurally 

tractable model, referred to as the ‘cheap’ model due to its time efficiency. Although the cheap 

model is in theory a physical surrogate model, it cannot guarantee an accurate interpretation 

of the underlying physics of the system due to its low fidelity. A number of approaches have 
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therefore been developed to form a more accurate approximation based on the cheap model 

by means such as Response Correction, Multipoint Method and Space Mapping (Søndergarrd, 

2003). As stated in the definition, each physical surrogate model is constructed for a particular 

system. This means that when a proposed physical surrogate model is applied to a new system 

it needs to be reconstructed, even to the extent that the cheap model needs to be replaced in 

some cases. Moreover, Zheng et al. (2019) pointed out that the complexity of the traffic 

system makes it difficult to obtain an analytical and differentiable cheap traffic model for 

physical surrogate modelling. 

Compared with physical surrogate models, functional surrogate models are defined as 

‘models constructed without any particular knowledge of the physical system or governing 

equations’ (Søndergarrd, 2003). Functional surrogate models are constructed based on the 

empirical data from the physical system or governing equations so as to form a response 

surface that can approximate the input-output relationship. Functional surrogate models have 

a mathematical structure, where the parameters represent the features of the underlying 

system. This means that functional surrogate models are transferable to different problems 

and systems (Conn, Scheinberg & Vincete, 2009). Since the functional model only embodies 

the underlying physics of the system at the sample points, however, it is necessary to 

distribute multiple sample points in the entire design space to form an accurate response 

surface, with the number of sample points depending on the dimension and complexity of the 

problem. Figure 2.5 shows a classification of some popular surrogate modelling techniques. 
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Figure 2.5 Classification of surrogate models 

There are a variety of functional surrogate models, which are constructed based on algebraic 

expressions called basis functions. The two most common basis functions are regression 

functions and radial functions. The regression model establishes a basis function for the whole 

design space, which is fitted to the sample data. The radial function approach, meanwhile, 

constructs a basis function around each sample point and combines them together based on 

the assumption that adjacent points have high similarity. 

This thesis addresses the functional surrogate class of models since the aim is to propose a 

model-free real time signal control, which conflicts with the physical model-based nature of 

the physical surrogate model. The following sections therefore introduce the most 

widely-used functional surrogate models: response surface model, radial basis function and 

Kriging.  

General Notations 

For surrogate modelling, given a set of training points,                     
 
, and the 

corresponding observations,                     
 

, the estimated output of any 

k-dimensional testing point,                 from a surrogate model can be represented 
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as      . 

To show the formulation of surrogate modelling, a notation list is given: 

General   

                    
 

  An initial set of training points 

                    
 

  Corresponding observations of the initial set of 

training points 

                 A k-dimensional testing point 

       Estimated output at   

        Mean Squared Error (MSE) at   

       Standard error at   

Response Surface Model   

    Interception coefficient   

    Linear term coefficient of the i-th dimension 

     Quadratic term coefficient of the i-th dimension 

     Interaction term coefficient between the i-the 

and j-th dimensions 

Radial Basis Function   

      Radial basis function 
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                 The vector of weighting parameter 

   Gram matrix, where     =             

   Matrix of radial basis function between testing 

point and training points, where   =          

Kriging   

      Output at   

    

                        

 A set of regression functions 

                 Weighting parameter 

      Gaussian random function at   

    Variance 

              Correlation function between      and      

                 

                 

 Parameters in the exponential correlation 

function 

   Mean of the objective function 

   Correlation matrix, where     =             

   Correlation matrix, where   =          

Infill Strategy   
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         Infill point 

        Estimation error at   

       Statistical lower bound at   

   Weighting parameter in the statistical lower 

bound 

      One of the random values at x, when       is 

considered as a realisation of a random variable 

       Probability of Improvement at   

      Current minimum observation among all the 

training points 

      Cumulative distribution function. 

       Expected Improvement at   

      Probability density function 

        Weighted Expected Improvement at   

   Weighting factor in Weighted Expected 

Improvement 

 

Response Surface Model 

The Response Surface Model (RSM) was first proposed by Box & Wilson (1951). For many 

years, it was the most widely used surrogate model, being replaced only recently by other 

methods such as the radial basis function (Simpson et al., 2008). With the lower order 
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polynomial model as an example, the following equations indicate how to use the first-order 

polynomial model and the quadratic polynomial model to make the approximation. In 

Equations (2.1) and (2.2),    is the interception coefficient,    is the linear term coefficient, 

    is the quadratic term coefficient and     is the interaction term coefficient.    is the i-th 

dimension of input variable x, and the value of each coefficient also indicates the contribution 

of each term to the overall observation. 

              

 

   

 (2.1) 

              

 

   

       
           

 

   
   

 

   

 

   

 (2.2) 

All the parameters    can be estimated by the least squares method. The parameters that can 

minimise the sum of the squared errors between estimated performance and actual 

observations of the sample data are chosen. Hence, the parameters    can be derived from 

Equation (2.3). 

   
 

                
 

 

   

 (2.3) 

Both the first-order polynomial model and the quadratic polynomial model are relatively 

simple in structure and thus cannot fully reflect the complicated input-output relationship, 

making them unsuitable for highly nonlinear problems. Although the flexibility of polynomial 

models can be enhanced by adding additional high order terms, extending low-order 

polynomials to high-order polynomials is not always practical due to the limitation of the 

computation budget. Moreover, while it is true that a more sophisticated polynomial model 

can fit the sample data more accurately, this may lead to a deterioration in the estimation 
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ability in respect to an unknown input due to the overfitting of noise. This means that, 

although very challenging, it is crucial to choose an appropriate RSM. The selection of an 

RSM depends on the expected behaviour of the underlying problem, which is usually 

unknown. RSM is always combined with the optimisation method called Response Surface 

Method (Conn et al., 2000). 

Radial Basis Function 

The radial basis function (RBF) model is composed of a set of radial basis functions that are 

only related to the distance between points. The optimisation problem related to RBF is 

always solved by a derivative-free optimisation technique, since RBF does not have a 

closed-form solution (Wild & Shoemaker, 2011; Le Thi, Vaz & Vincinte, 2012). Compared 

with the lower order polynomial method, the RBF is more suitable for dealing with 

high-dimensional and complex problems. 

The estimation in the RBF can be expressed as the weighted sum of radial basis functions, the 

values of which depend only on the radial distance of x, the point to estimate, and the centre 

of each basis function. In RBF, the centre of the basis function coincides with the training 

point,     , which is the i-th sample point as well as the centre of the i-th basis function. The 

estimation of any untried point can be rewritten using Equation (2.4), where   is the test 

point, and    is the weighting parameter of the i-th radial basis function     . 

         

 

   

            (2.4) 

There are many forms of basis function, including simple fixed bases and more complex 

parametric basis functions that have additional parameters. The most common basis function 

is the Gaussian function given in Equation (2.5), where   is the width parameter of the 

Gaussian function that needs to be pre-defined: 
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  (2.5) 

The radial basis function is an interpolation model that can reproduce the observations of 

training points. The weighting parameter can therefore be estimated by inputting the training 

points into the function, such that                The derivation process is shown in 

Equations (2.6) and (2.7), where                 is the set of weighting parameters, 

  is the Gram matrix, which calculates the basis function values between each pair of 

training points using Equation (2.8). 

     (2.6) 

       (2.7) 

  

 
 
 
 
 
                                                  

                                                  

                                                                  
                                                   

 
 
 
 

 (2.8) 

Once the parameters are determined, the approximation of any untried point can be 

reformulated as Equation (2.9), while   in Equation (2.10) calculates the basis function 

values between the test point and each training point. The closer the distance is, the greater 

the Gaussian basis function value. 

                (2.9) 
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 (2.10) 

With RBF, the mean squared error (MSE) of the test point can be calculated by Equation 

(2.11): 

                (2.11) 

Kriging 

Kriging is a popular surrogate model proposed by Krige (1951). It approximates the unknown 

function by minimising the MSE, and is able to be adapted to highly nonlinear and 

high-dimensional functions. The following section will introduce the Kriging model 

construction based on the method proposed by Sacks et al. (1989).   

The output response is a realisation of a random function (or a stochastic process) and can be 

represented by the combination of the global trend function        and Gaussian random 

function     , as shown in Equation (2.12). 

                 (2.12) 

where                             is a set of known regression basis functions, and 

                is a set of corresponding weighting parameters. In practice, a constant 

trend function is sufficient for most problems hence, in what follows, a constant value,  , is 

used instead of       .      is the realisation of a stochastic process, the mean of which is 

equal to zero, while the variance equals    and covariance is non-zero. Equation (2.13) 

shows the covariance: 
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                                    (2.13) 

In Equation (2.14),               is the correlation function between two sample points,      

and     , which only depends on the Euclidean distance between them. Although there are 

many correlation functions, this thesis adopts the exponential correlation function.  

                        
   

   
   

 
  

 

   

             (2.14) 

In the correlation function given in Equation (2.14), 

               and                 are the parameters to be determined. This is 

similar to the Gaussian basis function of RBF (i.e. Equation (2.5)), except that Equation (2.14) 

replaces the constant weighting parameter with a set of parameters, such that each dimension 

has its own parameter. It can be seen from the equation that the correlation is highly sensitive 

to the distance between two points. When the distance between two points    
   

   
   

  tends 

to zero, the correlation tends to one, which is the maximum, and when the distance tends to 

infinity, then the correlation tends to zero. 

The two parameters are tuned to minimise MSE. Derived from Sacks et al. (1989), the 

maximum likelihood estimates (MLE) for   and     can be written as Equation (2.15) and 

(2.16), which are functions of   and  .    is a     correlation matrix, as shown in 

Equation (2.17), and 1 is a     matrix, where all values are 1.  

  
      

      
 (2.15) 

    
                

 
 (2.16) 
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 (2.17) 

The parameter   and   can be obtained by maximising the concentrated ln-likelihood 

function, which is expressed as:  

         
 

 
        

 

 
       (2.18) 

Once the values of   and p are derived, the Kriging model can be constructed, and the value 

at any sample site can be estimated. The approximation of the output is of the form:  

                       (2.19) 

where r is the     correlation matrix between the test point and all the sample points: 

  

 
 
 
 
 
         

         

 
          

 
 
 
 

 (2.20) 

The Kriging model can also estimate the approximation error (i.e. MSE) with Equation (2.21).  

                   
        

      
  (2.21) 

The construction of the Kriging model and prediction can be realised with Design and 

Analysis of Computer Experiments (DACE) (Lophaven, Nielsen, & Søndergaard, 2002), 
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which is a Kriging model toolbox of MATLAB. 

2.2.2 State-of-the-art in infill strategies 

In addition to the initial training points, the accuracy of a surrogate model can be increased by 

adding more points to the training points set. An infill strategy is used to decide which point 

to select, where the points selected are called infill points. 

Forrester & Keane (2009) mentioned that these infill strategies could be divided into three 

categories, as shown in Figure 2.6. The first one is the pure exploitation approach, which only 

selects the points that are close to the current optimal point. The second one is the pure 

exploration approach, which selects the points that can improve global accuracy most. These 

two approaches are driven by different aims. Pure exploitation focuses on the search for the 

optimal point, and theoretically, when it eventually converges, it can find the optimal point. 

This may not be the ‘true’ optimal point, however, as the ‘true’ optimum may lie in an area 

with few sample points (Jakobsson et al., 2010). Although pure exploration can enhance 

global accuracy by inserting more points in areas with greater uncertainty, if the same 

emphasis is placed on every corner of the design space, pure exploration takes a long time to 

meet the stopping criteria due to the waste of effort on regions far away from the optimal 

point. The third approach, therefore, combines the exploration approach and exploitation 

approach together in an effort to improve the global accuracy while ensuring that more 

attention is paid to the potential optimal region. The following part will discuss some infill 

strategies in detail. Here, for generality, the case of minimisation is considered. 
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Figure 2.6 An overview of infill strategies 

Exploration approach 

The surrogate model aims to obtain a continuous function based on a limited number of 

training points. Since no background knowledge is required, the performance of the model 

depends entirely on the number and location of training points. The region with fewer training 

points may have lower approximation accuracy. The exploration approach selects infill points 

from the entire design space to ensure every corner of the design space can be approximated 

accurately. It can be seen as an attempt to fill the gaps between the initial training points. The 

easiest way is to find the points with the largest estimation error, as shown in Equation (2.22), 

where       is the estimation error. For a Gaussian-based surrogate model,       can be 

easily calculated with the equation provided. Forrester & Keane (2009) pointed out that pure 

exploration search can contribute to the construction of a globally accurate model that will be 

further used for real time optimisation.  

                                    (2.22) 

Exploitation approach 

A predictor minimisation strategy is a local infill strategy that selects the optimal point to 

refine the surrogate model, as shown in Equation (2.23). The output       is predicted by the 

Infill 
Strategy

Exploitation

Combination of 
Exploitation and 

Exploration

Predictor 
Minimization

Exploration

Statistical 
Lower Bound

Probability of 
Improvement

Expected 
Improvement



60 
 

surrogate model.   

                                    (2.23) 

The addition of new infill points can improve the approximation accuracy of the promising 

region. Compared with the exploration approach, the exploitation approach can converge to 

the optimum more quickly but it can only find the ‘true’ optimum when the surrogate model 

is accurate enough. If the surrogate model is not accurate enough, the estimation error may 

render the optimal solution predicted by the surrogate model suboptimal in the actual model. 

This method is suitable for surrogate-based optimisation when the surrogate model has 

already been calibrated. 

Combination of exploration approach and exploitation approach 

 

The preceding paragraphs have introduced the exploitation and exploration approaches. The 

exploitation approach is sensitive to the approximation accuracy of the surrogate model, and 

may fail to find the global optimum if the initial samples are improperly distributed, or the 

global optimum is located in an uncovered area. The exploration approach needs a long time 

to converge and hence wastes computational resources if the ultimate aim is to find the global 

optimum rather than construct a globally accurate surrogate model over the entire design 

space. It is therefore a good idea to combine these two approaches. The following part 

introduces three main methods accounting for both exploration and exploitation. 

Statistical lower bound 

Minimising the statistical lower bound is the simplest way to balance the exploitation 

(optimisation of the predictor) and exploration (seeking areas of maximum uncertainty). The 

aim is to find the point x with a minimum statistical lower bound        which is the 

weighted sum of the predicted value       and standard error      . The minimisation of the 

lower bound is shown in Equation (2.24), while the lower bound is expressed by Equation 

(2.25). 
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                                    (2.24) 

                     (2.25) 

where   is the weighting parameter controlling the balance between exploration and 

exploitation. When    =0,       only depends on      , which is a pure exploitation 

approach, and when     ,       is dominated by exploration and the problem becomes 

one of finding the x that yields the maximum      . It is hard to determine the value of  , 

however, and an improper estimation of   may lead to over-exploitation or over-exploration. 

Probability of Improvement 

Another method to select the infill points, considering both exploitation and exploration, is by 

calculating the probability of improvement (PI). Considering       as a realisation of a 

random variable, where      is one of the random values of that variable that follows the 

normal distribution                     . The probability of improvement   is: 

        
          

     
  (2.26) 

where      is the current optimum among all the training points, and      is the 

cumulative distribution function. The probability improvement is equivalent to the probability 

that      is smaller than the current minimum     , such that: 

                             (2.27) 

The final solution selected is the one that has the maximum value of PI, as shown in Equation 

(2.28). PI is an infill strategy that combines exploration and exploitation since it tends to 

select the point with small       and large      . 
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                                     (2.28) 

Expected Improvement 

PI can only show the probability of improvement, but not how much it can improve. A new 

method, called expected improvement (EI), has been proposed to select new points which can 

lead to the maximum improvement to the model (Jones, Schonlau & Welch, 1998; Sansena, 

Papalambros & Goovaerts, 2000). The EI of point   can be expressed by Equation (2.29).  

       
              

          

     
         

          

     
                           

                                                                                                                                   

  (2.29) 

where       and      are the cumulative distribution function and probability density 

function, respectively.      is the minimum observation among all the training samples, and 

      is the standard error. The first term of the equation represents the improvement over the 

current minimum, which is the difference between the current minimum value and the 

predicted value of   multiplied by PI. The second term is the product of standard error and 

the probability that       is equal to     . When the estimation error is zero (i.e.   is the 

training point), EI is zero, thus avoiding the repeated selection of the same point. The 

expected improvement will be large where       has a high possibility of being smaller than 

     and/or there is high uncertainty in the value of prediction (Sasena, Papalambros & 

Goovaerts, 2003). 

The basic idea is to search for the point with maximum expected improvement, which is 

usually likely to be in under-sampled regions near to the global optimum. 

                                      (2.30) 

Sobester, Leary & Keane (2005) modified the original expected improvement method by 
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introducing a weighting factor to control the balance between exploitation (optimisation of 

the predictor) and exploration (seeking areas of maximum uncertainty) more precisely. The 

new method is called weighted expected improvement, and is expressed in Equation (2.31): 

      

  
               

          

     
              

          

     
           

                                                                                                                                     

  (2.31) 

where   is the weighting factor and        . When  =1, WEI will search the region 

around the current optimum for the point with the greatest expected improvement, and when 

 =0, WEI will search the whole design space with the primary goal of uncertainty reduction. 

2.3 Application of surrogate modelling 

Currently, the importance of traffic network management has been the focus of increasing 

attention among transportation agencies, who hope to understand how to make planning or 

control decisions supported by quantitative evidence. Traffic models are therefore used to 

quantify and compare the performance of the network under various decisions. Typically, 

interactions within the traffic network are complex and difficult to interpret analytically. Thus, 

a simulation model is usually adopted to represent the network dynamics. Simulation models 

are usually time-consuming, with expensive-to-evaluate objective functions. In order to 

address this problem, an optimisation problem can be integrated with the surrogate model, so 

as to approximate the relationship between the input variables and the performance of the 

network in a time-efficient way. Currently, however, surrogate-based optimisation is limited 

to strategic design for a specific network. 

In a traffic management context, surrogate models have most often been used to solve the 

problem of toll charge plans. Chen et al. (2014a) proposed a surrogate-based optimisation 

system for the design of a highway toll charges plan. The problem was described as a bi-level 
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problem that takes dynamic traffic assignment (DTA) under fixed demand into account and 

their paper compared the performance of several surrogate models. The results showed that a 

model with a simple structure (i.e. quadratic polynomial) was only suitable for simple 

problems. Moreover, the performance of the interpolation Kriging model and the regression 

Kriging model that accounted for noise were compared. This revealed that when the original 

model contained noise, the regression Kriging model outperformed the interpolation Kriging 

model. GA was adopted to identify the suitable toll plan leading to the minimum average 

travel time.  

Chen, Zhu & Zhang (2015) extended the work of Chen et al. (2014a) to solve the 

multi-objective optimisation problem. They aimed to minimise the average travel time and 

maximise the total toll revenue by taking the ratio of the average travel time and toll revenue 

as the objective. The input-output relationship was approximated by Kriging, and the 

optimisation was solved by GA. It was proved that a toll plan generated by the 

surrogate-based optimisation can reduce the average travel and increase the revenue. 

Chen et al. (2016) formulated the trade-off between multiple objectives using desirability 

functions. The Kriging model was used to replace the stochastic mesoscopic simulator under 

DTA. The parameter tuning of the surrogate model, and thus toll charge optimisation, were 

solved by a deterministic global search algorithm called Dividing Rectangles (DIRECT) 

(Jones et al., 1993). The test results on a large-scale network showed that surrogate-based 

optimisation can reduce the computation time dramatically compared to simulation-based 

optimisation. Furthermore, the optimal toll plan obtained from the surrogate-based 

optimisation performed better than the benchmark. 

He et al. (2016) formulated the multi-objective toll charge problem with no weight or 

expectation given to any objective as a Pareto Set problem, and the problem with an 

expectation given to the objective as a constrained optimisation problem. Regressing Kriging 

was shown to be able to handle the noise in the stochastic simulation model, and modified 

expected improvement infill methods were developed for the Pareto and constrained 

optimisation problems. 
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Zhang et al. (2014) proposed a Bayesian Stochastic Kriging model that can deal with 

parameter uncertainty and heteroscedasticity simulation noise (i.e. different variance at 

different locations). The developed model was used to solve the optimisation problem of the 

joint application of the toll plan and variable message signs. The results of the experiment 

showed that when the actual dynamics were heteroscedastic, the Bayesian Stochastic Kriging 

model had a better performance than regressing Kriging, Kriging and quadratic polynomial 

function models. 

Surrogate models can also be used in traffic signal optimisation problems, which have more 

variables. Osorio & Bierlaire (2009) and Osorio (2010) compared the microscopic and 

macroscopic simulation models in terms of realism and efficiency. The importance of the 

interaction between the upstream flow and downstream flow was underlined. In order to 

substitute the expensive-to-evaluate simulation model, they developed a physical surrogate 

model based on finite capacity queueing theory. This was the first analytical model to take 

spillback into account. In addition, their proposed physical surrogate model could identify the 

occurrence of congestion and its impact on performance. The fixed-time signal optimisation 

problem based on this physical surrogate model was solved by the trust region approach. The 

empirical experiment verified the efficiency of the surrogate-based optimisation and the 

performance of the proposed fixed-time signal control.  

Osorio & Bierlaire (2013) extended their previous work by combining a quadratic polynomial 

function, a general purpose functional surrogate model, with the analytical queueing model, a 

problem-specific physical surrogate model, to handle the local approximation and global 

information jointly. Chong & Osorio (2017) extended the static analytical model in Osorio & 

Bierlaire (2013) to a transient analytical model to consider the temporal variation of 

congestion. The whole control period was divided into several time horizons, and the signal 

plan of each time horizon could be solved simultaneously.  

Osorio & Selvam (2015, 2017) used a global model covering the whole area, and a local 

model covering only the city centre, to approximate traffic dynamics. Even though both 

models had the same resolution, the local model was less accurate, since a fixed boundary 
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condition was assumed, but more efficient, since a smaller area was simulated. The two 

models were not combined into one output estimation model but instead a surrogate model 

was used to estimate the error between the two models to provide guidance as to which model 

to invoke during the optimisation.  

In addition to toll charge optimisation and fixed-time signal control, surrogate models can be 

used to solve some other optimisation problems. Li, Lin & Chen (2017) pointed out that 

surrogate models could be applied to all kinds of network design problems, regardless of 

whether the design variables are continuous, discrete or mixed. Chen et al. (2015) solved the 

average delay minimisation problem by expanding existing links and adding new ones. This 

network design problem was formulated as a bi-level Mixed Integer Network Design Problem, 

which is integrated with DTA, and solved by surrogate-based optimisation. In addition, it was 

recommended that multiple surrogate models can be combined to provide a robust 

approximation. Other optimisation problems can also be addressed through surrogate-based 

optimisation, including the selection and design of projects that can improve safety and travel 

time (Rodriguez-Roman, 2018), maximisation of social welfare (Chen et al., 2014b) and 

identification of key determinants for sustainable transportation planning (Sayyadi & Awasthi, 

2016). 

According to the literature reviewed above, it can be seen that surrogate models are flexible 

enough to solve a large variety of transportation optimisation problem. With surrogate models, 

some time-consuming problems such as bi-level problems and multi-objective problems can 

be solved easily. As a result, surrogate models have been widely used in optimisation 

problems with sophisticated dynamics and no closed-form objective functions. 

2.4 Conclusions 

This chapter first reviewed the numerous real time signal control systems that have been 

developed or that are under research. The review of the developed systems showed that such 

systems cannot currently optimise an explicit network-level objective. Rather, they either 

optimise a localised objective for each intersection (e.g. SCATS, SCOOT, OPAC, PRODYN 
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and RHODES) or an inexplicit objective (i.e. minimise and balance link relative occupancy) 

like TUC. In addition, challenges exist in balancing their performance and efficiency. 

Although SCATS and SCOOT can be applied to large-scale networks, they lack responsive 

behaviour due to their limited decision alternatives (Dion & Yager, 1996). In contrast, OPAC, 

PRODYN and RHODES can only operate in a distributed or hierarchical way, due to their 

exponential complexity. Moreover, these developed systems lack the flexibility to 

accommodate user-defined input variables and objectives. 

Section 2.1.2 reviewed the state-of-the-art in the research of real time signal control, 

especially their optimisation methods and whether a traffic model is necessary during 

optimisation. The detailed information, including optimisation method, operation structure, 

traffic model and objective are summarised in Appendix A. The limitations of the current 

research are summarised below. 

 Model-based approaches: The performance of model-based real time signal control 

approaches is highly dependent on the quality of the traffic model used. It is difficult, 

however, to calibrate a traffic model due to the complexity of the traffic system. 

Moreover, for the sake of computational efficiency, only a macroscopic simulation 

model or mathematical formulation can be used, which makes the calibration even 

more challenging.  

 Rule-based approaches: The rule-based approaches require additional expert 

knowledge to identify activation rules in advance, which is difficult to obtain. 

Moreover, each set of rules only focuses on one intersection, which might neglect 

the interaction between adjacent intersections. 

 Learning-based approaches: Learning-based approaches are model-free but, 

because of this, are not interpretable, especially when integrated with an 

approximation function. They cannot explain how and why a decision is made, or 

identify which feature plays a dominant role. Therefore, it is impossible to extend 

the system for further analysis. 
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The review of the limitations of existing real time signal control research and practice in this 

chapter reveals that there is currently no model-free real time signal control that can optimise 

a network-level objective in a centralised manner.  

After examining surrogate modelling techniques in detail, the following properties were 

found that suggest that surrogate modelling represents an attractive approach to real time 

signal control: 

 Model-free: Surrogate modelling can approximate input-output relationships based on 

empirical observations without any human expertise, meaning that the output of given 

inputs can be estimated through a surrogate model rather than an analytical or simulation 

model. 

 Flexibility: Few assumptions and restrictions are imposed on the form of inputs and 

outputs (i.e. traffic states, control variables and objectives).  

 Efficiency: An output can be estimated via a surrogate model efficiently on the basis of 

its mathematical closed-form function. 

 Interpretability: In contrast to the lack of interpretability associated with learning-based 

approaches, surrogate modelling can provide an explanation of the logic involved 

through its parameters.  

The application of surrogate modelling to solve problems such as the toll charge problem, 

demonstrates its capability to solve complex optimisation problems, such as fixed-time signal 

control, efficiently. These problems are all off-line strategic design problems, however, and 

therefore this thesis focuses on developing a surrogate-based real time signal control system.  

The following chapter now reviews surrogate modelling techniques and their applications in 

order to strengthen the contention that surrogate modelling has potential in real time signal 

control.  
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Chapter 3  

Surrogate modelling for real time signal control 

This chapter reviews surrogate modelling techniques and their applications in order to 

strengthen the contention that surrogate modelling has potential in real time signal control. It 

develops a conceptual and general framework for the construction of a surrogate model to 

interpret the relationship between traffic state, signal control and objective. Section 3.1 

identifies the process of surrogate model construction. The sampling of initial training points 

is illustrated in Section 3.2. Section 3.3 describes the construction and training of the 

surrogate model. Section 3.4 presents how to carry out the infill procedure to a surrogate 

model for real time signal control. In Section 3.5, a numerical analysis is conducted on a test 

network constructed on the basis of an actual test site in West Glasgow so as to evaluate the 

approximation accuracy and computational efficiency of the proposed surrogate model. 

3.1 Introduction 

This section offers a conceptual discussion regarding the construction of the surrogate model 

for real time optimisation. As mentioned in Chapter 2, existing surrogate-based traffic control 

and optimisation models are all concerned with strategic or off-line decisions (i.e. decisions 

that are unresponsive to either network changes or to traffic conditions observed in real time). 

Examples include network design (Chen et al., 2015), congestion pricing (Chen, Zhu & 

Zhang, 2015), and fixed-time signal controls (Osorio & Bielaire, 2013). Surrogate modelling 

has yet to be applied to real time traffic control and management, and the key challenge lies in 

an effective construction and approximation of a response surface that encompasses:  

(a) real time traffic states; 

(b) control variables or parameters; and  
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(c) network performance dependent on (a) and (b).  

In contrast, conventional surrogate-based traffic optimisation with off-line decisions involves 

only (b) and (c). Inevitably, the inclusion of (a) results in a greater dimensionality of the 

design space, and thereby complicates the analytical interpretation of the relationship between 

(b) and (c). For example, the same set of traffic signal control parameters can lead to very 

different network performance under varying real time traffic states. This section therefore 

investigates response surface construction for real time signal control systems. 

As an approximation technique that interprets and predicts the input-output relationship of a 

complex system, surrogate modelling consists of: (1) sampling of the training points; (2) 

surrogate model construction; and (3) model validation and infill. Figure 3.1 outlines this 

framework. 

 

Figure 3.1 Framework of surrogate model construction for real time optimisation 

In an off-line optimisation environment where the input space is known a priori (such as with 

deterministic demand or a known demand distribution), the problem of finding the optimal 

design feature or control parameters can be approached by analysis of a response surface, as 

illustrated in Figure 3.2 (left). This is approximated by training a surrogate model (such as 
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Kriging, radial basis functions, lower-order polynomials) with a set of sample points (shown 

as      ) obtained via a coordinated use of random initialisation and on-the-fly selection of 

infill points (Osorio & Bierlaire, 2013; Chen et al., 2014a). The problem of finding the 

optimal solution to the original problem (shown as the red curve) amounts to solving an 

optimisation problem on the surrogate model (shown as the blue curve). It is noted that the 

control-objective       relationship, described by either the red or blue curves, is defined for 

a fixed state,   , of the system. This state,   , can be one of a given network configuration, 

fixed demand, or known demand distribution. When the system state changes, so does the 

control-objective relationship; when such changes occur frequently or in real time, however, 

existing surrogate modelling approaches that only consider the control-objective relationship 

are unsuitable.  

 

Figure 3.2 Illustration of off-line (left) and real time (right) optimisation with surrogate 

modelling 

As shown in Figure 3.2 (right), the application of surrogate modelling to real time control 

requires the construction of a response surface that approximates the joint 

state-control-objective relationship, which enables the optimal control point to be found for 

any given state,   , by looking up the state-control-objective          relationship. The key 

challenges lie in determining how to:  

a) define the state variables so as to capture the essential information needed by the 

controller without the kind of redundancy that would hinder its performance 

b) sample the         relationship and construct the response surface in such a way as 
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to yield sound performance of real time optimisation 

c) enable adaptive learning of the surrogate model so that its performance can be 

improved. 

3.2 Generation and sampling of training points 

To generate initial training points for the surrogate model, the overall strategy is to generate a 

battery of combinations of outputs with randomly-generated traffic states, s, and signal 

parameters,  . When there are sufficient historical data available, training points can be 

easily selected from that data. When the historical data are incomplete or insufficient for 

surrogate model construction, however, then synthetic data are generated. These synthetic 

data need to learn the feature distribution of the actual data via the use of indirectly-related 

data and information (Shi, Steenkiste & Veloso, 2018). The distribution of synthetic data 

needs to be highly similar to that of the actual data to ensure statistical equivalence between 

them (Templ, 2017). Once the feature distribution is obtained, synthetic data can then be 

generated from that. If the input variables are synthetic data rather than data selected from the 

historical database directly, the simulation model needs to be called to estimate the 

corresponding output performance. 

3.2.1 Data processing 

Since surrogate models are data-driven models their quality largely depends on the quality of 

the data used to construct the response surface, since it is this that is used to interpret the real 

dynamics of the network. To ensure a high level of accuracy of the surrogate model, if 

training data are selected from historical data, three types of data need to be removed or 

processed before use. 

1. Erroneous and missing data 

The collected data may contain erroneous and missing data due to failures and faults of 

the detectors and transmission systems. Erroneous data can be identified and screened 
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via the following tests. 

 Threshold test: Traffic data (e.g. volume, speed occupancy) have physical meaning; 

therefore they have their own upper and lower bounds. Hence, data that are beyond 

valid thresholds are regarded as erroneous data. 

 Basic Traffic Theory Test: The traffic data should satisfy basic traffic theory, such 

as flow conservation and traffic flow theory between flow and density of the 

network. Data that violate these theories are regarded as erroneous data. 

 Temporal and Spatial Correlation Test: Traffic flow is periodic over time, and 

therefore shows high similarity at the same period of the day and even day of the 

week. Moreover, traffic data at different locations of the traffic network, such as 

between downstream and upstream, have spatial correlation. Hence, data that do not 

follow the expected temporal and spatial correlation are thought to lack consistency 

and contain errors. 

Since erroneous and incomplete data will lead to poor interpretation of traffic dynamics, 

they need to be screened out by these three tests, and the erroneous data removed. The 

removed data and missing data can, however, be imputed if necessary.  

2. Data collected under abnormal condition. 

The normal condition, also known as the typical condition, refers to the condition in 

which no special events have occurred that can affect the traffic pattern (Castro-Neto, 

2009). Such special events can be classified as either expected events, e.g. road 

maintenance works, planned activities or unexpected events, e.g. incidents, accidents and 

extreme weather. These special events alter the network dynamics. Moreover, these 

special events usually occur infrequently. When background information is extracted 

from historical data, the data collected under abnormal conditions will be regarded as 

noise. It is therefore necessary to detect and delete the data collected under such atypical 

conditions. Only the recurrent fluctuations in the historical data that did not occur due to 
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special events are acceptable. 

3. Data affected by temporal variation of the traffic network 

The traffic network changes dynamically with time and long-term variations of traffic 

demand, travel behaviour and network topology will lead to permanent changes in the 

network dynamics. Hence it is important to ensure that the traffic network has not 

experienced significant long-time variations during the data collection period. Otherwise, 

the data need to be removed or pre-processed before use, such as by scaling to a 

reference day. 

Given the historical data, pre-processed as above, training points for the construction of the 

surrogate model can be selected. When synthetic data are used, however, an extra source of 

uncertainty is introduced by the so-called synthetic gap; that is, the difference in feature 

distribution between the synthetic data and the actual data (Zhang et al., 2018). This 

uncertainty can be reduced but never eliminated as it is caused by the process of generating 

synthetic data (Zhang et al., 2018). In this research, however, methods to evaluate the 

synthetic data are not discussed, as they are beyond the scope of this thesis. For details on 

such methods see Templ (2017). 

3.2.2 Traffic state variables 

In contrast to other engineering problems, traffic states are not uniformly distributed in the 

design space, and follow a certain feature distribution. It is not sensible, therefore, to select 

samples from the design space with equal probability. For traffic state variables, feature 

distribution is equivalent to its probability distribution. Sample points are selected from this 

distribution, and thus more points can be sampled around the region with a higher probability 

of occurrence. Compared with uniform sampling, this sampling approach can more truly 

reflect the traffic states of the actual traffic network. 

In order to illustrate whether the selection of sample points following a certain distribution 

leads to a more accurate surrogate model than a uniform distribution, a small test was 
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conducted. Given that x is the input variable, y is output with the expression of   

                 . The input variable, x, has a probability distribution following a 

normal distribution, X~N(0.5, 0.1). Two Kriging models were constructed, each with five 

training points. The training points were selected from two distributions: (1) normal 

distribution X~N(0.5, 0.1) and (2) uniform distribution X~U[0, 1]. Figure 3.3 and Figure 3.4 

show the true function and these two constructed Kriging models. It can be seen that these 

two Kriging models have different shapes due to the different sampling distribution of 

training points. In the model in Figure 3.3, all five points were sampled near the central part, 

and it can be seen that Kriging model behaves nearly the same as the true model around the 

middle part, but does not perform well when x is between 0.8 and 1. In the model in Figure 

3.4, meanwhile, training points were sampled from the uniform distribution, and hence the 

entire curve has a similar level of accuracy, except for the part when x is larger than 0.8, 

because of the sharp jump in the true function. These two figures show how the spatial 

arrangement of sample points affects the surrogate model construction intuitively. 

 

Figure 3.3 True function and Kriging model with sampling distribution 1 (normal 

distribution) 
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Figure 3.4 True Function and Kriging model with sampling distribution 2 (uniform 

distribution) 

In order to evaluate the global accuracy of these two Kriging models, 1000 testing points 

were generated for validation. Assuming that the testing points also followed the normal 

distribution N (0.5, 0.1), the histogram of all the testing points is shown in Figure 3.5. This 

mimics the fact that traffic states or conditions always follow a certain distribution.  

 

Figure 3.5 Histogram of 1000 testing points 
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As the sample points are randomly selected, in order to eliminate the influence of randomness, 

100 Kriging models were constructed for each sampling distribution. This can reduce the 

uncertainty caused by the arrangements of sample points. Figure 3.6 shows the cumulative 

distribution function of the root mean squared error (RMSE) between the true function and 

the Kriging model. It can be seen that the one based on the normal distribution (top) has a 

much better distribution than the one based on the uniform distribution (bottom). In addition, 

the maximum RMSE of Kriging 1 (top) is less than 1.4, which is much lower than that of 

Kriging 2 (bottom). Table 3.1 displays the mean and variance of the RMSE. Kriging 1 has a 

much smaller mean and variance than Kriging 2. Both the figure and the table show that the 

Kriging model trained with points generated by the normal distribution has better 

performance and higher reliability. This experiment shows that if the distribution of the given 

traffic state is known, the training points should be sampled according to the same distribution 

since this can enhance the global accuracy and reduce the number of training points. In other 

words, where a limited budget is available, the primary target is to ensure the area with higher 

probability is accurate enough. 

 

Figure 3.6 Empirical CDF plot of the RMSE of Kriging models generated with training 

points with (1) normal distribution and (2) uniform distribution 
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 Kriging 1-Normal Distribution Kriging 2-Uniform Distribution 

Mean 0.6992 2.5559 

Variance 0.2145 14.9466 

Table 3.1 Mean and variance of RMSE of two Kriging models trained by uniformly 

distributed samples and normally distributed samples 

3.2.3 Signal control variables 

Another component of input variables is the signal control variable, which will be optimised 

later. If the traffic system has already been controlled by real time signal controls, then 

various signal control variables are available. However, in most cases, the network is 

originally controlled by a non-adaptive signal control. In order to solve this problem, it is 

necessary to generate synthetic signal control variables to train the surrogate model. Signal 

control variables are sampled around a reasonable baseline signal plan. Compared with the 

uniform sampling in the entire traffic control space, this method can avoid the sampling of 

unreasonable control decisions to the specific problem and thus reduce the number of 

samples. 

Cai et al. (2017) mentioned that the search process could be sped up if the candidate points 

were to be generated using a normal distribution design around the current optimum, so as to 

increase the probability of finding an accurate optimum point. Even though the final target of 

this work is not finding the global optimum, it can be used as a reference. Thus, if the current 

signal control or fixed-time signal control is available, this can be used as a basis for the 

generation of the training points. The normal distribution sampling method can be applied 

around the benchmark, which avoids wasting effort on sampling unreasonable signal controls.  

The random sampling of signal control variables from a normal distribution cannot guarantee 

that all the samples are within the feasible region, however. Hence samples out of the feasible 

region need to be projected back to the feasible region. The projection of signal variables is 

introduced in detail in Section 3.4.2.2. 
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3.2.4 Network performance 

When insufficient historical data with different combinations of traffic states and control 

variables are available, synthetic input data are generated, and a simulation model is used to 

estimate corresponding outputs.  

As a supplement to the historical data, the simulation model should be able to reflect the 

actual dynamics of the network. Due to the simplifications and assumptions made in the 

simulation model, however, it can never replicate the actual network completely. Since the 

final target is to manage the traffic of the real network, the uncertainty representing the 

difference between the simulation model and the real network needs to be considered. This 

uncertainty arises from two main sources: 

 Structural uncertainty: uncertainty due to the simplification of the model. The actual 

traffic network has complex interactions. For the sake of simplicity, however, simulation 

models can only extract the main behaviour rules and characteristics from the real 

network. The neglect of some less important behaviours and characteristics leads to 

structural uncertainty. As a result, simulation models can never be exactly the same as the 

real network. 

 Parameter uncertainty: uncertainty related to the model parameters. The simulation 

model contains some parameters that are either calibrated with the data or customised by 

users. Parameter uncertainty includes the misestimation of these parameters, resulting in 

the simulation model failing to reflect the behaviour of the real network precisely. In 

addition, the traffic network is stochastic, and thus some of the parameters possess 

stochastic characteristics, which need to be expressed by probability distributions. The 

estimation of these probability distributions is challenging. 

These uncertainties related to the simulation model will propagate through the following 

processes and affect the final performance. The inherent structural uncertainty cannot be 

eliminated and can only be reduced by adopting a new simulation model with higher 
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resolution. Parameter uncertainty, meanwhile, can be reduced by model calibration. 

It should be noted that the selection of the simulation model is flexible. The framework itself 

does not have any constraint on it. Regardless of whether the model is macroscopic or 

microscopic, deterministic or stochastic, it can always be embedded in the framework as long 

as it can reflect the traffic dynamics accurately. When choosing a simulation model, therefore, 

the only thing to consider is the trade-off between realism and efficiency.   

3.3 Model training and infill 

3.3.1 Initial model training 

The initial model training includes the selection and construction of the surrogate model. 

There is no surrogate modelling technique that always outperforms another, however: the 

choice depends on the nature of the problem to be solved, such as the number of dimensions 

and level of linearity. The following part introduces the construction of the response surface 

for real time signal control and optimisation. 

Based on the initial samples selected, the response surface shown in Figure 3.2 (right) can be 

expressed as a mapping: 

                                       (3.1) 

where the 2-tuple       is the input and   denotes the output (objective value), which is 

obtained from off-line evaluation of the traffic system, either through analytical computation 

or simulation approaches. The vector,  , denotes the signal control parameters; while   is 

the feasible region for signal control parameters. The state variable,  , can be defined based 

on (partial) observation of the entire system at any given point in time, where   is the 

feasible region constrained by traffic theory. In the case of traffic control problems,   can be 

the inflow, queue length, or occupancy of certain links at the present time,  . In addition,   
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is allowed to include the same quantities in the near past,             , to account for 

the latency effect inherent in a controlled traffic network; for example, a surge in traffic flow 

somewhere in the network may take several minutes to reach and interact with a signal 

controller, and hence the latter’s decision should be informed by a state variable that 

contained such information a few moments earlier.  

 

Figure 3.7 Real time signal control approach based on surrogate modelling 

The proposed real time signal optimisation approach is illustrated in Figure 3.7. The whole 

analysis period is divided into several control periods with the same length of time (e.g. 5 

min), and the points on the time axis represent the end of each control period. The signal 

control parameters remain fixed within each control period. 

Traffic states are collected at the end of each control period, so traffic state variable      

denotes the traffic state at the end of  -th control period   . In the surrogate-based 

approximation, it is not necessary to assume that the traffic state of the entire control period is 

known. The estimation of the objective within control period    only needs knowledge of the 

traffic state at the end of the previous control period       , and the signal parameters 

     of control period   . Hence, the implicit and complex relationship can be approximated 

by the surrogate model as: 

                         (3.2) 

Remark 1. From Equation (3.2), the state, control and objective, whose relationship we are 

aiming to approximate with surrogate models, are not from the same control period. Indeed, 

the control decision to be made at the end of each control period must be based on past 
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observations unless some traffic prediction capabilities are involved, which is not considered 

in this thesis as they may bring large uncertainties in themselves. Moreover, the control 

decision,      , can only take effect in the next control period,  . It is important to capture 

the relationship                    using surrogate models to guarantee the 

performance of the on-line signal control.  

3.3.2 Infill strategy 

The surrogate model needs to be proved to be accurate enough before it can be used for real 

time optimisation. In practice, it is difficult to use surrogate models with few sample points to 

describe the relationship between inputs and outputs due to the lack of knowledge of the 

objective functions. External validation is therefore carried out to provide a quantitative 

measure of global accuracy. Equation (3.3) and Equation (3.4) show how to quantify the error 

between true observations and estimated outputs of the surrogate model. RMSE and Mean 

Absolute Percentage Error (MAPE) are both global error measures that therefore offer insight 

into the model accuracy of the entire design space. 

 

      
               

      
   

     
 

(3.3) 

      
 

     
 

              

     

     

   
      (3.4) 

Where       is the total number of testing points,       and        are the true 

observation and the estimated output from the surrogate model of the i-th testing point, 

respectively. 

The global accuracy of the surrogate model can be improved if a larger number of points are 

used to construct the model, but this will increase the computational time needed for model 
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construction and output estimation. It is therefore worth exploring how to locate the training 

points. An infill strategy is a procedure to add more points to the surrogate model to enhance 

its accuracy. Several infill strategies have been discussed in Section 2.2.2. There, it was 

shown that, compared with the exploitation-based infill approach, aiming to find the optimal 

point, the exploration approach, which improves the global accuracy over the entire design 

space, is more suitable when real time optimisation is the final goal.  

Generally, the infill strategy searches the entire search space, selecting one infill point at a 

time. Each infill needs to solve an optimisation problem in continuous space. This 

conventional infill strategy involves lengthy searching time, especially when the search space 

is large. To address this, Regis & Shoemaker (2007) proposed an infill strategy called the 

Metric Stochastic Response Surface (MSRS) method. This selects the next point to evaluate 

from a number of randomly-generated candidate points according to the weighted score of 

response surface prediction and distance metric of all the candidate points. The results show 

that this candidate sampling approach is easier to implement compared with the typical infill 

criteria, such as EI and PI, that need to solve the optimisation of sub-problems with 

non-convex objective function over the entire design space. This candidate sampling approach 

is flexible as it allows various selection criteria to be embedded within it to guide the 

generation of infill points. 

In the case of real time optimisation, error-based approaches are suitable criteria to guide the 

selection of infill points. The error measures of the points can be derived from equations like 

Absolute Error (AE) and Relative Error (RE), in Equations (3.5) and (3.6), respectively, or 

with the closed-form analytical expression of estimation error as in Equation (2.21) of the 

Kriging model. 

                   (3.5) 
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      (3.6) 

Compared with the single point infill strategy, the multi-point infill strategy can reduce the 

number of infill iterations. It selects   infill points from   candidate points in each iteration. 

One of the drawbacks of a multi-point infill strategy is that some, or even all, of the   infill 

points cluster within a small region that has low estimation accuracy. To avoid the   infill 

points being too close to each other, and ensure sample diversity, it is necessary to define 

appropriate criteria to force the infill points to maintain the minimum distance between any 

two infill points. Ma et al. (2017) defined that if the Euclidian distance between two points 

       
   

   
   

 
 

 
    is smaller than the specified critical distance,   , then these two 

points are correlated and cannot be selected as infill points at the same time. Dong et al. (2018) 

defined the minimum allowable distance between two points,                   

              to ensure sample diversity, where Range is the vector representing the 

range of the design space. Both of these methods limit the distance between the points with a 

fixed critical value, but it is hard to determine that critical value without trial and error. In 

addition, depending on the regularity of the design space, some regions with higher 

nonlinearity may need smaller critical values. Furthermore, as more infill points are added, 

the average distance between the points becomes small due to increasing sample density. This 

makes the determination of the critical distance even more complicated.  

In view of these issues, an infill strategy with adaptive distance thresholds is designed as 

follows. Firstly, sort all the candidate infill points in descending order by their mean square 

errors. Secondly, working from the top of the list, compute the minimum distance of the 

candidate infill point from the existing sample points,   , and the minimum distance of the 

candidate infill point from the newly added infill points,   . If      , the candidate is 

added as an infill point; otherwise move on to the next candidate in the list until all   infill 

points have been selected. This procedure is described in Algorithm 3.1.  
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Algorithm 3.1: Multi-point infill with adaptive distance threshold (infill   points)  

Input Surrogate model trained with all points in  . 

Step 1 Generate the set of candidate infill points,    with cardinality  .  

Step 2 Calculate the mean square errors of all the candidate points, and rank them in 

descending order             . Initialise infill point set       .    .  

Step 3      . 

Step 4 Calculate the minimum distances 

               ,                . 

If      ,         . 

Step 5 If      , go to Step 3; otherwise, terminate the algorithm and output   

The   infill points generated by Algorithm 3.1 will be added to the set of training points, and 

then the surrogate model is re-trained. The involvement of additional sets of samples allows 

the surrogate model to be improved or tailored. After each re-training of the surrogate model, 

the global accuracy is evaluated with Equations (3.3) and (3.4). The whole infill and 

evaluation process is repeated until a certain criterion has been, met or the available 

computational budget has been used. 

3.4 Simulation test 

The following section introduces an empirical test conducted in a small test network. The 

purpose of this test is to investigate whether the surrogate model can accurately simulate the 

complex state-control-objective relationship of the real network. By applying the infill 

strategy introduced in Section 3.3.2, the test results can show whether this infill strategy is 

effective in improving approximation accuracy. 

Due to the limitation in the computational budget, the number of links and signalised 

intersections in the test network should not exceed 50 and 10, respectively. Since the 

proposed surrogate-based real time signal is a centralised framework, however, there should 

be multiple traffic signals in the network. In addition, since DTA is not considered in the 

simulation, the geometry of the test network is restricted by the assumption that there is only 



86 
 

one route between each origin-destination (OD) pair. Besides the restrictions on geometry, the 

ideal test network is one that suffers from a congestion problem, and where demand has 

apparent temporal variations at a mesoscopic level (e.g. 15 min). The traffic data of the 

network should be collected over a relatively short time scale to capture the temporal-spatial 

congestion propagation. 

The general information on the test network is provided in Section 3.4.1. Section 3.4.2 

discusses the data collection and generation, while the simulation model used to obtain the 

network performance is shown in Section 3.4.3. Section 3.4.4 explains the reasons why the 

Kriging model is used to construct the response surface for the simulation test. Then, the 

numerical results are presented and analysed in Section 3.4.5. 

3.4.1 The test network and numerical settings 

Based upon the ideal requirements above, a test network in West Glasgow, Scotland was 

chosen. The outline of the network is shown in Figure 3.8, and consists of five signalised 

intersections and 35 links. These 35 links consist of eleven entrance links, ten exit links, six 

minor turning links and eight main links, marked as red in the Figure. The test period of the 

signal control spanned one hour from 8-9 am on a typical working day: June 7, 2010. 
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Figure 3.8 The test network in West Glasgow (Google Map) 

The whole test period was divided into several time steps lasting for 5 s, which means that all 

the data were collected every 5 s. A one-hour simulation was undertaken with a 400 s 

warm-up session to ensure that the simulation results were not affected by the network 

loading. There were twelve signal control periods, each spanning five minutes, during which 

the signal control parameters remained constant. For a single simulation run, therefore, eleven 

sets of samples can be collected.  

All the data used are held within the CARBOTRAF project funded by 7th EU framework 

(www.carbotraf.eu). Historical traffic flow data were collected by Sky High CountOnUs 

between 2007 and 2009 (Mascia et al., 2016). Since the traffic counts of each intersection 

were not collected on the same day, and thus may be affected by the temporal variation of the 

traffic network, all traffic counts were converted to the same reference day by using a scaling 

factor to avoid the bias error. The scaling factors take both day-of-the-week effect and 

seasonal effect into account. For the sake of simplicity, the average traffic demands of the 

eleven entrance links were aggregated to 15 minutes, and then used for the generation of the 
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time-varying source flow for the eleven inflow links. The vehicle turning ratio was estimated 

based on the turn-by-turn counts of each intersection. For the detailed information related to 

source flow and turning ratio, refer to Appendix B. 

3.4.2 Data generation  

3.4.2.1 Random demands 

Since average traffic demand cannot reflect daily variations, synthetic data were randomly 

generated for each day around the averaged demands. The temporal variability of traffic 

demands at each boundary link of the network was perceived on two different time scales: a 

7.5 min time window indexed by  , and a smaller time step (e.g. 5 s) indexed by  . Thus it is 

assumed that the random inflow of a given link   is given by: 

                
    

         (3.7) 

where        denotes the average demand of link   during time window  ;   
  represents 

random noise on the scale of time windows  ;   
  represents random noise on the scale of 

time steps  . In other words, the two random terms represent mesoscopic and microscopic 

deviations from the mean value, respectively. Equation (3.7) generates complex and realistic 

demand profiles for traffic simulation. In practice,   
  and   

  may be estimated from 

empirical data. 

In this numerical case study, these noises were generated by drawing from given distributions. 

In order to generate sufficient samples to represent the stochasticity in the demand profiles, 

Equation (3.7) was followed by making   
  follow     

     , where   
  is the average 

demand on link   during time window  ; and       where       was used to 

parameterise the stochasticity of the demands (a larger   indicates higher variability). Let   
  

follow a uniform distribution:              , and this short-term variation between each 

time step is far smaller than the variation between each time window. The short-term variation, 
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 , is insignificant compared with the traffic flow of each link. The proposed distributions of 

the two random noises,   
  and   

 , should be obtained from historical data theoretically but, 

due to the limitation of the data available in this empirical test, it was impossible to know the 

exact feature distributions of actual data. The fact that the proposed demand profile was not 

verified by actual data may create a large synthetic gap between actual and synthetic data. 

Furthermore, this gap will propagate if the actual data were to be used for final optimisation. 

To control this uncertainty, it was assumed that all demand data for testing and optimisation 

were generated from the same profile proposed above. This assumption helps to remove the 

influence of the synthetic gap on the final performance. 

3.4.2.2 Signal control parameters 

In this empirical test, the signal parameters were limited to the green stage times of every 

signalised intersection. For the sake of simplicity, all the other signal parameters, such as 

cycle time, phasing sequence and offset, were fixed. The design space of control parameters, 

 , can be expressed as: 

      

 

   
 (3.8) 

where   represents a signalised intersection, and the feasible region    for intersection   is 

expressed as: 

                                          

 

   
     (3.9) 

where         are the green times of all relevant stages, which are bounded by      and 

    , and sum up to be a constant    (which may be the cycle time minus amber and all-red 

times). 

The feasible region expressed in Equation (3.9) is entirely based on signal timing constraints, 
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without any reference to a priori consideration of the suitability of a feasible control 

parameter. To narrow down the design space further, and focus on regions where the control 

parameters are likely to be close to the optimal under the prevailing demand profile, a 

baseline signal control was computed through an off-line optimisation. Once the baseline 

control parameters were known, the control parameters were then generated by randomly 

sampling its neighbourhood, as this can speed up the searching process (Cai et al., 2017). 

Here, the signal control samples were sampled by using the normal distribution around the 

benchmark, as shown in Equation (3.10), where       is the j-th sample of stage i,      is the 

green time of the i-th stage of the baseline signal control. For a normal distribution, 99.73% of 

the area is within the range of            . The baseline signal was a fixed-time signal 

control that the Glasgow City Council used to approximate the SCOOT system during the 

morning peak (Liu et al., 2015). Given the lower bound,     , and the upper bound,     , 

then   can be estimated as 
        

 
 and 

        

 
, respectively. To ensure that most of the 

samples were within the boundary,   is the minimum one of 
        

 
 and 

        

 
. 

             
                          

 
               (3.10) 

Since the samples of each stage were generated separately, however, it was not possible to 

guarantee that the constraints in Equation (3.9) are satisfied, and thus the operator of 

projection needs to be applied. For each intersection, the projection can be formulated as the 

quadratic programming in Equation (3.11), where                    
  is a set of green 

times of all the stages sampled with Equation (3.10), and   is the projection of    onto the 

feasible region. The projection follows the rule that the feasible solution,  , is the one with 

minimum 2-norm distance with    among all the feasible solutions. 

   
 

 

 
        

 

 
              (3.11) 
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The solution   can be derived by applying the Karush-Kuhn-Tucker condition (Friesz, 2010), 

as shown in Equation (3.12) 

              
                      

     (3.12) 

where            

     is derived with Equation (3.13)  

           

      

                             

                                 

                             

  (3.13) 

The projection of the signal sample is therefore transformed into the problem of finding the 

value of   satisfying the constraint in Equation (3.14). This algebraic equation can be easily 

solved numerically.  

            

    
 

   
    (3.14) 

It should be noted that the minimum and maximum green times (     and     ) of all the 

stages are the same in the equations above. In fact, each stage may be assigned with different 

minimum green and maximum green times. The assumption of equal      and      can 

easily be relaxed by replacing      and      with     
  and     

  which represent the 

specific boundary conditions of each stage. In this case, the equations above are still valid. 

A simple signal plan was adopted in this empirical test, and the phase configuration is 

displayed in Figure 3.9. In practical application, the phase configuration should be carefully 

designed to ensure the service of movements and safety. In this test, the number of phases is 

assumed to be equal to the number of links terminated at the intersection, and each link is 

given green only once. In addition, only one link is given green in each stage. Once the link is 
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allowed to move, then all the movements leaving this link are given green. This simple phase 

configuration can ensure completely conflict-free driving without considering any early 

cut-off or late release. The intersection with three links has a similar configuration but with 

three phases only. 

Phase 1 Phase 2 Phase 3 Phase 4 

 

   

Figure 3.9 Phase configuration of the intersection with four links 

Besides the phase configuration introduced above, the following specifications were also 

applied: 

1. No pedestrian phase was considered.  

Typically, the phase configuration should consider the movements of pedestrians as well. 

In this test, however, the focus was on managing vehicle movements and therefore it was 

reasonable to neglect the pedestrian stage. 

2. No inter-stage time was considered, and the change of stage occurred 

instantaneously.  

In practice, for safety reasons, inter-stage periods such as amber time and all-red time are 

designed to allow the drivers to react to signal changes and leave the intersection before 

the conflict streams are allowed to move. In this test, however, for the sake of simplicity, 

inter-stage time was not considered. This means that the total green time of all the stages 

is equal to the cycle time. Nevertheless, this assumption can be easily relaxed by 

including additional lost time. 
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Even though this empirical test was conducted under the above assumptions, it is important to 

know that the surrogate model does not set any restriction related to signal control. These 

assumptions can be relaxed easily by introducing a more complex but more realistic phase 

configuration. 

According to the specifications described above, the sum of the green time of all the stages is 

equal to the cycle time for this particular problem. The cycle time of all the signalised 

intersections was 100 s. The lower and upper bounds of the signalised intersection with four 

links were 15 s and 55 s, while those of a three-link intersection were 14 s and 72 s, 

respectively. 

                                        
 

      

or 

                                   
 

      

(3.15) 

3.4.3 Extraction of state variables and objectives from the simulation model 

3.4.3.1 Link-based Kinematic Wave Model 

Given the network demand and signal control parameter,  , generated in section 3.4.2, the 

corresponding outputs need to be obtained from a simulation model. In this test, the 

continuous-time Link-based Kinematic Wave Model (LKWM) proposed by Han, Piccoli & 

Szeto (2015) was adopted to simulate the network dynamics. LKWM is a reformation of the 

LWR equation (Lighthill & Whitham, 1955, Richards 1956) using its equivalent 

Hamilton-Jacobi equation, for which a variational approach known as the Lax-Hopf formula 

is applied to obtain semi-analytical solutions. The resulting system of differential algebraic 

equations is elaborated in Han, Eve & Friesz (2019). It is a continuous-time model, such that 

the definition and behaviour of the model are not affected by the time step size. In addition, 

unlike some macroscopic models that use density as the representation of network evolution, 

LKWM uses vehicle flow as input variables, which makes it suitable to be integrated with the 

traffic control problem, because traffic controls typically act on vehicle flow. 
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The conservation law of the LWR equation, which represents the evolution of density, both 

temporally and spatially, is presented in Equation (3.16): 

 

  
       

 

  
            (3.16) 

where        represents the density at location   and time  .           is the traffic flow 

expressed as a function of density. The function                      can be presented 

as the fundamental diagram, where      and   represent the jam density and the flow 

capacity, respectively. LKWM employs the triangular fundamental diagram, as shown in 

Figure 3.10. The two axes represent the link flow and density. The critical density,      , is 

the density of the link when the link flow reaches its capacity. Critical density, together with 

flow capacity, divides the triangular fundamental diagram into two parts: the uncongested 

condition (left) and the congested condition (right). Equation (3.17) describes the relationship 

between flow and density under both of the conditions, where v and w represent the forward 

and backward propagating wave speed, respectively.  

      
                                          

                      
  (3.17) 
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Figure 3.10 Triangular fundamental diagram 

In LKWM, a separating shock can divide the link into the uncongested region and congested 

region. It is assumed that there is, at most, one separating shock in a link. This allows the 

congestion propagation in the network to be modelled. The Lax-Hopf formula is employed to 

detect the location of the separating shock. When the separating shock reaches the boundaries 

of the link, a latent separating shock is formed, and the traffic conditions at the two 

boundaries are related to each other. Equations (3.18) and (3.19) describe the interaction of 

two boundaries of a link with spatial boundary [a, b] when a separating shock is formed.  

                            
 

 
        (3.18) 

                   
 

 
           (3.19) 

where       is the location of the separating shock at time t,        and          are the 

cumulative vehicles entering and leaving the link at time t, and L is the length of the link. 

Equation (3.18) shows that when the separating shock reaches the upstream boundary, the 

Flow，f

Density， ρρcrit

C

v
-w

ρjam
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whole link becomes congested, with the wave moving backwards at a speed of w. The 

cumulative vehicles entering the link is therefore the sum of         
 

 
  and total 

vehicles within the link. In Equation (3.19), meanwhile, the whole link is uncongested as the 

separating shock is at the downstream boundary. The cumulative vehicle counts at both of the 

boundaries are correlated with each other with the relationship shown in Equation (3.19).  

The inflow and outflow are the derivatives of the cumulative counts of vehicles entering and 

leaving the link, respectively, as shown in Equation (3.20). For the junction  , the links 

connected to it fall into two categories: incoming links, denoted as   , and outgoing links 

denoted as   . The demand       of the incoming link, I, and the supply,      , of 

outgoing link, j, can be formulated as Equations (3.21) and (3.22), respectively; where       

is the maximum flow that can leave the link. In Equation (3.21), the first case shows that 

when the downstream boundary is uncongested, the number of vehicles that can leave the link 

depends on the inflow 
  

  
 ago. When the downstream boundary is congested, however, 

demand is equal to link capacity. The supply in Equation (3.22) is defined as the maximum 

flow that can enter the link. When the entrance of the link is congested, supply depends on 

how many vehicles left the link 
  

  
 ago, otherwise it is equal to the link capacity. 
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              (3.22) 
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The traffic dynamics at the intersection can be solved by Riemann Solvers. Under the 

assumption that only one link is allowed to move across the junction each time, the 

intersection is always a diverge intersection with only one incoming link. Figure 3.11 shows 

the layout of a diverge junction with two outgoing links. 

 

Figure 3.11 Layout of diverge junction 

The traffic dynamics at the junction can then be expressed by Equation (3.23) and (3.24), 

where           is the outflow of incoming link I, which depends on how many vehicles 

outgoing links can receive and its own demand.          is the inflow of outflow link j, 

which is equal to the product of turning ratio      and the outflow of incoming link i. The 

turning ratio      describes the percentage of flow from link i entering link j. By solving the 

Equations (3.10) – (3.24) sequentially, the network dynamics within the whole control period 

can be derived. 

                       
    

 
     

    
   (3.23) 

                                (3.24) 

The LKWM can be converted to a time-discretisation version, as below, by dividing the 

Incoming link
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control period into time intervals lasting   . 

Equation (3.25) – (3.30) are presented using the notations listed below. 

     
  Cumulative number of vehicles entering the link i at time 

step k 

       
  Cumulative number of vehicles leaving the link i at time 

step k 

     
  Inflow to link i at time step k 

      
  Outflow from link iat time step k 

  
 
 Number of steps for forward wave to travel to downstream 

boundary 

  
  Number of steps for backward wave to travel to upstream 

boundary 

   Length of link i 

   Forward wave speed of link i 

   Backward wave speed of link i 

  
  Demand of link i at time step k 

  
  Supply of link j at time step k 

   Flow capacity of link i 

     Turning ratio from link i to link j 

   Set of incoming links of junction   

   Set of outgoing links of junction   

 

     
          

                   
           

 

 

   

    

 

   

 (3.25) 
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  (3.26) 
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              (3.28) 

      
        

     
    

 
  

 

    
   (3.29) 

     
       

    

      
  (3.30) 

Signalised Junction 

Signal control can be easily integrated with this simulation model by converting the signal 

plan into binary variables   
        representing the right of movement of each link i at 

time step k. If it is green, then   
 =1, otherwise   

 =0. Then      can be modified as 

follows: 

      
        

    
      

    
 

  
 

    
   (3.31) 

Entrance Link 
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The entrance links of the network need to be treated differently. By adopting the notation in 

the cell transmission model, the entrance links can be regarded as source units that generate 

the flow. The upstream links connecting entrance links are not modelled, and hence the actual 

inflow cannot be calculated from the outflows of upstream links. Thus Equation (3.32) is 

established, where   
  is the flow that is going to enter the source links i at time step l. The 

inflow of entrance link i is calculated by considering two conditions: (1) no point queue 

outside the link and (2) a point queue is formed outside the link. This is determined by 

whether the sum of inflow, i.e. vehicles actually entering the link, is less than the sum of   
 , 

vehicles going to enter the link. If it is, then a queue is considered to have formed outside the 

link.  

 
 
 

 
 

     
        

    
                 

 

 

   

      
 

 

   

     
    

                                
 

 

   

      
 

 

   

            (3.32) 

In order to account for the queue accumulated outside the network, the cumulative number of 

vehicles entering the link is calculated with    instead of      . Equation (3.33) shows the 

expression for the cumulative inflow vehicles at the entrance link.  

     
       

   

 

   

 (3.33) 

 

Exit Link 

The exit links of the network can be seen as sink units and are assumed to be always 

uncongested. Without considering the actual length of exit links, inflow is equal to outflow, 

and vehicles can leave the network as soon as they enter the exit links. This is because the exit 

links are not considered as a part of the network and can be seen as virtual links to estimate 
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how many vehicles leave the network. The only constraint on the exit link is therefore the link 

capacity, and hence the supply is always equal to the link capacity. Equations (3.34) – (3.36) 

show the relationship between inflow and outflow for the exit link j. 

  
     (3.34) 

     
       

    

      
  (3.35) 

      
       

  (3.36) 

General Assumptions 

It is evident that if the simulation model itself is not well calibrated, the information obtained 

from it may be misleading and serve to deteriorate the estimation capability of the response 

surface. The validation and calibration of the simulation model are crucial but challenging 

because of the large amount of data required. In this numerical experiment, however, the 

validation of the simulation model against reality is not discussed. The following assumptions 

are made as the primary objective of this experiment is to gain insight into the approximation 

capability of a surrogate model.  

1. The traffic flow is assumed to be homogeneous.  

This is an assumption related to the macroscopic nature of LKWM. Macroscopic models do 

not consider the distinction between individual behaviours and such detailed information is 

not necessary if the objective is to optimise network-level performance (i.e. total throughput) 

(Nahi, 1973). In this test, the purpose was to evaluate the overall performance of the entire 

network under certain traffic conditions and traffic controls. Therefore, it is reasonable to use 

a macroscopic model with aggregated variables that reflect overall flow characteristics, which 

are assumed to be homogeneous.  



102 
 

In contrast, a microscopic model is time-consuming, since it assigns specific behavioural 

rules to each individual or group of vehicles. A microscopic model can therefore capture the 

complex interactions between vehicles, or between vehicles and infrastructure, in more detail, 

but this leads to a lack of tractability. The selection between macroscopic and microscopic 

approaches is a trade-off between efficiency and realism. In this test, the simulation model 

needs to be run multiple times to generate enough training points and candidate points for 

infill in this test. Given that microscopic simulation increases the computational burden, 

typically microscopic models are used to evaluate and compare the performance of a limited 

number of management alternatives. Such an approach would not be efficient in this 

numerical test, although it is worth noting that this conceptual framework imposes no 

requirement as to what type of simulation model can be used. In other words, if sufficient 

computational budget is available, a microscopic model can be used as readily as a 

macroscopic one.  

2. The exogenous parameters are assumed to be deterministic.  

This is an assumption related to the deterministic nature of LKWM. In reality, the behavioural 

parameters are not stationary due to the stochastic nature of the traffic system. The simulation 

model that accounts for this stochastic nature is a stochastic simulation model. In a stochastic 

simulation model, exogenous parameters are randomly selected from given distributions, and 

hence different outputs are generated from multiple runs, even with the same inputs. The 

result of a single run of a stochastic model is therefore only a realisation of a random number 

and usually cannot represent the true result. A surrogate model, on the other hand, constructs a 

deterministic relationship between traffic state, signal control and network performance, and 

deterministic models have fixed parameters such that given inputs always correspond to fixed 

outputs. Thus, the output of a stochastic model cannot be used directly to construct a 

surrogate model. The implication of this is that a deterministic model should be used in this 

test to estimate the expected network performance under a given traffic state and signal 

control. 

A stochastic model can still be used to estimate network performance for the construction of a 
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surrogate model, however, by using the mean of the outputs obtained from multiple runs. 

Theoretically, with infinite runs, the average of outputs converges to their expectation. 

Increasing the number of simulation runs, however, increases the computational time, 

especially given that nearly all the stochastic models are microscopic models, which is even 

more time-consuming. For this reason, a deterministic model is preferred since its output is 

equivalent to the expectation of outputs from a stochastic model to a known extent.  

3. The network is assumed to be under normal conditions.  

The traffic dynamics may change abruptly because of the influence of unpredictable events. It 

is hard for a simulation model to emulate the traffic system under these abnormal conditions. 

In addition, the inclusion of network behaviour under abnormal conditions complicates the 

relationship between state, control and objective, which hinders the surrogate model from 

making an estimation accurately. These events occur with low probability, however, and 

usually recover in a short time. Hence, the network under abnormal conditions is not 

simulated since the aim is to relieve recurrent congestion. 

4. The vehicles are assumed to accelerate and decelerate instantaneously, and reaction 

time is neglected.  

In reality, vehicles accelerate from an idle state or decelerate to an idle state gradually when 

the signal changes. For the sake of simplicity, however, in this test the acceleration and 

deceleration of vehicles are not simulated. This assumption can be easily relaxed, however, by 

replacing the actual green time by the effective green time. 

5. The signal is assumed to have the same number of stages as the incoming links. 

Within each stage, only one link is allowed to move.  

As illustrated in Section 3.4.2.2, a simple phase configuration is adopted. This simple phase 

configuration makes sure that all junctions work as diverge junctions, such that only one link 

is allowed to move each time. This assumption guarantees the validity of Equation (3.23) and 

(3.24). The current phase configuration can be replaced with a more complex but realistic 

phase structure, however, although the equations representing the junction dynamics would 
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need to be modified by introducing a new concept of merge junctions. For the simulation of 

traffic dynamics at a merge junction refer to Han, Piccoli & Szeto (2015). 

3.4.3.2 State variables and objectives 

The performance of the surrogate model for real time control relies on the careful selection of 

traffic state variables, which depends on the characteristics of traffic networks. Traffic state 

variables should have the ability to reflect the current traffic condition accurately. The 

following sections illustrate the selection of state variables and objectives. 

State variables 

Since LKWM employs the flow and the integral of flow as the primary variables, a number of 

traffic states can be simulated. Here, the relative occupancy (RO) is considered as the state 

variable for link  :  

       
                   

    
   

 (3.37) 

where          and            are, respectively, the cumulative entering and exiting 

vehicle counts of link    The difference between          and            denotes the 

number of vehicles remaining in the link at time t, and thus, by definition, the division 

between the number of vehicles remaining in the link and the length of the link 

                   

  
 is the current density of the link.    and   

   
 denote link length and jam 

density, respectively. The relative occupancy is a measure of link-level congestion. The RO is 

chosen over link flow (e.g. entrance or exit flow) in this thesis because the latter does not 

correspond to a unique traffic state (Lighthill & Whitham, 1955), and does not correctly 

reflect traffic congestion in the case of vehicle spillback (Han et al., 2016b).  

In this case study, the RO of all eleven entrance links of the network, as well as the eight 

major links, are compiled as the state vector of the traffic system (see Figure 3.8). The reason 
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that RO is used instead of inflow is because of the possibility of vehicle spillback on these 

links (Han et al., 2016b), in which case flow is not a reliable indicator of congestion. To 

account for the latency effect of traffic dynamics, and to eliminate the effect of on-and-off 

signal controls, the RO of each link is averaged over the past 20 time steps (100 s), which 

equals a full signal cycle time.  

Objectives 

The surrogate-based optimisation is performed at the end of every control period, and the 

following quantity was chosen as its objective to be maximised: 

                       
         

       

 (3.38) 

where   
       denotes the outflow of link   during time step  ,    is the step size,    

denotes the set of time steps in control period  .   denotes the set of exit links of the 

network, and hence network throughput represents the total number of vehicles leaving the 

network within the control period  . This quantity may be measured in a real-world network 

through flow detectors (e.g. inductive loops or microwave detectors).  

3.4.4 Surrogate model selection and construction 

In this test, there were 19 state variables and 19 signal variables. Therefore, lower order 

polynomials cannot approximate the complex relationship accurately. High order polynomials 

are not applicable either since too many parameters need to be estimated. Both RBF and 

Kriging have more complex structures and are more appropriate to deal with this problem. 

Compared with RBF, Kriging has extra parameters to represent the width of each dimension 

and allows the variables that are more crucial to the network performance to be identified. In 

addition, the Gaussian function in the Kriging model permits the prediction error of any point 

in the design space to be estimated without any true observations. The Kriging model was 
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therefore selected in this work.  

Firstly, the surrogate model was constructed with eleven training points. Then, during each 

infill iteration, ten infill points were selected from 550 candidate points according to the infill 

strategy described in Section 3.3.2. For a Kriging model, the prediction error of any point in 

the design space can be easily estimated without needing to recall the simulation model. The 

infill stopped when the total number of training points reached 451, as no significant 

improvement in global accuracy could be achieved by adding additionally points. Figure 3.12 

shows the detailed steps of the Kriging model construction, and the data communication 

between each step. 

 

Figure 3.12 Data communication of Kriging model construction 
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 Structural uncertainty: uncertainty caused by the simplifications and assumptions 

made to the surrogate model. The more complex the surrogate model structure is, the 

more realistic it will be. On the contrary, the more complex the actual network, the more 

difficult it is for surrogate model to capture the dynamics accurately. The selection of the 

model is problem-dependent. 

 Parameter uncertainty: uncertainty related to model parameters. The parameters of the 

surrogate model are completely determined by the samples selected to train the model. 

Parameter uncertainty refers to errors in the parameter estimation and boundary 

conditions. 

 Improper sampling: uncertainty due to improper sampling. As a data-driven model, the 

quality of the surrogate model is affected by the quality of the samples used to construct 

the surrogate model. 

Since these uncertainties are the major causes of estimation error, their quantification by 

external validation makes it possible to assess the estimation ability of surrogate models. The 

parameters in surrogate models are calibrated by training points, and parameter uncertainty 

mainly arises due to a lack of training points. It can therefore be reduced by adding more 

points to the training set. Because of the inherent structural uncertainty of surrogate models, 

however, the estimation error cannot be completely eliminated. The sampling arrangement 

also affects the estimation capability of surrogate models. Hence, the behaviours of surrogate 

models with different training points will be slightly different. If several surrogate models 

with the same number of training points but different sample arrangements are constructed, 

differences in their performance indicate the influence of sampling on approximation 

accuracy. 

3.4.5 Result analysis 

Approximation accuracy 

To average the influence of initial samples, 50 Kriging models with randomly generated 
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initial samples were established. In order to avoid the influence of the sampling of candidate 

points, all the Kriging models selected infill points from the same set of candidate points. The 

approximation accuracy of Kriging models was evaluated with 11000 randomly-generated 

testing points. MAPE and RMSE were calculated to determine how accuracy of the model.  

Figure 3.13 and Figure 3.14 below show the evolution of the average RMSE and MAPE of 50 

Kriging models with the increase of training points. The 95% confidence interval, which is 

defined as                  , is also drawn in the figure. The light orange curves 

represent how the RMSE and MAPE of the individual Kriging models varied. It can be seen 

that both average RMSE and MAPE decrease with the growth of training points. The results 

of the test show that the proposed infill strategy can enhance the global accuracy effectively, 

and that parameter uncertainty can be reduced if more points are added to the training set. 

When the number of training points was increased from 11 to 451, the RMSE and MAPE 

averages decreased by around 40% and 37%, respectively. Ultimately, the RMSE was less 

than 12, and the MAPE less than 3.5%, which indicates that the applied Kriging model had 

high estimation capability and low inherent structural uncertainty. It is also important to 

observe the flattening trends of the average RMSE/MAPE, seen in Figure 3.13 and Figure 

3.14, which highlights the need to select the appropriate amount of infill points to balance the 

accuracy and complexity of the model. In other words, the contribution of the same number of 

infill points to the improvement of accuracy becomes less significant when there are already a 

large number of points in the training set. Thus, it is important to determine when to stop the 

infill strategy.  

Moreover, the area enclosed by the 95% confidence interval becomes smaller as the number 

of training points is increased. In the beginning, the large enclosed region indicates that the 50 

Kriging models performed quite differently due to the uncertainty of initial sampling, 

confirming that the Kriging model is sensitive to the arrangement of initial samples. The area 

bounded by the confidence interval decreased, however, as the number of points increased. 

This phenomenon shows that increasing the number of training points decreases the variance 

of estimation capability, and reduces the sensitivity of Kriging models to initial samples. This 
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decreasing trend of variance can be seen more clearly from Figure 3.15 and Figure 3.16, 

which show the coefficient of variation of RMSE and MAPE. The coefficient of variation (CV) 

is the division between standard deviation and mean, as expressed in Equation (3.39). It 

describes the degree of dispersion around the mean value. The curve of CV shows an overall 

decreasing trend with fluctuations around it, which are caused by the random components in 

the sampling process. The CV of RMSE and MAPE ultimately coalesce around 5%, which is 

low enough to conclude that Kriging models have similar estimation capability when they all 

have 451 training points. 

   
                  

    
      (3.39) 

 

Figure 3.13 The RMSE of the 50 Kriging models with different numbers of infill points. The 

centreline represents the average, and the upper and lower bounds represent the 95% 

confidence interval 
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Figure 3.14 The MAPE of the 50 Kriging models with different numbers of infill points. The 

centreline represents the average, and the upper and lower bounds represent the 95% 

confidence interval 

 

Figure 3.15 Average coefficient of variation of RMSE of Kriging models with different 

number of infill points 
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Figure 3.16 Average coefficient of variation of the MAPE of Kriging models with different 

numbers of infill points 

Figure 3.17 and Figure 3.18 show the cumulative distribution function of the RMSE and 

MAPE of Kriging model with 201, 251, 351 and 451 training points over 50 replications. 

They show as the number of training points were increased, the average values of the MAPE 

and RMSE decreased and their distribution improved. From an overall perspective, Kriging 

models with more training points have better estimation capability than those with fewer 

points. The curve of Kriging-251 has similar distances to those of Kriging-201 and 

Kriging-351, which indicates that levels of improvements on global accuracy are similar. In 

addition, adding 100 points to Kriging-351 results in little improvement in estimation 

accuracy, since the curves of Kriging-351 and Kriging-451 are close to each other. This leads 

to the conclusion that the contribution that the same number of infill points can make to the 

improvement of global accuracy decreases as the number of training points increases.  
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Figure 3.17 Empirical CDF plot of the MAPE of Kriging models with 201, 251, 351 and 451 

training points 

 

Figure 3.18 Empirical CDF plot of the RMSE of Kriging models with 201, 251, 351 and 451 

training points 

In order to see in detail how MAPE varies, three Kriging models were selected randomly and 

the evolution of MAPE recorded and plotted in Figure 3.19. The curves show a global 

downward trend as the number of training points grows. Each individual curve, however, 

displays small fluctuations in the process of adding infill points. This means that, sometimes, 
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MAPE increases when specific infill points are added. This phenomenon has been mentioned 

in the book written by Forrester, Sobester & Keane (2008). They found there is a good deal of 

scatter in the trend of lower MAPE when there are a larger number of training points in the 

Kriging prediction due to the random elements in the sampling plan generation and Kriging 

parameter tuning. This scattering effect within each individual Kriging model leads to the 

fluctuations in CV seen in Figure 3.15 and Figure 3.16.  

 

Figure 3.19 MAPE variations of three randomly-selected Kriging models 

Computational Efficiency 

One of the advantages of Kriging model is its high efficiency. The following results 

demonstrate how efficient it is in terms of model construction and estimation. In Figure 3.20, 

the computation time for model construction exhibits a nonlinear growth as more training 

points are involved. The most time-consuming part of Kriging model construction is the 

generation of the covariance matrix. The size of the covariance matrix depends on the total 

number of training points: therefore the construction time grows exponentially with the 

number of training points. Even for the Kriging model with 451 points, however, the 

construction time was only 20 s, which is short enough to prove the efficiency of Kriging 

model in respect to model construction. 



114 
 

 

Figure 3.20 Construction time against the number of training points 

The estimation time of LKWM, as well as Kriging models with 201, 251, 351 and 451 

training points, are summarised in Table 3.2. The data in the last column is the time consumed 

by LKWM to simulate the traffic dynamics for five minutes. To average the randomness of 

estimation time, 100 replications were performed. The Kriging model with more training 

points was found to have a longer estimation time. Even though the correlation matrix 

between the training points was already stored before estimation, the correlation matrix 

between all the training points and the untried point still needed to be constructed, and this is 

also affected by the number of training points. This is the reason why the estimation time 

increases when the Kriging model is constructed with more training points. Nonetheless, even 

for the Kriging model with 451 points, the estimation time of             s is much 

shorter than the average estimation time of LKWM. Furthermore, if LKWM were to be 

replaced with a microscopic simulation model, the estimation time would become even longer. 

The Kriging model thus has the advantage of high computational efficiency, which makes it 

suitable for heuristic optimisation that needs to calculate the fitness a large number of times.  
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 201 251 351 451 LKWM 

Estimation Time 

         
1.1637 1.3875 1.5032 1.9432 430.17 

Table 3.2 Average estimation time of Kriging models with 201, 251, 351 and 451 training 

points and LKWM 

3.5 Conclusions 

This chapter has proposed a conceptual framework of surrogate modelling for real time 

optimisation. Training points sampling, surrogate model construction, model evaluation and 

infill strategy are discussed in detail. The key features of the proposed framework are 

summarised as follows: 

 In contrast to other problems that use uniform sampling across the entire design space, 

traffic demands are generated according to the feature distribution. This distribution can 

be obtained directly from historical data or other indirectly-related information. With this 

sampling principle, more points can be sampled around the region with a higher 

probability.  

 The signal control variables are sampled around the benchmark, which is generated 

off-line. Since the ultimate goal of the surrogate model is to achieve real time signal 

control, the baseline signal helps to identify the area that is more likely to find the 

optimal solution, meaning that the number of sample points can be reduced.  

 In contrast to surrogate models used for strategic design, models for real time 

optimisation need to construct the response surface between the traffic state, control 

variables and network performance. Surrogate models do not need any additional 

prediction model to estimate the traffic states; they merely use the traffic state at the end 

of the previous control period to approximate the relationship between the traffic states 

      , signal control variables      and performance      directly. 

 A new multi-point candidate-based infill strategy was proposed. In this strategy, for each 
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infill iteration, k infill points with the largest estimation error are selected from K 

candidate points. Additional constraints on the minimum distance between infill points 

are made to avoid clustering and ensure sample diversity. The surrogate model can then 

be re-trained with the new set of training points. In order to ensure the performance of 

the surrogate model in real time optimisation, global accuracy is also tested. 

An empirical test was carried out on a test network. The experimental results of the test show 

that the proposed infill strategy is effective at improving the global accuracy of the Kriging 

model. The degree of improvement decreases as the number of training points increases, 

however. Due to the simplification of the surrogate model, the estimation error can never drop 

to zero.  

The estimation errors of Kriging model eventually decline to a small value, which indicates 

that the proposed Kriging model can interpret the complex dynamics accurately. Due to 

sampling uncertainty, initial samples have a high influence on the Kriging model, but this 

influence decreases as more infill points are added. It can be reasonably concluded that the 

Kriging models can have a similar level of global accuracy after several iterations of infill, 

regardless of the arrangement of initial samples. 

The proposed Kriging model shows its superiority in time-efficiency to the simulation model. 

It can be built in less than 20 s. All the parameters are tuned according to the training data 

automatically without additional manual calibration. It usually takes a much longer time to 

construct a simulation model and calibrate its parameters. In addition, the estimation time of 

Kriging model is much shorter than that of the simulation model, which makes Kriging model 

more suitable for real time optimisation as it needs to be recalled a large number of times. The 

following chapter introduces the real time signal control based on the surrogate model 

proposed in this chapter. 
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Chapter 4  

Real time signal control with surrogate model 

In order to demonstrate the feasibility and effectiveness of the surrogate modelling techniques 

proposed in Chapter 3 for real time signal control, this chapter develops a surrogate-based real 

time signal control framework. The only part of this real time signal control that is carried out 

on-line is the optimisation process, which is bounded by the red dashed line in Figure 4.1. A 

modified Particle Swarm Optimisation (PSO) is developed to generate reliable signal plans 

efficiently. The same network used in Chapter 3 is used again for numerical studies in this 

chapter to evaluate the performance of the proposed signal control on network management in 

terms of total throughput, average delay and weighted throughput.  

Chapter 4 is structured as follows. Section 4.1 presents the optimisation framework of the 

problem based on the surrogate model proposed in Chapter 3. Section 4.2 discusses the 

standard algorithm of PSO. Section 4.3 proposes a modified PSO specially designed for 

surrogate-based real time signal control. A numerical test is conducted in Section 4.4 to 

evaluate the performance and efficiency of the signal control developed in Section 4.1. Finally, 

Section 4.5 conducts multi-scenario analyses to validate the robustness of the proposed signal 

control to different levels of state representation, network saturation, demand variability and 

influence of sensitivity to estimation error and baseline signal. 



118 
 

 

Figure 4.1 Framework of real time optimisation 

4.1 Optimisation problem formulation 

According to the definition given by Schneider & Kirkpatric (2006), ‘optimisation’ is here 

defined as the approach to find a quite good (i.e. near-optimal solution), or optimal, solution 

to the proposed problem. Optimisation methods can be classified into two categories: exact 

and heuristic approaches. Compared to the exact approach, which always leads to a solution 

that can be proved mathematically to be optimal, the heuristic approach can only generate a 

near-optimal solution. The heuristic approach cannot prove the optimality of the solution and 

even does not know how far it is from the true optimum. In this thesis, the result obtained 

when the optimisation process finally converges is called the ‘optimal solution’ or ‘optimum’, 

even though, in fact, it might not be the true optimal solution of the problem. For the sake of 

distinction, the optimal solution that is obtained analytically and can be proved to be optimal 

is called the ‘true optimal solution’ or ‘true optimum’. 

When the real time traffic data (such as loop data from different sensors) are received, a 

pre-processing tool maps them to a given traffic state,  . The next step is to solve an 

optimisation problem, the preliminary form of which is given in Equation (4.1). The optimal 
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solution,   , is obtained by selecting the one with a minimum objective value under the given 

real time traffic state from a set of possible solutions. Here, for generality, the case of 

minimisation is considered. 

               
 

           

 

(4.1) 

The optimisation process of the real time signal control is slightly different from that of 

fixed-time signal control. For a fixed-time signal control, the traffic condition is known a 

priori, so the traffic states are not a part of the input variables of surrogate models. The 

optimisation process is usually integrated with the infill procedure (Osorio & Bierlaire, 2013), 

such that the infill points are selected on-the-fly to improve the accuracy while at the same 

time moving towards the global optimal. No conventional optimisation methods are involved 

in this kind of problem as there is no independent optimisation process. For real time signal 

control and optimisation, however, traffic states are an essential component of the input 

variables. Since the global optimum varies for different traffic states, on-line optimisation 

cannot be intertwined with infill as the traffic states change too frequently. As such, the 

on-line optimisation amounts to a regular nonlinear and non-convex optimisation problem. 

This can be solved easily by using a cheaply computable surrogate model in place of the 

simulation model. 

To find a near-optimal solution within a reasonable amount of time, a heuristic method is 

employed for the problem for the following reason. Firstly, the heuristic approach only needs 

zeroth order information, thus it is suitable for this problem since the first and second order 

information of the objective function and constraints are unavailable. Secondly, the heuristic 

approach is problem independent, and hence can be applied to different problems flexibly and 

accommodate various constraints. Finally, the heuristic approach is chosen for its shorter 

converge time than the exact approach. Since the signal optimisation problem usually 

contains a large number of variables, it is not necessary, and even impossible, to find a ‘true’ 

optimal solution in the context of real time signal control optimisation. In addition, due to the 

stochasticity of the traffic network, the true optimal solution obtained by the optimisation 

process might not be the actual true optimum of the traffic system when it is implemented. In 
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short, it is not necessary to over-emphasise the optimality of the solution: for this particular 

problem, efficiency is more important than optimality. As a result, it is appropriate to use the 

heuristic approach for the real time signal control system. 

  

4.2 Particle Swarm Optimisation 

For a non-convex optimisation problem with a large searching space, population-based 

methods such as genetic algorithm (GA) and particle swarm optimisation (PSO) are more 

suitable. PSO (Eberhart & Kennedy, 1995; Kennedy & Eberhart, 1995) is a population-based 

optimisation method, which emulates the social behaviour of animal swarms and searches for 

near-optimal solutions through swarm intelligence. By allowing each particle in the swarm to 

update their positions and velocities iteratively according to their own, and the group’s, best 

positions, PSO does not require any gradient information and offers a flexible trade-off 

between optimality and solution efficiency (Banks et al., 2007). It starts at multiple points so 

as to increase the probability of finding the true optimum. Compared with GA, PSO only 

shares the best position within the swarm, therefore it converges faster than GA. In addition, it 

has few parameters to tune (Ercan, 2009). As a result, PSO is selected in this research, since it 

is simple, fast and easy to implement. The following section introduces the standard algorithm 

for PSO. Figure 4.2 shows the overall flowchart of the PSO process, which iterates until the 

stopping criteria are met. Each step of PSO is discussed in the following part. 
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Figure 4.2 The flowchart of PSO 

Notations of PSO equations: 

  
  Position of the i-th particle in iteration k 

  
  Velocity of the i-th particle in iteration k 

     Fitness function 

  Inertia weight 

   Cognitive learning factor 

   Social learning factor 

   Personal best position of the i-th particle 

   Global best position 

     Maximum velocity 

Given the notations above, the first step of PSO is to generate a swarm with m particles, of 
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which the initial positions and velocities are       
    

      
   and 

      
    

      
  . The initial fitness value can then be calculated as 

        
        

        
   , where      is the fitness function. 

For each iteration, the position and velocity of each particle are updated with the following 

equations: 

  
       

         
    

          
    

   (4.2) 

  
                               (4.3) 

where   
  and   

  are the current velocity and position of particle i in the k-th iteration, 

respectively.   
  is the personal best position of the i-the particle among all the positions it 

has visited within the previous k iterations.   
  is the global best position, which is the best 

one from all the personal best positions.    and    are the learning factors. The former is 

the cognitive learning factor, while the latter is the social learning factor. The relative value 

between    and    indicates the relative importance of the   
  and   

  on the update.    

and    are both random values generated uniformly between      . They are randomly 

generated every iteration to represent the stochasticity of the particle movement. Equation 

(4.2) is the velocity update equation, which has three terms. The first term represents the 

influence of the current velocity on the updated velocity, in which   is the inertia weight. A 

large value of   indicates the strong willingness of the particle to follow the current 

searching direction. In contrast, the particle with low   tends to move towards the personal 

best position and global best position. The value of   controls the exploration and 

exploitation of the searching. The second and the third parts represent the learning ability of 

the particle from its own experience and swarm experience. They represent the competition 

and cooperation between particles, respectively.   

The velocity is limited within the range of                , where      is a constant that 
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denotes the maximum velocity at which the particles can move. The sign represents the 

direction of movement.      can also control the global and local searching capabilities. A 

large value of      allows a particle to move a long distance in each iteration, such that it 

has a good global searching ability. Although a high velocity means that a particle may escape 

easily from the local optimum, it also makes it easier for that particle to fly over and miss the 

global optimum. A small value of     , meanwhile, limits the area in which a particle can 

search, such that particles have high precision on searching but a high probability of being 

trapped at local optimum. 

Once the velocity is updated, the position can be calculated with the equation: 

  
      

    
  (4.4) 

With the new position, Equation (4.5) shows the update of the personal best position. The new 

personal best position   
    can be obtained by comparing the original personal best position 

  
  with the new position of the particle   

   . If the fitness of   
    is smaller than that of 

the   
 ,   

    becomes the new personal best position, otherwise the original personal best 

is maintained. The update of the global best position follows a similar procedure, as shown in 

Equation (4.6). Algorithm 4.1 summarises the detailed procedures of PSO optimisation. 
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Algorithm 4.1: Standard PSO Optimisation  

Step 1 Set the parameter value of  ,   ,    and     . Define the number of particles. 

Step 2 Initialise the position    and velocity    Let    . 

Step 3 Calculate the fitness value   . 

Step 4 Update the personal best position   
    and global pest position   

    with 

Equation (4.5) and (4.6). 

Step 5 Update the position      and velocity      with Equation (4.2) and (4.4). 

Step 6 Check if the stopping criterion is met. If yes, output   
    as the final solution, if 

not, go back to step 3 and      . 

4.3 Modified PSO for surrogate-based real time signal control 

This section introduces the application of PSO in the surrogate-based real time signal control 

system. Several modifications are discussed in detail. 

When PSO is applied to solve a real time signal optimisation problem, the particle represents 

the signal plan. For a green time optimisation problem, each dimension of the particle denotes 

the green time of a stage of a signalised intersection, as shown in Equation (4.7). The final 

target of PSO is to search for a signal plan good enough to minimise the specific objective 

function.  

               (4.7) 

The problem of real time signal control has strict restrictions on computational time. With the 

rapid changes in traffic conditions mean that it is necessary to make the decision in a few 

seconds, such that the signal control can adapt to the current traffic condition, otherwise the 

traffic data collected will lose its representativeness. Even though PSO has advantages in its 

time efficiency, to further reduce the convergence time, two additional measures are taken.  

The first measure is to sample the initial positions of the particles following a normal 
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distribution around the baseline signal plan, which is similar to the signal sampling process 

for surrogate model construction illustrated in Section 4.2.2. The baseline signal and the 

normal distribution of PSO need to be the same as for surrogate model construction. Due to 

the local sampling effect of the signal control variables, the sample density of the entire 

design space is not uniform. Using the same sampling approach for PSO as for the surrogate 

model construction ensures that the search for the optimal solution is concentrated in the 

region with sufficient samples and high accuracy. Moreover, initial particles of PSO are 

sampled in the region that is likely to find the optimal solution, which can shorten the 

convergence time. 

The second measure is to use a dynamic inertia weight  . The value of   decreases in each 

iteration. In the beginning, the inertia weight is given a large value, such that particles tend to 

explore new regions rather than search the regions that have already been visited. The ability 

of local searching is improved with time, by gradually decreasing the value of the inertia 

weight to ensure that the searching is concentrated in the regions with better fitness values. In 

Equation (4.8),   is the parameter representing the decreasing rate of inertia weight, the 

lower limit      is set to limit the minimum value of  . 

         (4.8) 

Although these two measures can reduce the convergence time, they may also lead to the 

premature converge of PSO. The first measure reduces the diversity of particles, and the 

second one emphasises the local search. This, however, is a trade-off between optimality and 

efficiency. In the case of real time signal control, efficiency overweighs the optimality. 

It is worth noting that PSO can only find the optimal solution of the surrogate model rather 

than that of the underlying problem. How close the optimal solutions of the surrogate model 

and the underlying problem are dependent on the accuracy of the surrogate model’s 

interpretation of the underlying problem. The inevitable estimation error of the surrogate 

model thus propagates to the optimisation stage, causing the derived solution to be 
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sub-optimal or even un-desirable. Furthermore, in the case of surrogate-based optimisation, 

the reliability (i.e. estimation error) of the response surface also needs to be considered. The 

optimal solution is not the one with the best objectives only; it should also have a low 

estimation error. The revised fitness function is shown in Equation (4.9), where    and   

are the estimated output and estimation error, respectively. Parameter A is the weighting 

parameter that balances optimality and reliability. It represents the sensitivity to the estimation 

error. When A decreases to zero, the optimal solution is selected purely based purely on the 

optimality. 

                   (4.9) 

The stopping criteria are that the maximum number of iterations has been reached or the 

relative improvement of fitness value is less than a pre-defined threshold for several 

successive numbers of iterations, as shown in Equation (4.10). 

    
       

    

    
  

   (4.10) 

Algorithm 4.2 summarises the detailed procedures of the modified PSO designed for 

surrogate-based real time signal control. 

Algorithm 4.2: PSO for surrogate-based signal control  

Step 1 Set the parameter value of  , A   ,    and     . Define the number of particles 

Step 2 Initialise the position   , velocity    and inertia weight   . Let    . 

Step 3 Project    to the feasible region  . 

Step 4 Calculate the estimated output    with the surrogate model and estimation error 

   

Step 5 Calculate the fitness value    with Equation (4.8). 

Step 6 Update inertia weight      with Equation (4.7). 
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Step 7 Update the position      and velocity      with equation (4.2) and (4.4). 

Step 8 Project      to the feasible region   

Step 9 Check if the stopping criterion is met. If yes, output   
    as final solution, if not, 

go back to step 3 and      . 

4.4 Simulation test 

In this part, a simulation test is conducted on the same network as used in Chapter 3. A 

Kriging model is randomly selected from the 50 models constructed in Chapter 3 and used for 

fitness estimation. In Section 4.4.1, the experimental setup is introduced. Section 4.4.2 

reviews the assumptions made to this simulation test. Section 4.4.3 assesses the effectiveness 

of the proposed real time signal control on the management of total throughput, average delay 

and weighted throughput and optimisation efficiency.  

4.4.1 Set up of the experiment 

Figure 4.3 shows the optimisation procedures of the real time signal based on surrogate 

modelling. In a given control period, with the known signal control and demands, the traffic 

states (i.e. RO) at the end of the control period can be estimated by the simulation model. 

Based on the estimated ROs, the modified PSO approach is used to generate the optimal 

signal control for the next control period. In this experiment, the optimisation via the 

modified PSO approach can be expressed as Equation (4.10), where    is the estimated total 

throughput of the whole control period and   is the estimation error, under the condition that 

traffic state is      and signal decision is  . When the weighting parameter, A, decreases to 

zero, Equation (4.11) is transformed into Equation (4.1). The estimation error can be easily 

estimated with the Kriging model. These procedures are repeated until the end of the 

experiment. 

                      
 

                         (4.11) 
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Figure 4.3 Real time signal control approach based on surrogate modelling 

In this experiment, the simulation setup consists of 50 replications of the morning peak hour 

(8-9 am) on a typical working day, following a 400 s warming-up session. The one-hour 

session is divided into twelve control periods, each of which lasts for five minutes. The signal 

plan remains unchanged throughout the control period until a new control period begins. The 

traffic state is the average RO of the previous 20 time steps of eleven entrance links and eight 

main links to account for the temporal variation due to the change of signals, which is the 

same as the one used in Section 3.4. 

In order to evaluate the performance of the traffic network over the entire analysis period  , 

the following three key performance indicators (KPIs) are considered: 

                       
         

      

 (4.12) 

                     
 

   
   

         

      

 (4.13) 

              
     

        
               

 
     

            
           

 (4.14) 
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where I denotes the set of entrance links, and   
  

    and   
      are, respectively, the 

cumulative entering and exiting vehicle counts at time step T of link i. The weighted 

throughput assigns higher weights to vehicles leaving the network at an earlier time, and 

therefore indirectly encourages lower delays (Han & Gayah, 2015). In the expression of 

average delay (Equation (4.14)), the numerator denotes total link travel times (in veh s), 

which is the integral of the subtraction between cumulative entering vehicles and cumulative 

exiting vehicles. The shaded area in Figure 4.4, bounded by the   
  

 and   
     curves, 

represents the total travel time of all the vehicles that have been in the link. The denominator 

denotes the average number of trips (in veh). It is the average of the cumulative entering and 

exiting vehicles counts of the link. If only exiting vehicles are considered, the average delay 

will be overestimated, as the vehicles remaining in the link also contribute to the total travel 

time. On the other hand, the average delay will be underestimated if all the vehicles that have 

entered the link are considered, as some of them have not finished their trips. Therefore, the 

average of   
  

 and   
     is used to estimate the average delay. 

 

Figure 4.4 Demonstration of total travel time 

TThe KPIs in Equations (4.13) – (4.14) are used to evaluate the network performance and 

compare the effectiveness of different signal control strategies. Note that they are not used 

directly as the objective of the surrogate-based optimisation, for the following reasons. The 

Cumulative
vehicles (Veh) Nup

Ndown

T

Nup(t)

Ndown(t)

t

dt



130 
 

weighted throughput, with time index in its denominator, is affected by the total number of 

time steps in the control period. If the length of the control period is relatively long, or the 

time interval is too short, the huge number of time steps will diminish the contribution of the 

last few time steps to the overall objectives. Then, in the latter stage of the control period, 

traffic control would not be able to manage the traffic networks effectively, potentially 

leading to undesirable local congestion within the network. The average travel time in 

Equation (4.14) cannot be easily estimated based on real-world measurements, limiting the 

model-free capabilities of surrogates. Moreover, Girianna & Benekohal (2004) pointed out 

that, under oversaturated conditions, queue formation and discharge should be set as the 

prime objective instead of delay minimisation, meaning that average delay is not chosen as 

the objective either. 

In this experiment, the proposed real time signal control is compared with three benchmarks: 

 Scenario 1: The fixed-time signal control based on the real-world test network in 

Glasgow, as illustrated in Liu et al. (2015), referred to here as ‘GCC’. 

 Scenario 2: The fixed-time signal control where each intersection is controlled 

independently following the equi-saturation policy (Webster, 1958), referred to here 

as ‘Webster’.  

 Scenario 3: The surrogate-based real time signal control with Genetic Algorithm as 

the optimiser, referred to here as ‘GA’. 

The optimisation time of the Kriging-based signal control and simulation-based signal control 

for one control period is shown in order to verify the time efficiency of the Kriging-based 

signal control. 

4.4.2 Simulation environment 

The primary purposes of the simulation model are to simulate the traffic dynamics of the 

traffic network and evaluate the performance of the signal plan. In this experiment, LKWM is 

employed to evaluate signal control decisions. This is the same model that was used in 
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Section 3.4.3.1 to capture traffic dynamics for the construction of the surrogate model. The 

choice of LKWM as the simulation platform avoids introducing unnecessary uncertainties 

that are not related to the design of the signal control framework. Suppose a distinct 

simulation model rather than LKWM were to be used as the simulation environment for 

optimisation. In that case, the discrepancy between the two simulation models would add an 

extra source of uncertainty and it would be difficult to distinguish whether the performance 

differences between the designed signal control systems and benchmarks were due to the 

design of the algorithm or to the poor approximation of the surrogate model to the actual 

traffic dynamics. 

Since the objective of this signal control system is to manage the network-level performance 

(i.e. total throughput), it is sufficient to use an LKWM that simulates the traffic dynamics at a 

macro level. If necessary, however, LKWM can be replaced by a model with a finer 

resolution that relaxes the assumption of homogeneous traffic flow. Replacing the simulation 

platform with a more refined model will not significantly change the findings, as long as the 

simulation models for both interpretation of the traffic dynamics and evaluation of signal 

control decisions are well calibrated with the same set of data, to ensure that the discrepancy 

between them is low enough to be neglected. 

4.4.3 General assumptions 

Besides the assumptions made in Section 3.4.3.1, the following assumptions are made for the 

empirical test, such that the key features to investigate can be highlighted, while some less 

critical features are neglected for simplicity. 

1. Assume that only the stage green time is optimised.  

For cyclic signal control, the signal plan is defined by the following concepts: 

 Cycle time: the length of time for a complete signal plan 

 Stage green time: the length of the green time of each stage 

 Offset: the time difference between the start of two stages of adjacent intersections 
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 Phase sequence: the sequence of the stages  

In this experiment, only the optimisation of stage green time is considered. All the other 

signal timing variables are assumed to be fixed. If all the signal time variables were optimised 

at the same time, the increase in the number of variables would increase the dimensions of the 

design space. In that case, real time optimisation becomes unavailable. The optimisations of 

other parameters can be achieved by using different optimisers running in parallel and 

realised following the same procedure. The optimisation of other signal timing variables will 

be discussed in a future study. 

2. Assume that the traffic data can be collected and used directly.  

In reality, the installation of detectors is restricted by practical constraints such as network 

geometry. Because of this, these constraints need to be taken into account when selecting 

input variables. In this research, due to the lack of information, it is assumed that the traffic 

data required can be collected directly, such that the selection of input variables is completely 

based on the analytical analysis. In practice, the relative occupancy can be estimated by 

installing detectors at the entrance and exit of the link. If an input variable cannot be collected 

directly by the sensors, then its importance to the approximation accuracy of the surrogate 

model needs to be evaluated. If it is not crucial, it can be removed from the set of input 

variables, or it needs to be estimated from other sources of information. The multi-scenario 

analysis in Section 4.5.1 shows that there is no need to install detectors at all the links. 

In addition, it is assumed that the data collected are of high quality and can be used for 

optimisation directly. In a real-world application, the traffic data collected by detectors may 

contain faults. Since low-quality traffic data can affect the reliability of the signal control 

system, a data pre-processing system needs to be used to identify and correct faulty data 

before they are fed into the signal control system. Abnormal data can be identified and 

removed based on traffic flow characteristics. All missing data can be estimated based on the 

temporal and spatial characteristics of traffic data (Li et al., 2018). A large amount of missing 

or abnormal data suggests that the functionality of the sensors should be checked. Under this 
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condition, in order to avoid the adverse effects arising from poor quality data, all the data 

would need to be removed and a backup signal plan recalled until the problem has been 

solved. 

3. Assume that updates to the signal plan happen instantaneously. 

The assumption that signal updates happen instantaneously allows the switch to a new control 

period and the update of the signal plan to occur simultaneously. Under this condition, it is 

not necessary to conduct the optimisation before the end of the control period, as with 

SCOOT, to account for the optimisation time. In fact, the optimisation time is much shorter 

than the minimum green time. With the fixed phase sequence, the assumption is valid, since 

the new signal plan can be generated before the end of the first stage.  

4. Assume that the signal control system is operated in normal conditions. 

In reality, system failure is a significant threat to the real time signal control system, 

especially for centralised signal control. During the practical implementation, a back-up mode 

can be set and activated when a system failure is detected. In this experiment, however, it is 

assumed that the signal control system always works normally. 

4.4.4 Input parameters and stopping criteria of PSO 

The input variable of PSO is green split. Green split is the proportion of stage green time to 

the cycle time. The sum of the green splits of all the stages at each intersection is one. Due to 

the non-uniform approximation accuracy of the searching space, the maximum velocity is 

given with a low value in order to avoid the result deviation caused by the particles flying to 

the region with low accuracy. The large number of swarm particles guarantees the global 

searching ability. 

Value of PSO Parameters 

       Initial inertia weight 

       Decreasing rate of inertia weight 
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         Minimum inertia weight 

    Weighting parameter 

         Cognitive learning factor 

         Social learning factor 

      Number of swarm particles 

          Maximum velocity 

                                Threshold of relative improvement 

 

Stopping Criteria 

 Maximum number of 20 iterations has been reached. 

 The relative improvement of fitness is lower than the threshold for 15 successive 

iterations. 

4.4.5 Result analysis 

In this test, due to its ease of reference, the notion ‘GCC’ (Glasgow City Council) is used to 

represent the fixed-time baseline signal. ‘GCC’ is involved in the initial sampling of PSO to 

accelerate the convergence. The four Kriging models, trained by 201, 251, 351 and 451 

training points respectively, are used for signal optimisation. In the following sections, 

Kriging-n represents the Kriging-based signal control with n training points, where n=201, 

251, 351 and 451. 

Table 4.1 presents the average performance of the four Kriging-based signal controls, ‘GCC’ 

and ‘Webster’ over 50 replications in terms of total throughput, average delay and weighted 

throughput. It can be seen that since ‘Webster’ only generates a fixed-time signal plan for 

each individual intersection independently, the lack of coordination makes it cannot perform 

as well as ‘GCC’. Moreover, the results show that Kriging-based real time signal controls 

always perform better than the two foxed-time signal controls as they can adapt to the 

variation of the traffic condition. As shown in Table 4.2, the average relative improvements 

indicate that the improvement over ‘GCC’ increases with the number of training points, due 

to the improvement in approximation accuracy. Taking Kriging-451 as an example, the total 
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throughput increases by 5.3%; at the same time, the average time is reduced by 8.1%. Since 

‘GCC’ always performs better than ‘Webster’, only ‘GCC’ will be used as the benchmark in 

the following analysis. 

 Total Throughput Average Delay Weighted Throughput 

Kriging-201 3436.87 Veh 948.81s 5.8984 

Kriging-251 3481.91 Veh 927.77s 5.9273 

Kriging-351 3506.36 Veh 917.35s 5.9415 

Kriging-451 3529.27 Veh 904.89s 5.9641 

GCC 3351.36 Veh 984.21s 5.8377 

Webster 3057.69 Veh 1066.88s 5.7497 

Table 4.1 Average performance of ‘GCC’, ‘Webster’ and Kriging-based real time signal 

controls with 201, 251, 351 and 451 training points (over 50 independent tests) 

 Total Throughput Average Delay Weighted Throughput 

Kriging-201 2.5470% 3.6026% 1.3099% 

Kriging-251 3.8949% 5.7557% 1.5348% 

Kriging-351 4.6278% 6.7087% 1.7772% 

Kriging-451 5.3098% 8.0669% 2.1642% 

Table 4.2 Average relative improvement of Kriging-based real time signal controls with 201, 

251, 351 and 451 training points over ‘GCC’ (over 50 independent tests) 

In order to visualise the comparison between Kriging-based signal controls and ‘GCC’ more 

clearly, the CDF plot of the relative improvement of Kriging-based real time signal controls 

on a total throughput of 50 replications over ‘GCC’ is shown in Figure 4.5. All four 

Kriging-based signal controls have better distributions of total throughput compared with the 
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baseline signal ‘GCC’. As the number of training points increases, there are a higher 

proportion of replications for which the Kriging-based control yields higher total throughput 

compared with ‘GCC’. The performance of Kriging-351 and Kriging-451, in particular, is 

consistently better than that of ‘GCC’. Moreover, the curve becomes steeper as the Kriging 

model is trained by more points, which indicates that the variance of improvement also 

decreases. 

Figure 4.6 displays a CDF plot of the relative improvement on average delay (left) and 

weighted throughput (right) of the same signal controls used to produce Figure 4.5. It can be 

seen that the Kriging-based controls have better traffic management ability in terms of 

average delay and weighted throughput. The performance tends to stabilise, however, since 

the performance gap between two adjacent curves reduces with the increase in training points.  

 

Figure 4.5 Empirical CDF plot of average relative improvement in total throughput 
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Figure 4.6 Empirical CDF plot of average relative improvement in average delay (left) and 

weighted throughput (right) 

In order to prove whether the improvements over ‘GCC’ are statistically significant, a one-tail 

paired t-test is performed. This can show whether the average performance of the 

Kriging-based signal control is statistically better than that of ‘GCC’. For total throughput and 

weighted throughput, a Left-tail t-test is adopted, while for average delay, a Right-tail t-test is 

adopted. 

The null hypothesis and alternative hypothesis of Right-tail t-test are: 

                  
(4.15) 

                  
(4.16) 

The null hypothesis and alternative hypothesis of Left-tail t-test are: 

                  
(4.17) 
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(4.18) 

A 95% confidence interval is set here, such that if the p-value is lower than 0.05, the 

alternative hypothesis is accepted, which means Kriging-based signal control has better 

performance than ‘GCC’. The results in Table 4.3 show that the Kriging-based signal controls 

always have better performance than ‘GCC’, regardless of the number of training points.  

  Total 

Throughput 

Average Delay Weighted 

Throughput 

GCC & 

Kriging-201 

p-value                                        

 Better Better Better 

GCC & 

Kriging-251 

p-value                                        

 Better Better Better 

GCC & 

Kriging-351 

p-value                                        

 Better Better Better 

GCC & 

Kriging-451 

p-value                                        

 Better Better Better 

Table 4.3 T-test results between ‘GCC’ and Kriging-based signal controls trained by 201, 251, 

351 and 451 training points 

During the optimisation, once the optimal solution is obtained, the total throughput 

throughout the control period is estimated by the corresponding Kriging model, and compared 

with the actual performance given by the simulation model. Table 4.4 presents the MAPE 

between the estimated and actual performance. This is averaged across the twelve solutions 

obtained in each replication, and across 50 replications. As expected, MAPE decreases as 

more points are added to the training set.  
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Figure 4.7 shows the CDF plots of the relative error between the estimated and actual 

performance, with a positive value indicating underestimation and a negative value indicating 

overestimation. It can be seen that, as the number of training points grows, the CDF curve 

becomes steeper and moves along the positive direction of the x-axis, which shows that the 

variance of relative error decreases and the proportion of underestimation increases. For a 

throughput maximisation problem, underestimation is preferred to overestimation, as it might 

lead to a point closer to the true optimal point. Both the MAPE and distribution of relative 

error show that approximation accuracy is the main factor affecting the performance of the 

Kriging-based signal control. 

 Kriging-201 Kriging-251 Kriging-351 Kriging-451 

MAPE (%) 8.0517 4.9238 3.7755 2.7427 

Table 4.4 MAPE of Kriging models with 201, 251, 351 and 451 training points (over 50 

independent tests). 

 

Figure 4.7 Empirical CDF plot of relative error of Kriging models with 201, 251, 351 and 451 

training points (positive represents overestimation and negative represents underestimation) 

In order to visualise the propagation of congestion with time, the total queue length is used as 

the indicator of network congestion. This is defined as the total number of vehicles queueing 

outside the network. The average queue length across 50 replications against time is plotted in 
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Figure 4.8. Two signal controls are considered: ‘GCC’ and Kriging-451. The figure shows 

that Kriging-451 can relieve the congestion by allowing queues to dissipate faster compared 

with ‘GCC’. At the end of the simulation, Kriging-451 reduces the total queue length by more 

than 100 vehicles. 

 

Figure 4.8 Total queue length of the network versus time 

Table 4.5 shows the comparison between the performance of signal controls using PSO and 

GA as optimisers. Both of the two scenarios use the Kriging model trained with 451 points to 

estimate network performance of alternative plans. The results show that the one with PSO 

optimiser is slightly better than the one with GA optimizer. 

 Total Throughput Average Delay Weighted Throughput 

Kriging-451 3529.27 Veh 904.89s 5.9641 

GA 3487.64Veh 930.53s 5.9202 

Table 4.5 Average performance of ‘Kriging--451’ and ‘GA’ (over 50 independent tests) 

Table 4.6 shows the average optimisation time of the four Kriging-based signal controls. They 

are compared with ‘GA’, which represents the GA optimiser based on the Kriging model with 

451 training points and the simulation-based optimisation, which is denoted as ‘LKWM’, 

since the LKWM model is employed to simulate the traffic dynamics. The results show that 
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the application of the Kriging model dramatically reduces the optimisation time. The 

simulation-based optimisation spends more than 200 times longer than the Kriging-based 

optimisation. Moreover, from the computational efficiency perspective, ‘GA’ almost doubles 

the time taken by the proposed PSO-based optimiser to generate a signal plan for the entire 

network.  

The Kriging-based approach, however, exhibits an increasing trend in optimisation time with 

the increase in training points. All four cases have the same number of average iterations, 

since PSO terminates by satisfying the first stopping criteria. Thus, estimation time is the only 

factor affecting the optimisation time, which increases with the addition of more points, as 

discussed in Section 3.4.5. 

 Kriging-201 Kriging-251 Kriging-351 Kriging-451 LKWM GA 

Optimisation 

Time (s) 
6.9406 7.4183 7.7214 8.1077 2133.24 13.9343 

Table 4.6 Average optimisation time of the Kriging-based PSO optimiser with a different 

number of training points, against ‘LKWM’ and ‘GA’ 

4.5 Multi-scenario analysis 

In this section, some important parameters are varied so as to draw additional insights into the 

proposed Kriging-based real time signal control. By employing Kriging-451, multi-scenario 

analyses are conducted on the dimension of the state space (4.5.1), demand level (4.5.2), 

demand variability (4.5.3), weighting parameter A (4.5.4) and baseline signal (4.5.5). This 

multi-scenario analysis allows an assessment of the robustness of the Kriging-based real time 

signal control to different traffic conditions and levels of knowledge. Moreover, the results 

can provide a reference for parameter design. 

4.5.1 Dimension of the state space 

For the construction of the model, the selection of input variables is critical to the 
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performance of the Kriging-based signal controls. One needs to capture network information 

essential for decision making, while eliminating insignificant and redundant information as 

much as possible to avoid unnecessarily high dimensionality. It is challenging to balance the 

dimensionality and approximation accuracy. The former influences the computational 

efficiency in both off-line training and real time decision making, while the latter affects the 

optimality of the real time controls. While increasing the number of input variables can 

contribute to the higher approximation accuracy of the surrogate model, since the features of 

the underlying network can be captured in more detail, this in turn increases the 

computational burden.  

Using RO as the traffic state variable, four cases with a varying number of links are 

considered:  

 Case 1: 25 links, which contains all the links in the network except outgoing links (as 

these outgoing links are not controllable) 

 Case 2: 19 links, which are obtained from (1) by removing the six minor turning links at 

Byres/Great Western, hence leaving only the eleven inflow links and eight major arterials 

 Case 3: 16 links, which are obtained from (2) by removing the three links with the 

smallest   value 

 Case 4: 13 links, which are obtained from (3) by further removing three links with the 

smallest   value 

The input variables can be selected according to the geometry and traffic dynamics of the 

network. This is the concept on which Case 2 is based. Owing to the Kriging model, the 

parameter   of each dimension (see Equation (2.14)) can indicate the importance of each 

variable to the model output. According to this concept, some of the variables with low 

importance can be removed from the input set, as in Case 3 and Case 4. 

Figure 4.9 illustrates the four cases, with the links used to extract state variables highlighted 

in red.  
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Figure 4.9 Links whose relative occupancy are used to comprise the state vector (highlighted 

in red) (Google Maps) 

Figure 4.10 shows the variation of average estimation error, MAPE (%), versus the number of 

training points. For each scenario, 50 Kriging models are constructed and each tested with 

11000 testing points, with MAPE averaged across these. For the cases with 13, 16, 19 

variables, the approximation accuracy increases as the number of variables increases. This can 

be explained by the fact that when the number of variables decreases, traffic dynamics cannot 

be captured well, leading to larger estimation errors.  

Interestingly, the case with 25 variables is not the one with the highest approximation 

accuracy. Even though, with the increase of training points, Case 1 (25 variables) surpasses 

Case 4 (13 variables) and Case 2 (16 variables) in terms of approximation accuracy, it does 

not outperform Case 2 (19 variables) when the number of training points reaches 601, 

although the gap between them is decreasing. This suggests that, in order to achieve the same 
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level of accuracy, the high-dimensional surrogate model needs more training points than the 

low-dimensional surrogate model. This is the reason why Case 1 (25 variables) does not 

perform well when the number of training points is low. The high-dimensional surrogate 

model will have higher accuracy when the number of training points is large enough, however. 

Thus, Case 1 (25 variables) has lower MAPE than Case 3 (16 variables) and Case 4 (13 

variables) when they are trained by 601 points. 

Comparing Case 2 (19 variables) with Case 1 (25 variables), six minor turning links on the 

Byres Road/Great Western Road are removed. These links are insignificant due to their size 

and high correlation with their upstream and downstream links, meaning that they can be well 

represented by the traffic states of the connected links. The low importance of these six links 

gives Case 2 (19 variables) a higher approximation accuracy than Case 1 (25), even when the 

number of training points reaches 601. 

 

Figure 4.10 Average MAPE of the Kriging models with varying state spaces (# of links used 

as state variables) (based on 50 independent tests) 

For each scenario, a Kriging model with 451 training points is used for real time signal 

control. The average performance in terms of total throughput, average delay and weighted 

throughput over 50 replications is presented in Table 4.7. Table 4.8 shows the relative 

improvement of the Kriging-based signal control over ‘GCC’. As shown in the tables, the 
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average performance and relative improvement follow the same trend as with approximation 

accuracy, in that Case 2 (19 variables) and Case 3 (16 variables) provide the best 

performance. 

 Total Throughput Average Delay Weighted Throughput 

25 variables 3480.40 Veh 926.25s 5.9313 

19 variables 3529.27 Veh 904.89s 5.9641 

16 variables 3528.00 Veh 907.54s 5.9577 

13 variables 3505.80 Veh 921.67s 5.9322 

GCC 3351.36 Veh 984.21s 5.8377 

Table 4.7 Average performance of the Kriging-based signal controls with varying state 

variables (over 50 independent tests), compared to ‘GCC’ 

 Total Throughput Average Delay Weighted Throughput 

25 variables 3.8506% 5.8913% 1.6024% 

19 variables 5.3098% 8.0669% 2.1642% 

16 variables 5.2713% 7.7971% 2.0548% 

13 variables 4.6081% 6.3685% 1.6175% 

Table 4.8 Average relative improvement of the Kriging-based signal controls with varying 

state variables over ‘GCC’ (based on 50 independent tests) 

Figure 4.11, Figure 4.12 and Figure 4.13 display the CDF of the relative improvement in total 

throughput, average delay and weighted throughput over ‘GCC’. It can be seen that even 

though Case 2 (19 variables) and Case 3 (16 variables) have similar average performance, the 

performance of Case 3 (16 variables) is more stable than that of Case 2 (19 variables) since its 

curve is steeper.  
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Figure 4.11 Empirical CDF plot of relative improvement in total throughput with varying 

state spaces (# of links used as state variables) (based on 50 independent tests) 

 

Figure 4.12 Empirical CDF plot of relative improvement in average delay with varying state 

spaces (# of links used as state variables) (based on 50 independent tests) 
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Figure 4.13 Empirical CDF plot of relative improvement in weighted throughput varying 

state spaces (# of links used as state variables) (based on 50 independent tests) 

The average optimisation time in Table 4.9 exhibits an exponential growth with the increase 

of variables. Since they all have the same number of training points (i.e. 451 points), the only 

factor that may affect the optimisation time is the number of state variables. This is reasonable 

since the exponential correlation function needs to calculate the distance between two points 

along every dimension, and therefore an increase in the number of dimensions complicates 

the estimation of correlation, causing an increase in the estimation and optimisation time. This 

finding also highlights the importance of input variable selection. 

 25 variables 19 variables 16 variables 13 variables 

Optimisation Time 11.9816s 8.1077s 7.9465s 7.9355s 

Table 4.9 Average optimisation time of Kriging-based real time signal controls with varying 

state variables 

4.5.2 Demand level 

In order to investigate how the demand level affects the performance of the proposed real 

time signal controls, four cases with different demand levels are generated and compared:  

 Case 1: 50% of the baseline demand 
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 Case 2: 80% of the baseline demand 

 Case 3: 100% of the baseline demand 

 Case 4: 120% of the baseline demand 

Figure 4.14 shows the MAPE of the Kriging model under these four demand levels. It 

indicates that once the decreasing trend has stabilised (i.e. over 300 points), MAPE decreases 

as the demand level increases. In addition, the figure shows that all four cases render low 

MAPE, with a difference within 1%. It can be concluded that the proposed surrogate model 

provides an accurate approximation of the target relationship that is not sensitive to the level 

of network saturation. 

 

Figure 4.14 Average MAPE of Kriging models under varying demand levels (based on 50 

independent tests) 

To investigate the approximation accuracy under various demand levels in more detail, the 

RMSE for these four cases are plotted in Figure 4.15. This shows that Case 1 (50% demand) 

has a much lower RMSE than the other three cases. The reason for its low RMSE but high 

MAPE is that its actual total throughput is small due to its low demand level; hence the 

MAPE is sensitive to the difference between the actual and estimated performance. Besides 

Case 1 (50% demand), the other three cases have similar RMSE. This is because their 

demands are higher, which saturates the network and reduces the variability of total 
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throughput (i.e. the objective of Kriging), such that the increase of demand level does not 

have a significant impact on approximation accuracy. 

 

Figure 4.15 Average RMSE of Kriging models under varying demand levels (based on 50 

independent tests) 

The average network performance under Kriging-based real time signal control and ‘GCC’ 

are shown in Table 4.10 and Table 4.11. In both cases, while the total throughput is positively 

related to the demand level, it tends to become more stable when the demand level is high (i.e. 

between 100% demand and 120% demand), which indicates that the network is saturated. 

With the increase of demand level, the increasing average delay also indicates that the 

network has become congested.  

 Total Throughput Average Delay Weighted Throughput 

50% Demand 2457.71 Veh 282.17s 4.4326 

80% Demand 3259.76 Veh 648.98s 5.5931 

100% Demand 3529.27 Veh 904.89s 5.9641 

120% Demand 3607.58 Veh 1199.04s 6.2193 

Table 4.10 Average performance of Kriging-based signal control under varying demand 

levels (based on 50 independent tests) 
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 Total Throughput Average Delay Weighted Throughput 

50% Demand 2403.73 Veh 325.16s 4.4315 

80% Demand 3137.23 Veh 708.06s 5.5056 

100% Demand 3351.36 Veh 984.209s 5.8377 

120% Demand 3458.26 Veh 1261.76s 6.1145 

Table 4.11 Average performance of ‘GCC’ under varying demand levels (based on 50 

independent tests) 

 Total Throughput Average Delay Weighted Throughput 

50% Demand 2.2452% 13.2666% 1.0991% 

80% Demand 3.9092% 8.3287% 1.5912% 

100% Demand 5.3098% 8.0669% 2.1642% 

120% Demand 4.3198% 4.9761% 1.7144% 

Table 4.12 Average relative improvement of Kriging-based signal control over ‘GCC’ under 

varying demand levels (based on 50 independent tests) 

Due to the different demand levels in these four scenarios, the relative improvement is used to 

represent the performance of this real time signal control system. Table 4.12 shows the 

average relative improvement (%) of the Kriging-based real time signal control over the 

baseline ‘GCC’ across varying demand levels, averaged over 50 independent tests. The 

following observations can be made from the table: 

i. Under all the demand levels, the Kriging-based real time signal control outperforms 

‘GCC’ in terms of the three performance indicators. 

ii. The improvement in average delay is more significant than that in total throughput for 

all four demand scenarios, especially for low demand levels. When the network is 

undersaturated, the room for reducing delay is greater than that for increasing 

throughput. 

iii. The improvement in weighted throughput is far less than that in total throughput and 

average delay. The one-hour session contains too many time steps such that the last 
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few time steps have little contribution to the weighted throughput. The weighted 

throughput is mainly dominated by the throughput of the initial part of the whole 

period, such that the overall improvement in weighted throughput is not significant. 

iv. For average delay, the efficacy of the proposed real time control decreases as the 

demand level increases. This is because when the network becomes saturated, 

adjusting signal timing has a weaker impact on network delays.  

v. In terms of total throughput and weighted throughput, the improvement increases as 

the demand level grows from 50% to 100% but drops when the demand level is 120%. 

The indicates that the improvement offered by the Kriging-based control over the 

fixed-time plan peaks at a certain demand level, but reduces when the network is 

either under or oversaturated.  

vi. When the traffic network is oversaturated (i.e. 120% demand), the improvements in 

these three performance indicators are reduced. The principle of signal control is to 

allocate the green time according to the traffic condition of each link in order to 

maximise the use of green time. In this experiment, the demand level of all the links 

increases simultaneously. When all the links are congested, the efficacy of signal 

control becomes insignificant. 

Figure 4.16 depicts the queue length against time under the Kriging-based signal control and 

‘GCC’. Four subplots represent four cases with different demand levels. As the demand level 

increases, longer queues are formed outside the network. For all the cases, the Kriging-based 

signal control leads consistently to shorter queues than ‘GCC’, which indicates that the 

Kriging-based signal control can relieve congestion. Moreover, the queue length increases 

with time due to the oversaturation, except for the case of 50% demand under the 

Kriging-based signal control. In the last subplot (i.e. 50% demand), the curve of Kriging-451 

stabilises, which indicates that the Kriging-based signal control is effective in stopping the 

formation of queues. 
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Figure 4.16 Average queue length against time under the control of ‘Kriging-451’ and ‘GCC’ 

under varying demand levels (based on 50 independent tests) 

4.5.3 Demand variability 

The stochasticity of the demand poses a challenge to real time signal controls in general. For 

the Kriging model, higher demand variability means a larger state space and a more complex 

state-control-objective relationship. In order to verify the adaptability of the proposed 

Kriging-based signal control to demand variability, three demand cases with low, medium and 

high variability are generated. In this research, the variability of the demand is controlled by 

the value of r, which is essentially the noise-to-signal ratio in the generation of demand. Here, 

three scenarios are generated, with r equal to 0.1, 0.2 and 0.3, respectively: 

 Case 1: High variability,       

 Case 2: Medium variability,       

 Case 3: Low variability,       

The approximation accuracy of the Kriging models is illustrated in Figure 4.17. This shows 
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that MAPE increases with demand variability, which indicates that it is more challenging to 

estimate the performance when the demand is highly variable. Taking the MAPE of 4.5% as a 

reference, both the low variability and medium variability cases need less than 50 points to 

achieve that, while in the high variability case it needs around 200 points. This is because an 

increase in the variability of demand enlarges the design space, such that more training points 

are needed to achieve the same level of approximation accuracy for Case 1 (High variability) 

than Case 2 (Medium variability) and Case 3 (Low variability). 

 

Figure 4.17 Average MAPE of Kriging models under varying demand variabilities (based on 

50 independent tests) 

Table 4.13 and Table 4.14 show the average performance (i.e. total throughput, average delay 

and weighted throughput) of the Kriging-based signal control and ‘GCC’ under varying 

demand variabilities. For ‘GCC’, the performance deteriorates as the demand variability 

increases. This can be explained by the fact that it cannot adapt to traffic variation well due to 

its fixed-time nature, which limits its application in conditions with high demand variability. 

The Kriging-based signal control has similar characteristics, which is due to the decrease in 

the approximation accuracy of the corresponding Kriging model with the increase in demand 

variability.  
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 Total Throughput Average Delay Weighted Throughput 

High Variability 3486.42 Veh 936.56s 5.8983 

Medium Variability 3529.27 Veh 904.89s 5.9641 

Low Variability 3540.32 Veh 899.68s 5.9899 

Table 4.13 Average performance of Kriging-based signal control under varying demand 

variabilities (based on 50 independent tests) 

 Total Throughput Average Delay Weighted Throughput 

High Variability 3339.65 Veh 998.51s 5.8051 

Medium Variability 3351.36 Veh 984.21s 5.8377 

Low Variability 3367.42 Veh 978.48s 5.8688 

Table 4.14 Average performance of ‘GCC’ under varying demand variabilities (based on 50 

independent tests) 

Table 4.15 shows the relative improvement of the Kriging-based control over ‘GCC’. The 

positive improvements show that the Kriging-based signal control always performs better 

than ‘GCC’ regardless of the demand variability. Interestingly, while, as expected, High 

Variability renders less improvement than Medium Variability, Low Variability also leads to 

less improvement than Medium Variability. Table 4.14 suggests that this is due to the fact that 

the performance of the Kriging-based signal control also deteriorates under high variability, 

while ‘GCC’ performs relatively well under low demand variability.   

 Total Throughput Average Delay Weighted Throughput 

High Variability 4.3971% 6.2182% 1.6058% 

Medium Variability 5.3098% 8.0669% 2.1642% 

Low Variability 5.1337% 8.0557% 2.6039% 

Table 4.15 Average relative improvement of Kriging-based signal control over ‘GCC’ under 

varying demand variability (based on 50 independent tests) 

4.5.4 Weighting parameter A 

As discussed in Section 4.3, weighting parameter A is introduced to control the balance 

between the optimality and the reliability of Kriging-based real time signal control. It 
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represents the sensitivity to the estimation error. When A is zero, the decision is made under 

the assumption that the estimation from a surrogate model is reliable enough for it to be used 

directly for optimisation. In order to investigate how the weighting parameter A affects the 

performance of the Kriging-based signal control, three cases with varying A are considered:  

 Case 1: Weighting parameter     

 Case 2: Weighting parameter     

 Case 3: Weighting parameter     

It is also necessary to realise that the Kriging model has different degrees of approximation 

accuracy with an increasing number of training points. Therefore, six Kriging-n models with 

                              are constructed, where n is the number of training 

points. This helps to identify how the influence of weighting parameter A behaves under 

different approximation accuracies. 

Figure 4.18, Figure 4.19 and Figure 4.20 show how the three performance indicators: total 

throughput, average delay and weighted throughput vary when Kriging models with different 

numbers of training points are used for signal optimisation. The three curves represent the 

cases with different A values. The Figures show that when n is low (i.e. below 351), a larger A 

value leads to better network performance for the same Kriging-n model. This is because the 

approximation accuracy of the Kriging model is low when n is small, such that the influence 

of estimation error on signal control optimisation is significant. The estimated outputs 

generated may therefore have a large estimation error and, if they were to be applied, the 

traffic network may not work as expected, resulting in the deterioration of performance. 

Under this condition, a large value of A can ensure that a solution with low estimation error is 

selected such that the actual network performance is not far from what is estimated. When n 

exceeds 351, however, the case of A=2 has the worst performance. This is due to the fact that 

the overall approximation accuracy at this time is high, therefore overemphasising the 

estimation error may generate a conservative optimal solution. When n is 551, the three cases 

have a similar level of performance, showing that with high approximation accuracy, the 

performance of the signal control is not sensitive to the value of A. 
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Figure 4.18 Average total throughput versus the number of training points under different 

values of weighting parameter A (based on 50 independent tests) 

 

Figure 4.19 Average delay versus the number of training points under different values of 

weighting parameter A (based on 50 independent tests) 
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Figure 4.20 Average weighted throughput versus the number of training points under 

different values of weighting parameter A (based on 50 independent tests) 

 

Figure 4.21 presents the CDF plots of the total throughput (i.e. objective function) when the 

traffic network is controlled by the Kriging-based signal control with different values of 

weighting parameter A. Each subplot represents a Kriging model with a different number of 

training points. When n is 151, the three curves are apart from each other. As n increases, 

except for the cases of n=201 and 551, the three curves move along the positive direction of 

the x-axis, indicating that their performance has been improved. The curve representing a low 

value of A moves faster than the curve representing a high value of A, meaning that the curves 

get closer to each other. When n=351, the three curves almost coincide, and when n is larger 

than 351, curves representing A=0 and A=1 surpass the curve representing A=2 for the first 

time. It is worth noting, however, that when n is large enough, the distance between the 

curves decreases gradually, which indicates that the selection of the optimal solution is not 

sensitive to the value of A due to the small estimation error. Ideally, when the estimation 

errors of all the points in the design space are zero, the value of A will not affect the 

optimisation at all; although this ideal condition can never be achieved. 



158 
 

 

 

Figure 4.21 Empirical CDF plot of total throughput for Kriging-based signal controls with 

different values of weighting parameter A (based on 50 independent tests) 
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In the optimisation process, the network performance (i.e. total throughput) of the next 

control period is estimated before the generated signal plan is applied. In order to assess the 

reliability of the generated optimal solution, the error that exists between the estimated 

performance and the corresponding actual performance is calculated. Table 4.16 shows the 

MAPE of the data collected at the end of each control period. Several cases with varying 

values of A and the number of training points are considered. Comparing the results in each 

column, it is evident that MAPE shows a decreasing trend, except for the case of n=201 and 

n=551. This indicates that the approximation accuracy of the Kriging models improves as the 

number of training points increases. When comparing the results in each row, meanwhile, it 

can be seen that MAPE decreases as the value of A increases, which shows that the PSO with 

a high value of A tends to select a solution with a low estimation error. 

             

      7.5170% 6.7268% 5.7988% 

      9.0772% 8.0517% 6.5634% 

      5.3683% 4.9238% 4.1180% 

      4.0472% 3.7755% 3.5009% 

      3.0334% 2.7427% 2.6516% 

      4.1855% 4.1693% 4.1923% 

Table 4.16 Average MAPE of the Kriging-based signal controls with varying weighting 

parameter A and number of training points (based on 50 independent tests) 

4.5.5 Baseline signal 

A fixed-time baseline (i.e. ‘GCC’) signal is adopted to enhance the efficiency in the surrogate 

model construction and on-line optimisation. The test results have proved that the 

Kriging-based surrogate model can behave better than its corresponding fixed-time baseline 

signal ‘GCC’. In order to investigate how different baseline signals affect the performance of 

Kriging-based signal control, the following three baseline scenarios are considered: 

 Scenario 1: The fixed-time signal control based on the real-world test network in 
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Glasgow, as illustrated in Liu et al. (2015), referred to as ‘GCC’. 

 Scenario 2: The fixed-time signal control generated by simulation-based 

optimisation, referred to as ‘TOD’. 

 Scenario 3: The fixed-time signal control where each intersection is controlled 

independently following the equi-saturation policy (Webster, 1958), referred to as 

‘Webster’.  

‘GCC’ is a fixed-time signal control provided by Glasgow City Council to approximate the 

SCOOT system in the morning peak, and was used in the previous numerical tests. ‘TOD’ is a 

fixed-time signal control specially designed for the one-hour morning peak. It is solved by 

PSO, with LKWM to estimate the fitness of each particle. ‘Webster’ is an isolated fixed-time 

signal control, where each intersection makes its own decision independently. The green time 

of each link is allocated to balance the red time costs of each link, which is a function of the 

degree of saturation and green split. For the detailed procedures refer to Appendix C. 

Signal samples for the construction of the Kriging model and the PSO are generated around 

these three baseline scenarios, respectively. Based on these three baseline signals, three 

Kriging-based real time signal controls are obtained, denoted as ‘Kriging-GCC’, 

‘Kriging-TOD’ and ‘Kriging-Webster’ for ease of reference. Table 4.17, Table 4.18 and Table 

4.19 show the comparison of the fixed-time signal controls and their corresponding 

Kriging-based real time signal controls in terms of total throughput, average delay and 

weighted throughput. 

From the three tables, it can be seen that the two coordinated fixed-time signal controls: 

‘GCC’ and ‘Kriging fixed’ perform much better than the isolated fixed-time signal control: 

‘Webster’. The lack of coordination between intersections means that ‘Webster’ fails to 

mitigate congestion at the network level.  

In addition, ‘Kriging-GCC’, ‘Kriging-TOD’ and ‘Kriging-Webster’ have an entirely different 

level of performance, positively correlated with the performance of the corresponding 
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baseline signal controls. For example, ‘TOD’ is the one with the best performance among all 

the fixed-time signal controls; hence ‘Kriging-TOD’ performs the best among all the 

Kriging-based signal controls. This is because the sampling of signal control variables for 

surrogate model construction and swarm particles for PSO are both conducted locally. Hence 

improper selection of the baseline signal will degrade the performance of the Kriging-based 

real time signal control. 

Comparing the relative improvement reveals that the Kriging-based signal controls always 

outperform their corresponding baseline signal. Moreover, the better the performance of the 

baseline signal, the smaller the improvement that the Kriging-based real time signal controls 

can achieve. In other words, if the performance of the baseline signal control is good, there is 

little room left for improvement, such that the relative improvement will be small. The 

improvement of ‘Kriging-TOD’ is small. This is similar to the finding in Shelby et al. (2008) 

that real time signal control cannot provide significant improvement if the fixed-time signal 

plan is well optimised.  

 Total Throughput Average Delay Weighted Throughput 

GCC 3351.36 Veh 984.21s 5.8377 

Kriging-GCC 3529.27 Veh 904.89s 5.9641 

Improvement (%) 5.3098% 8.0669% 2.1642% 

Table 4.17 Comparison between ‘GCC’ and its corresponding Kriging-based real time signal 

control (based on 50 independent tests) 

 

 Total Throughput Average Delay Weighted Throughput 

TOD 3598.20 Veh 874.12s 6.1006 

Kriging-TOD 3632.71 Veh 861.55s 6.1114 

Improvement (%) 0.9600% 1.4389% 0.1757% 

Table 4.18 Comparison between ‘TOD’ and its corresponding Kriging-based real time signal 

control (based on 50 independent tests) 
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 Total Throughput Average Delay Weighted Throughput 

Webster 3057.69 Veh 1066.88s 5.7497 

Kriging-Webster 3495.64 Veh 920.41s 5.9896 

Improvement (%) 14.3372% 13.6358% 4.1905% 

Table 4.19 Comparison between ‘Webster’ and its corresponding Kriging-based real time 

signal control (based on 50 independent tests) 

4.6 Conclusions 

This chapter has developed a real time signal control framework based on surrogate 

modelling. A modified Particle Swarm Optimisation, a meta-heuristic method, was applied to 

the real time optimisation. The standard framework of Particle Swarm Optimisation was 

introduced in Section 4.1 and a few modifications were then made to it so that it could be 

integrated more effectively with the surrogate-based real time signal control. These 

modifications are summarised as follows: 

 The initial swarm particles are sampled around a baseline signal generated in advance 

rather than being evenly distributed in the whole design space. The baseline signal guides 

the searching area to prevent the final solution from being trapping at the local optimum, 

with consequent undesirable performance. Additionally, this modification narrows down 

the searching space by generating the particles around the region that has a high 

probability of finding a near-optimal solution, thus reducing the optimisation time. 

 The dynamic inertia weight   is helpful to enhance the optimisation efficiency. The 

value of   decreases iteration by iteration, such that the searching is gradually 

dominated by local searching. The rate of descent was controlled by the parameter  , 

which has a positive value less than 1. This can accelerate the convergence speed of 

PSO. 

 Since the surrogate model has an inevitable estimation error this needs to be taken into 

account in any optimisation based on it. Thus, the weighting parameter A was included in 
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the fitness function in order to balance the optimality and reliability.  

An empirical experiment was carried out on the same test network as used in Chapter 3. The 

results showed that the efficacy of Kriging-based real time signal control is positively 

correlated with the approximation accuracy of the corresponding Kriging model. The Kriging 

model with more training points has higher global accuracy, such that the signal plan 

generated based on it has better capability to manage the traffic flow. The t-test results and the 

figure of queue length against time also prove that Kriging-based real time signal control is 

better than ‘GCC’ in terms of mitigating congestion. 

Multi-scenario analysis was then conducted in order to investigate the robustness of this 

Kriging-based real time signal control to different traffic conditions and parameters,. The key 

findings are summarised as follows: 

 The Kriging model indicates the importance of each variable with the parameter  . It 

guides the selection of input variables. Four cases with different numbers of traffic state 

variables were generated and it was evident that their ranking in terms of approximation 

accuracy varied with the number of training points. This is due to the fact that a Kriging 

model with more input variables can capture more detailed characteristics of the 

underlying network but needs more training points to achieve the same level of accuracy 

as a Kriging model with fewer input variables. The optimisation results also confirmed 

this finding. Since the growth of the design space dimension leads to an increase in 

optimisation time, the decision on which variables should be involved is a trade-off 

between performance and efficiency. 

 Both the performance of the Kriging-based signal control and ‘GCC’ deteriorated when 

the demand level increased. Comparing the Kriging-based signal control with ‘GCC’, the 

improvement in total throughput increased along with the demand level, but began to 

decline after peaking at a specific demand level. In contrast, the improvement in average 

delay was negatively correlated with the demand level. This indicates that the efficacy of 

Kriging-based signal control is insignificant when the network is oversaturated.  
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 The variability of demand can be controlled by the parameter r. The Kriging model 

showed a decreasing approximation accuracy as the demand variability increased. The 

average performance, however, indicated that the Kriging-based signal control has strong 

robustness to demand variability, especially in the case of low variability and medium 

variability. Based on the relative improvement over ‘GCC’, this leads to the conclusion 

that Kriging-based signal control maximises its efficacy when the variability is at the 

medium level. 

 In order to ensure the reliability of the signal control, the estimation error needs to be 

taken into account for signal optimisation. Parameter A represents the sensitivity to the 

estimation error. It was proved that, with a large value of A, a solution with low 

estimation error tends to be selected. Thus, if the surrogate model has low approximation 

accuracy, the signal generated when A is large leads to better network performance. The 

signal control generated by a PSO with a large value of A may, however, be too 

conservative when the approximation accuracy of the surrogate model is high.  

 The performance of Kriging-based signal control was affected by the baseline signal 

used for surrogate model construction and on-line optimisation. The improper selection 

of a baseline signal degrades the performance of the Kriging-based real time signal 

control developed based on it. 

The last finding highlighted that the performance of the Kriging-based real time signal control 

is sensitive to the baseline signal. This means that it would not be sensible to select the 

baseline signal randomly. In most cases, however, there is no alternative signal plan, and it is 

time-consuming to generate a new fixed-time signal plan. The following chapter investigates 

how to eliminate the influence of the baseline signal using iterative updates. In addition, it 

also discusses how the Kriging-based signal control can be adapted to systematic changes of 

demand through a series of update procedures. 
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Chapter 5  

Real time signal control with surrogate model updates 

The surrogate-based real time signal control proposed in Chapter 4 was constructed based on 

relatively stationary demands, although short-term variations were considered. Therefore, the 

adaptability of this proposed signal control to demand change needs to be tested. Moreover, 

the proposed signal control has no learning ability. Due to the virtue of being data-driven, 

however, it can be integrated with an adaptive response surface, such that the surrogate-based 

real time signal control system can be re-trained repeatedly based on the latest information 

relating to the traffic network.  

In this chapter, an adaptive baseline signal updating strategy is proposed to solve the problem 

of performance degradation caused by the improper choice of the baseline signal found in 

Section 4.5.5. The procedures of adaptive sampling with different baseline signals are 

described in Section 5.1. Section 5.2 introduces the real time signal control with an adaptive 

response surface aiming to handle the evolution of demand level. Its performance is tested 

and validated under the systematic change of demand. In Section 5.3, the design plan for an 

adaptive response surface is investigated by carrying out sensitivity analyses on two major 

aspects of the update plan: update frequency, and the number of infill points.   

5.1 Adaptive sampling strategy with different baseline signals 

Section 4.5.5 highlights that the baseline signal affects the performance of the surrogate-based 

real time signal control system. The optimisation of a fixed-time signal control is typically 

time-consuming, however, and it is not sensible to spend a large computational budget on 

baseline signal optimisation. It is therefore crucial to consider how to eliminate the adverse 

effects of an improper baseline signal. In this section, an off-line adaptive updating strategy 

for the baseline signal is developed to ensure that the surrogate-based real time signal control 

can always achieve a reasonable level of performance (i.e. total throughput, average delay and 
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weighted throughput) eventually, regardless of the initial baseline signal. The whole process is 

carried out off-line before the system is actually implemented. The aim of this off-line 

adaptive updating strategy is to address the problem of performance degradation due to the 

improper baseline signal.  

The principle underlying updating the adaptive baseline signal is to replace the old baseline 

signal with a new one that leads to better network performance. The new baseline signal can 

be estimated on the basis of the optimal signal plans generated by the optimisation tests. 

Section 4.5.5 has proved that the Kriging-based real time signal control is always superior to 

the corresponding baseline signal. The involvement of a better baseline signal should 

therefore lead to further performance improvement in the Kriging-based real time signal 

control.  

The adaptive baseline signal update procedure is shown in Figure 5.1. First, a surrogate-based 

real time signal control system is established based on an initial baseline signal, and applied 

for optimisation. According to the signal decisions generated, a new baseline signal with 

improved quality can be derived, since an optimal signal plan obtained from the 

surrogate-based real time signal control always leads to better performance than its 

corresponding baseline signal. Each signal decision is only optimal under a specific condition, 

however. Therefore, a number of optimised signals are generated and averaged in order to 

capture their macroscopic features and form a new baseline signal. Finally, the 

surrogate-based real time signal control system is re-trained using this new baseline signal. 
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Figure 5.1 Framework of the adaptive baseline signal updating strategy 

An empirical test, an extension of that in Section 4.5.5, is conducted to test whether this 

adaptive baseline signal updating strategy can eliminate the adverse impacts of improper 

baseline signals. Three cases are considered, with their initial baseline signals being: ‘GCC’, 

‘TOD’ and ‘Webster’, respectively. In order to obtain a new baseline signal, 50 optimisation 

tests are carried out. After five updates, the performance of the initial baseline signal and six 

Kriging-based real time signal controls (one based on initial baseline signal and five based on 

updated baseline signals) are evaluated under the same conditions. 

Table 5.1, Table 5.2 and Table 5.3 show the performance of these signal controls in terms of 

the total throughput, average delay and weighted throughput, which are averaged across 50 

replications. The first row of each table displays the performance of the initial fixed-time 

baseline signal, while the second row depicts the performance of the Kriging-based real time 

signal control system developed based on the initial baseline signal. The subsequent five rows 

present the performance of the Kriging-based real time signal control system after one to five 

adaptive updates, respectively. 
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GCC 3351.36 Veh 984.21s 5.8377 
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Kriging-GCC 3511.61 Veh 918.73s 5.9375 

Adaptive update1 3624.44 Veh 855.17s 6.2111 

Adaptive update2 3671.99 Veh 832.59s 6.3241 

Adaptive update3 3649.50 Veh 838.09s 6.2521 

Adaptive update4 3652.46 Veh 836.72s 6.4219 

Adaptive update5 3646.79 Veh 839.96s 6.3405 

Table 5.1 Average performance of ‘GCC’ and ‘Kriging-GCC’ before and after baseline signal 

updates (based on 50 independent tests) 

 Total Throughput Average Delay Weighted Throughput 

TOD 3598.20 Veh 874.12s 6.1006 

Kriging-TOD 3632.71 Veh 861.55s 6.1114 

Adaptive update1 3650.41 Veh 840.95s 6.2791 

Adaptive update2 3658.27 Veh 836.59s 6.2919 

Adaptive update3 3587.24 Veh 861.19s 6.2645 

Adaptive update4 3652.66 Veh 832.16s 6.3656 

Adaptive update5 3607.16 Veh 854.77s 6.2877 

Table 5.2 Average performance of ‘TOD’ and ‘Kriging-TOD’ before and after baseline signal 

updates (based on 50 independent tests) 

 Total Throughput Average Delay Weighted Throughput 

Webster 3057.69 Veh 1066.88s 5.7497 

Kriging-Webster 3495.64 Veh 920.41s 5.9896 

Adaptive update1 3660.20 Veh 840.55s 6.2950 

Adaptive update2 3654.32 Veh 836.94s 6.3082 

Adaptive update3 3621.09 Veh 844.61s 6.3102 

Adaptive update4 3622.42 Veh 844.25s 6.2989 

Adaptive update5 3662.52 Veh 831.02s 6.3261 

Table 5.3 Average performance of ‘Webster’ and ‘Kriging-Webster’ before and after baseline 

signal updates (based on 50 independent tests) 

For the case based on ‘Webster’, which has the worst performance, all three performance 
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indicators are improved as the baseline signal is updated. After five updates, when compared 

with ‘Kriging-Webster’, the total throughput increases by 4.8%, the average delay is reduced 

by 9.7% and the weighted throughput increases by 5.6%. The overall performance of the 

other two cases is also improved. This shows that the adaptive baseline signal updating 

strategy can enhance the performance of Kriging-based real time signal control. 

Performance is not improved continuously with the updates of the baseline signal, however. 

As shown in the three tables, the three performance indicators fluctuate around the peak once 

that is reached. Due to the inherent uncertainties in the Kriging model and PSO, the obtained 

solution may deviate from the ‘true’ optimum. Moreover, when the baseline signal is already 

near the ‘true’ optimum, the improvement caused by the update of the baseline signal is not 

statistically significant. The superimposition of these two effects results in the fluctuation 

seen here. 

Comparing the performance of ‘GCC’ between Adaptive update 2 and Adaptive update 3, 

where the first performance degradation is observed, the total throughput decreases by 0.6%. 

Meanwhile, the total throughput of ‘TOD’ is reduced by 1.9% from Adaptive update 2 to 

Adaptive update 3, and for ‘Webster’ the total throughput decreases by 0.16% from Adaptive 

update 1 to Adaptive update 2. The performance deterioration is small; hence the conclusion 

that the adaptive baseline signal updating can improve the performance overall is still valid. 

Moreover, it can be seen from these three tables that all the cases outlined eventually have a 

similar level of performance after five updates. This proves that the influence of the initial 

baseline signal can be eliminated by the adaptive baseline signal updating strategy. 

5.2 Real time signal control based on adaptive response surface 

The surrogate-based real time signal control system can only interpret a known and fixed 

state-control-objective relationship (i.e. response surface) around the region of interest. In 

practice, however, systematic changes may occur in the traffic system, such as seasonal 

demand shifts and changes in flow characteristics, thereby violating the approximation 



170 
 

accuracy of the response surface. In order to adapt to these systematic changes, the signal 

control system needs to update itself. A response surface updating strategy is therefore 

designed to construct an adaptive response surface.  

5.2.1 Adaptive response surface 

A fixed response surface that cannot adapt to any systematic changes in the traffic system 

may result in performance deterioration. Although the mechanism of the deterioration is 

complex, some possible factors are identified and summarised below:  

 The centre of the state space shifts. As mentioned in previous sections, the state variables 

are not evenly distributed throughout the entire design space. In order to reduce the 

computational burden, the response surface is constructed around a predefined central 

area, which is determined according to the average traffic pattern and the baseline signal. 

In other words, a local surrogate model is constructed only in the region with a high 

probability of occurrence. Since traffic patterns are not static over time, however, the 

new centre of interest may not be covered by enough samples in the original surrogate 

model. The resulting estimation errors may hinder the PSO from finding the ‘true’ 

optimal results, which consequently results in the performance of the real time signal 

control degrading. 

 The performance of the baseline signal deteriorates. Systematic changes in the traffic 

system may mean that the baseline signal is no longer be suitable for the current traffic 

conditions. Since the optimisation is conducted around the baseline signal, the ‘true’ 

optimum may be missed if it is outside of the search region of the baseline signal.  

 Traffic dynamics change, and hence the original state-control-object relationship cannot 

represent the current network interactions accurately. The factors leading to the 

invalidation of the original state-control-object relationship include a change in 

exogenous factors and traffic rules. Such a change of network dynamics leads to the 

failure of the response surface and thereby results in an increase in the approximation 
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error.  

In order to address the problems mentioned above, an adaptive response surface is developed. 

The adaptive update of the response surface can be achieved by learning from the latest 

information relating to the traffic network. The entire updating process relies on the data 

collected during optimisation, and there is no need to invoke simulation models.  

 

Figure 5.2 Framework of on-line adaptive update 

As illustrated in Figure 5.2, the on-line update of the response surface contains four main 

stages, including: 1) selection, 2) addition, 3) deletion and 4) baseline signal update. A new 

surrogate model can be constructed and implemented after these four stages, which are 

introduced below: 

 Selection: Implement the surrogate-based real time signal control for a period (e.g. 

several epochs), during which another set of data can be collected. These data are 

stored in the candidate set C. For each point in C, calculate the absolute relative 

error between the estimated outputs from the surrogate model and the true 

observations. M points with the largest errors are selected from C to construct the 

infill set I. Points with large errors indicate that the local accuracies around them are 

low. 
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 Addition: Construct a new surrogate model based on the updated training points set, 

including the current training points set X, and M points selected from the previous 

step. The addition of new points increases the sample density of the region with low 

approximation accuracy. In addition, the relationship between training points is 

reconstructed by re-training a new surrogate model. 

 Deletion: Based on the new surrogate model proposed above, construct the 

correlation matrix    R      between the original training samples and the M 

added points. Calculate the average value of each row, which represents the average 

correlation of each original training point with M added points. M points from the 

current training set X with the lowest average correlation values are deleted from the 

training point set X. Then the points in infill set I are added to set X to form a new 

training set. A new surrogate model is trained with the new training point set. The 

points in I indicate the new centre of interest in the design space. Since the deleted 

points have low contributions to the estimation of the points around the new centre, 

their deletion should have little influence on the approximation accuracy. 

 Baseline signal update: Update the baseline signal on the basis of the optimal 

signal plans generated. Together with the new surrogate model, a new 

surrogate-based real time signal control is developed and implemented. 

The detailed algorithm of the on-line update is presented below. 

Algorithm 5.1: On-line update of the surrogate model 

Input Surrogate model trained with sample set X. 

Step 1 In an on-line environment, implement the surrogate-based real time signal control 

and collect a set of points C. 

Step 2 For every candidate point    , calculate the absolute relative error between the 

estimated output and the actual observation. Construct the infill set   by selecting 

M points with the largest errors from the candidate set C. 

Step 3 Train a new surrogate model with set     and construct the correlation matrix 
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          between the points in X and the points in I. 

Step 4 Find M rows of R with the smallest row averages and form the set E from the 

corresponding samples.  

Step 5 Let        , and retrain the surrogate model 

Step 6 Update the baseline signal and go back to step 1 

5.2.2 Systematic change in demand 

The traffic volume of a network is not stationary over time and Sunkari (2004) mentioned that 

demand change is the main reason for the degradation of signal control. This is regarded as a 

sign that the signal control needs to be retimed.  

There is little research on the performance deterioration of real time signal control under 

systematic changes in demand, since it is believed that real time signal control can adapt to 

demand variation effectively. In fact, the only research on the deterioration of adaptive signal 

control is Stevanoic (2006). That study shows that, for a performance minimisation problem, 

the ageing effect of SCOOT can be quantified by comparing the gap between the growth of 

the performance of SCOOT and that of the fixed-time signal. If the gap increases with 

increasing demand, deterioration exists. The results show that the traffic model of SCOOT 

cannot estimate the approaching vehicles accurately when demand changes. Moreover, 

SCOOT does age in several cases. Stevanoic (2006) also emphasises that this quantitative 

method may underestimate the ageing of SCOOT. 

Chapter 4 has shown that the surrogate-based real time signal control can handle short-term 

variations of demand, but the behaviour of surrogate-based real time signal control under 

systematic changes of demand, and the requirement for regular updates have not been studied. 

The change of performance indicators (PI) in the case of changing systematic demand arises 

from two main reasons. One is directly related to the change of demand, while the other is due 

to the deterioration of the signal control. The changes of PI caused by these two reasons may 

be additive or they may cancel out.  
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Table 5.4 shows the change in direction of total throughput and average delay with a change 

of demand, with ‘+’ for an increase and ‘-’ for a decrease. The other measure used in the 

previous chapter, weighted throughput, is a function of the total throughput and the average 

delay and cannot be detected directly. Since it is challenging to predict the change of weighted 

throughput with demand it is not included in the table. For increasing demand, if the total 

throughput increases and the average delay decreases, signal control may deteriorate. 

Similarly, for decreasing demand, signal control may deteriorate if the total throughput 

decreases and average delay increases. Besides these two cases, it is impossible to judge 

whether the signal deteriorates with a change in demand according to its performance, given 

the cancellation and additive effect. 

  Increasing demand Decreasing demand 

Total throughput 

Demand change + - 

Signal deterioration - - 

Average delay 

Demand change + - 

Signal deterioration + + 

Table 5.4 The direction of performance change due to demand change and signal 

deterioration 

5.2.3 Simulation test 

An empirical experiment is conducted to test the adaptability of the adaptive Kriging-based 

real time signal control under a systematic change in demand. The initial demand profile is 

defined as TD0, which is the average demand profile in Section 3.4.2., and it evolves to the 

terminal demand profile TD1 after 100 epochs (i.e. days). During this period, the demand 

profile in each epoch changes gradually and linearly. On top of this, short-term perturbations 

are also considered by adopting the demand generation Equation (3.7). Three cases of 

systematic change are considered: 

 Case 1: From TD0 to TD1, demand profile increases by 50% 
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 Case 2: From TD0 to TD1, demand profile decreases by 50% 

 Case 3: From TD0 to TD1, the demand profile of each link changes independently in the 

range of            

In the first two cases, the demand profile of all the inflow links changes simultaneously. In 

Case 3, the demand profile of each link is allowed to change independently by up to 50%, 

either increasing or decreasing.  

Five demands are generated for each case, and three signal controls are presented and 

compared: 

 ‘Fixed’: The baseline signal of ‘Kriging-GCC’ after two updates introduced in Section 

5.1 is adopted, which is generated based on the initial demand profile TD0. This is a 

fixed-time signal control and cannot react to the demand fluctuation. 

 ‘Kriging’: To be consistent with ‘Fixed’, ‘Kriging-GCC’ after two updates is selected, 

which is also introduced in Section 5.1. This can react to the demand fluctuation, but the 

response surface is fixed throughout the whole test period. 

 ‘Adaptive Kriging’: This is a Kriging-based real time signal control with an adaptive 

response surface. The initial response surface is the same as that of ‘Kriging’ but is 

updated every two days, with ten points replaced in each update, following the Algorithm 

5.1. 

Analysis of results of Case 1 

Figure 5.3, Figure and Figure show the evolution of the total throughput, average delay and 

weighted throughput over 100 days with the increase of demand shown on the left. The 

subplot on the right represents the CDF plots of the difference between signal controls. The 

difference is positive if the initial model in the legend has a better performance than the later 

model, while it is negative in the reverse case. Without considering the deterioration effect, 

the total throughput should grow with demand until the network reaches its capacity. The 
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increasing trends of ‘Kriging’ and ‘Adaptive Kriging’ indicate that the network is still not 

fully saturated. It can be seen, however, that in the case of ‘Fixed’, the growth of total 

throughput stagnated after Day 20. This is because the decline of total throughput caused by 

the signal deterioration counteracts the increase in total throughput caused by the demand 

growth. From the aspect of average delay, the influences of demand growth and deterioration 

are additive; hence the increase in average delay cannot indicate whether these three signal 

control strategies deteriorate. It can therefore be concluded that ‘Fixed’ may deteriorate with 

the growth of demand, and thus it cannot handle the increase in demand well. 

In comparison, ‘Kriging’ outperforms ‘Fixed’ in terms of total throughput, average delay and 

weighted throughput, and the difference between them increases over time. As a result, ‘Fixed’ 

cannot maintain its performance as demand increases. This is because when the network is 

saturated, the interactions between intersections are enhanced due to the spillback of the 

intersection. If spillback occurs, there is no room for any entering vehicles and the traffic 

condition is complex and highly variable. Under this condition, it is crucial to adjust the 

signal plan according to the traffic conditions of adjacent intersections, and this cannot be 

realised by a fixed-time signal control. 

For the comparison between ‘Adaptive Kriging’ and ‘Kriging’, between Day 1 and Day 40, 

‘Adaptive Kriging’ does not perform as well as ‘Kriging’. This is because when the demand 

change is small ‘Kriging’ still has good performance. In contrast, for ‘Adaptive Kriging’, each 

update of the response surface is based on a limited number of samples, which may bring 

uncertainties in themselves due to the randomised demand, and hence affect the performance. 

From Day 40, however, the performance of ‘Adaptive Kriging’ becomes better than that of 

‘Kriging’. Moreover, with the growth of demand, the difference is even more prominent. 

These findings highlight the need for an adaptive response surface, and the effectiveness of 

Algorithm 5.1 in maintaining the signal control’s performance in response to the increase of 

demand.  
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Figure 5.3 Evolution of total throughput (Left), and CDF plot of the difference in total 

throughput under the increase of demand 

 

Figure 5.4 Evolution of average delay (Left), and CDF plot of the difference in average delay 

under the increase of demand 
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Figure 5.5 Evolution of weighted throughput (Left), and CDF plot of the difference in 

weighted throughput under the increase of demand 

In order to investigate the factor that causes the difference between ‘Adaptive Kriging’ and 

‘Kriging’, the approximation error (i.e. MAPE) and performance of baseline signals are 

plotted in Figure 5.6 and Figure 5.7. It can be seen from Figure 5.6 that the MAPE of 

‘Kriging’ increases over time, which indicates that the approximation accuracy of ‘Kriging’ 

degrades. This shows that the fixed response surface cannot interpret the time-varying traffic 

dynamics accurately if the demand level increases. Figure 5.7 compares the performance of 

the initial baseline signal, which is the baseline signal of ‘Kriging’, and the adaptive baseline 

signal of ‘Adaptive Kriging’. It is obvious from the figure that the adaptive baseline signal 

leads to a much higher total throughput than the fixed baseline signal. This confirms the 

effectiveness of the baseline update strategy.   



179 
 

 

Figure 5.6 Evolution of approximation error under an increase of demand 

 

 

Figure 5.7 The performance of baseline signals against time under an increase of demand 

 

Analysis of results of case 2 

Figure 5.8, Figure 5.9 and Figure 5.10 show the evolution of three performance indicators and 

CDF plots as demand level decreases. It can be seen from the figures that, at the beginning of 

the test, ‘Kriging’ and ‘Adaptive Kriging’ have better performance than ‘Fixed’. The 

difference between them decreases with time, however, and all three signal controls 
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eventually have a similar level of performance, this is because the performance degradation of 

fixed-time signal controls when demand decrease is less significant than that when demand 

increases (Park et al., 2000). The CDF plot shows that, from an overall perspective, ‘Kriging’ 

and ‘Adaptive Kriging’ outperform ‘Fixed’ since in most of the cases they lead to better 

performance indicators. While between ‘Kriging’ and ‘Adaptive Kriging’, the latter is slightly 

better. 

 

Figure 5.8 Evolution of total throughput (Left) and CDF plot of the difference in total 

throughput under a decrease of demand 
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Figure 5.9 Evolution of average delay (Left) and CDF plot of the difference in average delay 

under a decrease of demand 

 

Figure 5.10 Evolution of weighted throughput (Left) and CDF plot of the difference in 

weighted throughput under a decrease of demand 

Figure 5.11 shows the MAPE of total throughput in ‘Kriging’ and ‘Adaptive Kriging’. 

Interestingly, the MAPE of ‘Kriging’ increases over time, even reaching 45% on Day 100. 

Nevertheless, it can still find signal controls that are as good as, or even better than, those 
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generated by ‘Adaptive Kriging’. This indicates that, for a given traffic state, the factor 

affecting the performance of real time signal control is the similarity between the shapes of 

the estimated signal-objective relationship and the actual signal-objective relationship. 

Therefore, ‘Kriging’ can still make a reasonable decision even though it cannot predict the 

outputs accurately. Under the initial condition (i.e. TD0), the network is already congested, 

and thus the variation of total throughput is small. This means that the Kriging model 

constructed under TD0 may underestimate the decline of total throughput due to decreasing 

demand, and this is the reason for the large estimation error of ‘Kriging’.  

Moreover, the MAPE of ‘Adaptive Kriging’ also increases over time. Comparing three 

performance indicators (i.e. total throughput, average delay and weighted throughput) on Day 

1 and Day 100, a huge difference can be observed, indicating the rapid change in demand 

level in this experiment. Due to the low update speed, ‘Adaptive Kriging’ cannot respond to 

the time-varying demand level in time, leading to the increase in approximation error. 

 

Figure 5.11 Evolution of approximation error under a decrease of demand 

Figure 5.12 shows the performance of the initial and adaptive baseline signals over time. The 

adaptive baseline signal always leads to a larger total throughput than the initial baseline 

signal, which validates the effectiveness of the baseline signal update strategy. 
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Figure 5.12 The performance of baseline signals against time under a decrease of demand 

Analysis of results of case 3 

For case 3, the relative demand change of each link is randomly selected from the uniform 

distribution between           . Figure 5.13 shows the relative change of each inflow link in 

the demand profile from TD0 to TD1. A positive value indicates an increase in demand, while 

a negative value indicates the reverse. 

 

Figure 5.13 Illustration of links with increasing demand (Red) and decreasing demand 

(Green) (Google Maps) 
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Figure 5.14, Figure 5.15 and Figure 5.16 compare the average performance of the three signal 

control strategies. It can be seen that from Day 40, the total throughput of ‘Kriging’ begins to 

decline, while the average delay is still increasing. Theoretically, when no deterioration exists, 

the total throughput and the average delay should show the same trend as the demand change, 

as illustrated in Table 5.4. The opposite evolution of the trends between total throughput and 

average delay indicates that ‘Kriging’ suffers from performance deterioration when the 

change of demand is irregular. The reason that ‘Adaptive Kriging’ also deteriorates is that the 

change in traffic demand is rapid, and the irregular change in demand poses a challenge. 

‘Adaptive Kriging’ therefore does not have enough samples and time to adapt to the change 

effectively. 

‘Kriging’ and ‘Adaptive Kriging’ outperform ‘Fixed’ in all three of the performance 

indicators. This shows that real time signal control can accommodate the irregular change of 

demand better than the fixed-time signal plan, although the difference between them reduces 

with time since the two real time signal controls deteriorate. 

Additionally, ‘Adaptive Kriging’ performs even better than ‘Kriging’. The irregular change of 

demand leads the traffic network to behave differently and thus establishes a new relationship 

between traffic states, signal control and network performance. As stated in the previous 

section, ‘Kriging’ cannot arrive at a proper decision when the shape of the actual relationship 

has changed, since it can no longer capture the network behaviour of the upcoming control 

period. This means that the Kriging model needs to be updated regularly to adapt to the new 

relationship. It is also noted that, in the first 40 epochs, ‘Kriging’ and ‘Adaptive Kriging’ have 

similar performance. This is because each update in ‘Adaptive Kriging’ is only based on 

limited samples, which may bring uncertainties in themselves due to randomised demands. 

Hence, the response surface requires a certain number of epochs to accumulate a statistically 

significant sample set to capture the systematic change. From Day 40, however, ‘Adaptive 

Kriging’ becomes superior to ‘Kriging’ and the difference increases over time. 
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Figure 5.14 Evolution of total throughput (Left) and CDF plot of the difference in total 

throughput under an irregular change of demand 

 

Figure 5.15 Evolution of average delay (Left) and CDF plot of the difference in average delay 

under an irregular change of demand 
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Figure 5.16 Evolution of weighted throughput (Left) and CDF plot of the difference in 

weighted throughput under an irregular change of demand 

Figure 5.17 indicates that ‘Kriging’ has a lower MAPE than ‘Adaptive Kriging’ between Day 

20 and Day 80. Under this condition, therefore, the efficacy of the adaptive response surface 

in terms of an improvement in approximation accuracy cannot be validated. The adaptive 

baseline signal leads to larger total throughput than the initial baseline signal from Day 40, as 

shown in Figure 5.18, however, hence showing the effectiveness of the baseline signal update 

strategy. 
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Figure 5.17 Evolution of approximation error under an irregular change of demand 

 

 

Figure 5.18 The performance of baseline signals against time under an irregular change of 

demand 

5.2.4 Sensitivity analysis 

The previous section has shown the effectiveness of ‘Adaptive Kriging’ in maintaining 

network performance under both an increasing demand and an irregular change in demand. 

This section further explores how the update plan affects the performance of ‘Adaptive 

Kriging’ when demand increases over time by 50%. Update frequency and the number of 
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infill points are two major factors controlling the adaptability of the response surface. Four 

update plans are therefore designed with different update frequencies and numbers of infill 

points. These are summarised as follows: 

 Case 1: Update every two days and replace ten points each time. 

 Case 2: Update every day and replace five points each time. 

 Case 3: Update every two days and replace five points each time. 

 Case 4: Update every four days and replace ten points each time. 

Thirteen replications are conducted for each case. In order to investigate how the update 

frequency and the number of infill points affect the adaptability of the real time signal control 

to the increase in demand, the first two sensitivity analyses are designed. In sensitivity 

analysis 3, a new term, ‘update speed’ is introduced, defined as the average number of points 

updated per day. With the same ‘update speed’, the Case with the greater impact on the 

performance of the proposed signal control between update frequency and the number of infill 

points can be identified. The results and analysis of each test are discussed in detail in the 

following part. 

 Sensitivity analysis 1: Compares Case 2 & Case 3 and Case 1 & Case 4 to investigate 

the influence of update frequency when the number of infill points is fixed. 

 Sensitivity analysis 2: Compares Case 1 & Case 3 to investigate the influence of the 

number of infill points when update frequency is fixed. 

 Sensitivity analysis 3: Compares Case 1 & Case 2 and Case 3 & Case 4 to identify the 

one with the greater impact between update frequency and the number of infill points 

when ‘update speed’ is fixed. 

Sensitivity analysis 1 

The first sensitivity test focuses on the influence of update frequency. Two pairs of update 

plans are compared: Case 2 vs Case 3 and Case 1 vs Case 4. The two plans in each pair have 
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the same number of infill points, but differ in their update frequency. Case 1 and Case 2 

update more frequently than the corresponding plan in the same pair. 

Figure 5.19 and Figure 5.20 show the evolution of total throughput and average delay when 

the network is controlled by ‘Adaptive Kriging’ with an update strategy following Case 2 

and Case 3. It can be seen that Case 2 leads to a larger total throughput and smaller average 

delay than Case 3. Figure 5.21 and Figure 5.22 present the comparison between Case 1 and 

Case 4 in terms of total throughput and average delay; from which it can be seen that Case 1 

has better performance than Case 4. It can therefore be concluded that the plan with a higher 

update frequency leads to better performance. 

 

Figure 5.19 Comparison between Case 2 and Case 3 in terms of total throughput under a 

systematic change of demand 
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Figure 5.20 Comparison between Case 2 and Case 3 in terms of average delay under a 

systematic change of demand 

 

Figure 5.21 Comparison between Case 1 and Case 4 in terms of total throughput under a 

systematic change of demand 
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Figure 5.22 Comparison between Case 1 and Case 4 in terms of average delay under a 

systematic change of demand 

In order to investigate the influence of the update frequency further, the differences in total 

throughput and average delay of each pair of plans are calculated, and CDF plots of them are 

plotted, as shown in Figure 5.23. If the former plan has better performance than the latter one 

(i.e. larger total throughput or smaller average delay), the difference is positive, and negative 

for the reverse. CDF plots help to identify the probability that one is superior to the other by 

observing the F(x) value when the difference is zero. The blue curve represents the 

comparison between Case 2 and Case 3, and the red curve represents the comparison between 

Case 1 and Case 4. For total throughput, both curves have an F(x) value less than 0.5 when 

the difference is zero, such that Case 2 and Case 1 have a higher probability of having larger 

total throughput than Case 3 and Case 4 under the same condition. There is a similar trend for 

the average delay, where the asymmetric curve confirms that the cases with higher update 

frequency have a larger probability of leading to a lower average delay. 



192 
 

 

Figure 5.23 Empirical CDF plot of differences in total throughput (Left) and average delay 

(Right) between Case 2 & Case 3 and Case 1 & Case 4 (positive means the former is better 

than the latter) 

In each simulation, 100 network performance indicators were collected. Therefore 1300 

samples were collected after 13 simulations. The paired t-test can show whether the 

difference between the means of the two populations is significantly different. The ttest 

function in MATLAB was used to calculate this. For two paired populations with mean    

and    respectively, the null hypothesis test is set to be: 

          (5.1) 

While the alternative hypothesis is: 

          
(5.2) 

Whether the null hypothesis test is rejected is determined by the p-value. Give the 95% 
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confidence interval, when the p-value is smaller than 0.05, then the null hypothesis is 

rejected and the difference between the means of two populations is determined to be 

statistically significant. When it is proved that the two populations are different, then a t-test 

with Left tail or Right tail is carried out to examine which one is better.  

The null hypothesis and alternative hypothesis of Right-tail t-test are: 

          
(5.3) 

          
(5.4) 

The null hypothesis and alternative hypothesis of the Left-tail t-test are: 

          (5.5) 

          (5.6) 

Similarly, when the p-value is smaller than 0.05, the alternative hypothesis is accepted.  

  p-value Reject/Uphold 

Total throughput 

Case 2 vs Case 3              Reject 

Case 2 vs Case 3 

(Right Tail) 
             Reject 

Case 1 vs Case 4             Reject 

Case 1 vs Case 4 

(Right Tail) 
            Reject  

Average delay 
Case 2 vs Case 3              Reject 

Case 2 vs Case 3               Reject 
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(Left Tail) 

Case 1 vs Case 4              Reject 

Case 1 vs Case 4  

(Left Tail) 
             Reject 

Table 5.5 Hypothesis test results of Case 2 vs Case 3 and Case 1 vs Case 4 

Based on the hypothesis results presented in Table 5.5, it can be seen that the differences 

between each pair in both total throughput and average delay are statistically significant. This 

confirms the finding that there is an improvement in network performance when the update 

frequency increases. 

In summary, the update frequency can affect the performance of the proposed real time signal 

control, especially when the number of infill points is large. 

Sensitivity analysis 2 

Test 2 focuses on the influence of the number of infill points on the adaptability of the 

proposed real time signal control under a systematic change of demand. Case 1 and Case 3 

with the same update frequency (i.e. every two days) are compared. The former updates five 

points each time while the latter updates ten points. Figure 5.24 and Figure 5.25 show that 

Case 1 and Case 3 have similar performance in terms of the total throughput and average 

delay. The difference in total throughput and average delay is plotted in Figure 5.26. The 

subplot of average delay shows that the probability that Case 3 has a lower average delay 

than Case 1 is greater than 50%. 
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Figure 5.24 Comparison between Case 1 and Case 3 in terms of total throughput under a 

systematic change of demand 

 

Figure 5.25 Comparison between Case 1 and Case 3 in terms of average delay under a 

systematic change of demand 
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Figure 5.26 Empirical CDF plot of differences in total throughput (Left) and average delay 

(Right) between Case 1 & Case 3 (positive means the former is better than the latter) 

The t-test results in Table 5.6 also show that there are no statistically significant differences in 

the total throughput, whereas the average delay of Case 3 is statistically smaller than that of 

Case 1. As a consequence, the performance can be improved if a larger number of points are 

replaced each time, but in this test, the improvement is small.  

  p-value Reject/Uphold 

Total throughput Case 1 vs Case 3 0.5425 Uphold 

Average delay 

Case 1 vs Case 3             Reject 

Case 1 vs Case 3  

(Left Tail) 
            Reject 

Table 5.6 Hypothesis test results of Case 1 vs Case 3 

Sensitivity analysis 3 

The previous two analyses have shown that both the update frequency and the number of 
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infill points can affect the adaptability of the proposed real time signal control. It is worth 

noting, however, that for each pair of tests, the ‘update speed’ is not the same. This 

sensitivity analysis was therefore conducted under a fixed ‘update speed’ in order to 

investigate whether update frequency or the number of infill points has the greater influence 

on the adaptability of the proposed real time signal control. 

Figure 5.27 and Figure 5.28 present the evolution of total throughput and average delay over 

time when the network is controlled under Case 1 and Case 2. Both cases add 500 new 

points to the surrogate model in total within 100 days, with the update speed being five 

points per day. With the same update speed, Case 2 outperforms Case 1. Similarly, in Figure 

5.29 and Figure 5.30, it can be seen that Case 3 leads to better network performance than 

Case 4. This confirms the finding that the update frequency is the main factor affecting the 

performance of the proposed real time signal control, compared to the number of infill points. 

Moreover, the difference between Case 3 and Case 4 is greater than that between Case 1 and 

Case 2, which indicates that the performance of the proposed real time signal control is more 

sensitive to the design of the update plan when the update speed is low. 

 

Figure 5.27 Comparison between Case 1 and Case 2 in terms of total throughput under a 

systematic change of demand 
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Figure 5.28 Comparison between Case 1 and Case 2 in terms of average delay under a 

systematic change of demand 

 

Figure 5.29 Comparison between Case 3 and Case 4 in terms of total throughput under a 

systematic change of demand 
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Figure 5.30 Comparison between Case 3 and Case 4 in terms of average delay under a 

systematic change of demand 

The CDF plots in Figure 5.31 show that the probabilities that Case 2 and Case 3 lead to larger 

total throughput and smaller average delay than Case 1 and Case 4 are higher than 50%. In 

addition, the t-test results in Table 5.7 show that this difference is statistically significant. 

 

Figure 5.31 Empirical CDF plot of differences in total throughput (Left) and average delay 

(Right) between Case 1 & Case 2 and Case 3 & Case 4 (positive means the former is better 

than the latter) 
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  p-value Reject/Uphold 

Total throughput 

Case 1 vs Case 2             Reject 

Case 1 vs Case 2 

(Left Tail) 
            Reject 

Case 3 vs Case 4             Reject 

Case 3 vs Case 4 

(Right Tail) 
            Reject 

Average delay 

Case 1 vs Case 2        Reject 

Case 1 vs Case 2 

(Right Tail) 
            Reject 

Case 3 vs Case 4             Reject 

Case 3 vs Case 4  

(Left Tail) 
            Reject 

Table 5.7 Hypothesis test results of Case 1 vs Case 2 and Case 3 vs Case 4 

5.3 Conclusions 

This chapter has proposed an off-line adaptive baseline signal update strategy to protect the 

surrogate-based real time signal control from performance degradation due to an 

inappropriate baseline signal. In the proposed strategy, the baseline signal was updated based 

on the optimal signals generated during the optimisation process. Test results showed that the 

performance of the real time signal control was improved by iterative updating. The 

difference between three surrogate-based real time signal controls with different initial 

baseline signals decreased, which indicates that the off-line adaptive updates can reduce the 

influence of the initial baseline signal effectively.  

Furthermore, the chapter developed a surrogate-based real time signal control with an 

adaptive response surface. Comparing the performance between the real time signal controls 

with fixed and adaptive response surfaces in conditions of increased, decreased and irregular 

changes of demand, the latter was shown to have better performance than the former when 
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demand level increased or changed irregularly. Under the decreasing demand level, both of 

them had a similar level of performance eventually. This indicated that the adaptive response 

surface is effective in adapting to non-stationary demands, and its efficacy in helping the 

surrogate-based real time signal control to retain the desired level of performance under the 

demand change was confirmed. 

The sensitivity analyses on the design of the update plan showed that the adaptability and 

performance of a surrogate-based real time signal control system can be improved if it is 

updated more frequently or replacing more points each time. The update frequency, however, 

is the more dominant of these two factors.
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Chapter 6  

Conclusion and future work 

Signal control is an effective way to manage traffic flow. Compared with fixed-time signal 

control, real time signal control is more effective in accommodating unpredictable traffic 

conditions. As a basic requirement, real time signal control should be efficient enough to 

make decisions within seconds with satisfactory optimality. Moreover, it needs to be robust to 

various traffic conditions and have the ability to adapt to the evolution of the traffic network. 

In order to ensure flexibility and transferability, few assumptions and restrictions should be 

posed in respect to the form of traffic states, control variables and performance indicators. 

These requirements are satisfied by a number of objectives which are revisited in Section 6.1. 

Section 6.2 summarises the contributions of this thesis. Finally, Section 6.3 presents a set of 

recommendations for future research. 

6.1 Conclusions 

This thesis aimed to propose a centralised model-free real time signal control, based on 

surrogate models, which can self-update so as to adapt to systematic changes in demand. In 

order to achieve this aim, seven objectives were defined in Section 1.2. The findings and 

contributions related to these objectives are discussed in turn in the following section. 

1. Review the state-of-the-art of real time signal controls. 

Six of the most widely-used real time signal controls systems were reviewed in Chapter 2. 

All of these are model-based and therefore lack the flexibility to accommodate 

user-defined input variables and objectives. Moreover, due to their computational burden, 

they are either non-optimised or operated in a distributed or hierarchical manner. 

The optimisation methods of real time signal controls were classified into the exact 
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approach, heuristic approach, rule-based approach and the learning-based approach in 

Chapter 2. The basic features of the literature reviewed in Chapter 2 are summarised in 

Appendix A.  

The exact approach and heuristic approach need to be integrated with a traffic model to 

estimate the performance of different signal control decisions, such that their real-world 

applications are dependent on the validity and accuracy of the underlying traffic model. 

The rule-based approach is model-free, but is non-optimised. The RL-based approach is 

model-free, but it is not interpretable and is usually operated in a distributed manner. 

Although real time signal control based on decision rules is time efficient, since the 

time-consuming optimisation is carried out off-line, it still requires a traffic model for 

off-line optimisation. 

In the literature reviewed, there is no model-free real time signal control operated in a 

centralised manner.  

2. Review the state-of -the-art of surrogate modelling. 

Three surrogate models were reviewed in Chapter 2. The selection of the appropriate 

surrogate model depends on the complexity of the relationship that needs to be 

approximated. Moreover, the construction of the surrogate model is a trade-off between 

approximation accuracy and efficiency.  

This review of surrogate-based traffic control problems showed that such problems are 

capable of transferability since their construction does not need any background 

knowledge of the underlying problem. Surrogate models have been applied to solve a 

wide range of problems, and their use can reduce the computational burden, especially 

for time-consuming optimisation problems. It is the first that review both real time signal 

control and surrogate modelling in one literature. 

3. Develop a framework for surrogate modelling that can interpret the 

state-control-objective relationship in an accurate and robust way. 
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Chapter 3 identified that surrogate models are currently only applied to fixed-time 

control problems. The chapter therefore developed a surrogate model that can be applied 

to real time optimisation problems. In order to enable real time decisions, the notion of a 

response surface was extended by incorporating the traffic condition as state variables, 

and constructing surrogate models that interpret and approximate the 

state-control-objective relationship. 

In order to ensure the estimation efficiency of those surrogate models, the traffic state 

variables and signal control variables were sampled around the given baseline scenario, 

respectively. It was shown that the surrogate model can be improved through an infill 

strategy, which re-trains the model with an additional set of sample points. A multi-point 

candidate sampling approach was developed to select the infill points with the largest 

estimation error from a set of candidate points. In addition, the distances between the 

selected infill points were controlled to ensure the diversity of samples. 

The numerical studies in Section 3.4 showed that the Kriging model with 451 training 

points has satisfactory approximation accuracy, with a testing error (MAPE) less than 

3.5%. Furthermore, it can make the estimation within             s. 

4. Develop a surrogate-based real time signal control system based on the surrogate 

model proposed in objective three. 

Chapter 4 developed a surrogate-based real time signal control with the surrogate model 

proposed in Chapter 3. The optimisation problem was solved by a modified Particle 

Swarm Optimisation (PSO). In order to ensure optimisation efficiency, the initial 

particles of the PSO were sampled around the baseline signal. The inertia parameter was 

decreased over iterations so as to let the local search dominate gradually. 

The fitness of PSO is the combination of the objective value and the estimation error, and 

thus the inherent estimation error was considered in the optimisation process. The 

balance between optimality and reliability was controlled by a weighting parameter. 
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Section 4.5.4 shows that the real time signal control with a large weighting parameter 

was reliable in cases where the surrogate model was not accurate enough. 

5. Test, validate and assess the surrogate-based real time signal control, and compare it 

with the benchmarks. 

The proposed surrogate-based real time signal control was tested in Chapter 4. The test 

results showed that, compared with the fixed-time baseline signal, the proposed real time 

signal control increased the total throughput and weighted throughput by 5.3% and 2.2% 

respectively, while reducing the average delay by 8.1%. Furthermore, it could make 

decisions in just eight seconds, which reduces around 50% and 90% time taken by GA 

optimiser and simulation-based optimiser respectively. 

In addition, the robustness of the proposed real time signal control was validated under 

scenarios with a variable number of state variables, demand levels and demand 

variabilities. The choice of state variables is vital for the performance of the surrogate 

model, and the Kriging model is capable of identifying important input state variables via 

its inherent mathematical structure. This helped to maintain, or even enhance, the 

performance of the surrogate model by actively selecting the input state variables. 

Furthermore, with different levels of saturation of the network and variability of the 

uncertain traffic demand, the proposed surrogate-based real time signal control 

outperformed the benchmark signal controls consistently. 

6. Develop an adaptive baseline signal update strategy to mitigate the influence of the 

baseline signal. 

In Chapter 4, it was found that the initial baseline signal affects the performance of 

surrogate-based real time signal control. In order to eliminate the influence of the initial 

baseline signal, an adaptive baseline signal update strategy was developed in Chapter 5. 

By applying the surrogate-based real time signal control, the surrogate model can be 

updated based on the signal decisions made in the optimisation process. Numerical 
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studies showed that, with the adaptive update of the underlying surrogate model, the 

performance of surrogate-based real time signal control was significantly improved, for 

all the baseline signal controls. More importantly, the update process was able to bring 

the controller to the same level of performance regardless of the baselines chosen at the 

beginning of the construction of the surrogate. 

7. Develop a surrogate-based real time signal control with an adaptive response surface. 

Chapter 5 summarised the factors that may cause performance degradation of the 

surrogate-based real time signal control under a systematic change of demand. The 

proposed surrogate-based real time signal control in Chapter 5 was thus extended to 

include an adaptive response surface mechanism to accommodate systematic changes of 

demand. The surrogate model and baseline signal were updated according to the 

feedback collected during the real time deployment of the controller. Numerical 

experiments showed that the real time signal control with adaptive response surface can 

maintain its performance better than the one with a fixed response surface when the 

demand changes systematically. In addition, it was found that the update frequency is the 

main factor affecting the performance of the adaptive surrogate-based real time signal 

control.  

6.2 Contributions of the research 

This thesis makes the following contributions to the literature: 

 This work is the first to apply surrogate modelling to the real time control problem with 

both state and control as input variables. Compared with the surrogate model for a 

strategic design problem, key challenges lie in the inclusion of traffic state variables, 

which complicates the construction of the surrogate model and estimation of outputs. The 

test results show that non-uniform sampling following the probability distribution of the 

traffic state can reduce the number of training points while at the same time ensuring the 

approximation accuracy. 
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 A multi-point infill strategy is proposed in this thesis. This infill strategy is the first to 

adopt an adaptive distance threshold to avoid the clustering of infill points. 

 This research develops a new algorithm to solve surrogate-based optimisation problems. 

It modifies the Particle Swarm Optimisation to take the estimation error of surrogate 

modelling into account, thus enabling the trade-off between optimality and reliability to 

be controlled. Moreover, non-uniform sampling of initial swarm particles is adopted to 

enhance computational efficiency. Since PSO has no requirements as to the properties of 

the problem, this new algorithm can be used to solve all kinds of surrogate-based 

optimisation problems that have a strict time constraint.  

 Based on the surrogate modelling technique and PSO-based optimisation algorithm that 

have been developed in this work, a novel surrogate-based real time signal control 

system is proposed. With the surrogate model, this system is purely model-free with no 

need of a posteriori validation. It can control multiple intersections in a centralised 

manner to manage the network-wide performance, and generate decision plans for all the 

intersections simultaneously within eight seconds. Moreover, the proposed system is 

flexible to be applied to various traffic networks since few assumptions are imposed on it 

and the parameters of the surrogate model help to gain insight into the traffic dynamics, 

which makes the proposed system interpretable. 

 This thesis proposes a surrogate-based real time signal control strategy with an adaptive 

response surface, and where the surrogate model and baseline signal can be updated 

continuously during the implementation according to feedback from the traffic network.  

6.3 Recommendations for future work 

This research is the first attempt to apply the surrogate model to real time signal control. 

There are, however, a number of limitations to this research, and thus the following 

recommendations are made for future research:  
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 The surrogate model in Chapter 3 is constructed without considering the uncertainty of 

data. Moreover, training points are obtained from a deterministic simulation model. In 

practice, however, the traffic network is stochastic, and the data quality may not be high. 

Further research can investigate the construction of a surrogate model with data that are 

subject to uncertainties and assess the robustness of the surrogate model to data quality.  

 The proposed real time signal control is only tested in a deterministic macroscopic 

simulation environment, which has a low level of similarity to the real network. While 

this can act as a benchmark, further research can test the proposed signal control system 

in a stochastic microscopic simulation environment and modify the surrogate-based 

optimisation to adapt to the stochasticity of the traffic network. 

 The proposed surrogate-based real time signal control system is only tested on a small 

network with five signalised intersections. Although, theoretically, it can be extended to 

larger networks, the growth in the dimension of the response surface will result in an 

exponential increase in computational burden. One possible approach to tackle this 

problem is to divide the network into several subsystems and operate traffic signals in a 

hierarchical manner. This can be investigated in detail in future work. 

 For Kriging and RBF, the estimation time can be further reduced by constructing a 

correlation matrix between the point to estimate and only those training points that are 

close to it. Based on this, the limitation in the number of training points can be relaxed, 

such that the surrogate model can cover a larger design space.  

 The proposed real time signal control only considers the adjustment of the green split. 

Other signal control parameters can be considered as well in future research. 

 This research only considers a systematic change of demand. In reality, however, travel 

behaviours (e.g. turning ratio, wave speed) and network parameters (e.g. capacity of the 

link) also vary with time. The research can be further extended to assess the performance 

of the real time signal control system under changes in other parameters. 
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Appendix A 

Summary of real time signal controls in Chapter 2 

 
Optimisation 

method 
Structure Traffic model Objective 

Cai, Wong & Heydecker 

(2009) 
ADP isolated 

Vertical 

queuing theory 
Average delay 

Cai (2009) ADP Isolated/distributed 

Vertical 

queuing 

theory/CTM 

Average delay 

Yin, Dridi & EI Moundni 

(2015) 
ADP distributed 

Vertical 

queuing theory 

& car following 

& lane choice 

Average waiting 

time 

Lin & Wang (2004) MILP centralised CTM 
Total delay & 

number of stops 

Han et al. (2016a) MILP centralised 

Link-based 

simulation 

model 

Weighted 

throughput and 

emission 

(constraint) 

Christofa, Papamichail & 

Skabardonis (2013) 
MINLP isolated Queuing theory 

Total person 

delay 

Girianna & Benekohal 

(2004) 
GA centralised 

Link-based 

simulation 

model 

Net effect of 

released vehicles 

and disutility 

function 

Lee et al.(2005) GA centralised 

Link-based 

simulation 

model 

Vehicle delay 

Sun, Benekohal & Waller 

(2006) 
GA centralised CTM Travel time 

Wei et al. (2001) Fuzzy logic isolated  

Vehicle delay 

and percentage 

of stopped 

vehicles 

Chiu & Chand (1993) Fuzzy logic distributed   

Kosonen (2003) Fuzzy logic distributed   

Bingham (2001) Neurofuzzy isolated   

Murat & Gedizlioglu 

(2005) 
Fuzzy logic isolated   
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Dion & Hellinga (2002) 
Rule-based 

approach 
isolated  Delay 

Wiering (2000) and 

Wiering et al. (2004) 

Critic-only 

model-based 

RL 

distributed  Waiting time 

Khamis & Gomaa (2014) 

Critic-only 

model-based 

RL 

distributed  

Trip waiting 

time, total trip 

time and 

junction waiting 

time 

Li, Lv & Wang (2016) 

Critic-only 

model-free 

RL 

isolated   

Shabestary & Abdulhai 

(2018) 

Critic-only 

model-free 

RL 

isolated   

Chu et al. (2020) 
Actor-critic 

RL 
distributed   

Aslani, Mesgari & 

Wiering (2017) 

Actor-critic 

RL 
distributed   

Liu et al. (2015) LDR centralised 

Link-based 

simulation 

model 

Weighted 

throughput 

Song et al. (2019) NLD centralised 

Microscopic 

simulation 

model 

(S-Paramics) 

Delay and 

emission 

Table A. An overview of main characteristics of real time signal controls reviewed in Chapter 

2 

 

 

 

 

 

 

 

 

 

 

 

 

 



225 
 

Appendix B  

Numerical settings of the Glasgow network 

 

Figure B The abstract layout of Glasgow Network 

 

 0-15 min 15-30min 30-45min 45-60min 

Link 1 0.2732 0.2764 0.2175 0.2207 

Link 2 0.1789 0.1950 0.1479 0.1704 

Link 3 0.1307 0.1629 0.1307 0.1136 

Link 4 0.1829 0.1476 0.1391 0.1048 

Link 5 0.0654 0.0793 0.0686 0.0386 

Link 6 0.0903 0.0827 0.0801 0.0643 

Link 7 0.1400 0.1456 0.1444 0.1133 

Link 8 0.0689 0.0800 0.0800 0.0678 

Link 9 0.0767 0.0824 0.0989 0.0933 

Link 10 0.0908 0.0999 0.0848 0.0575 

Link 11 0.1917 0.1998 0.1927 0.1766 

Table B.1. Average flow of eleven entrance links of Glasgow network (Veh/s) 
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Link → Link Turning Ratio Link → Link Turning Ratio 

1 → 12 0.6670 9 → h 0.3623 

1 → b 0.0902 10 → 24 0.1667 

1 → c 0.2428 10 → j 0.8334 

2 → 12 0.1440 12 → 14 0.8911 

2 → a 0.1130 12 → d 0.0495 

2 → c 0.7430 12 → e 0.0594 

3 → 12 0.0492 13 → a 0.8212 

3 → a 0.5408 13 → b 0.0927 

3 → b 0.4100 13 → c 0.0861 

4 → 13 0.1403 14 → 21 0.8241 

4 → 14 0.3743 14 → 22 0.0854 

4 → e 0.4854 14 → f 0.0905 

5 → 13 0.1967 15 → 13 0.8032 

5 → 14 0.2131 15 → d 0.1181 

5 → d 0.5902 15 → e 0.0787 

6 → 19 0.8136 19 → 17 0.4097 

6 → 20 0.1864 19 → 22 0.5903 

7 → 23 0.1190 22 → g 0.0818 

7 → h 0.1985 22 → h 0.4818 

7 → i 0.6825 22 → i 0.4364 

8 → 23 0.7419 23 → 16 0.1837 

8 → g 0.0484 23 → 18 0.8163 

8 → i 0.2097 24 → 17 0.7466 

9 → 23 0.2319 24 → 22 0.1301 

9 → g 0.4058 24 → f 0.1233 

Table B.2. Turning ratio of Glasgow Network 
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Appendix C  

Webster method 

Webster was first proposed by Webster (1958). It aims to reduce the delay at the intersection. 

Smith & Mounce (2011) defined the red time cost of equi-saturation policy as Equation (C.1). 

 Red time cost: 
  

    
 (C.1) 

         is the flow of link i, which is an incoming link,    is the saturation flow of link i 

and    is the proportion of green time. 

The red time cost changes until the red time costs of all the stages become the same. For an 

intersection with k stages, the green split should satisfy the following equation: 

   

    
 

  

    
   

  

    
 (C.2) 

Let the red time costs of the links to be  , then Equation (C.2) is converted to Equation (C.3): 

   

    
 

  

    
   

  

    
   (C.3) 

Define    as the ratio of the link flow and saturation flow of link i, therefore 

 
  

  
    

  

  
      

  

  
    (C.4) 

Combine the Equation (C.3) and Equation (C.4) and the green split of each stage can be 

represented as a function of b and  : 

   

  
 

 

  
   

  

  
   (C.5) 
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(C.6) 

Since    is the proportion of the green time of link i, the sum of    of all the incoming links 

should be 1. 

                (C.7) 

   

 
 

  

 
    

  

 
   

(C.8) 

  

 
               (C.9) 

If all the link flows and saturation flows are known, then   can be calculated according to the 

values of b and thus the green time of each stage can be calculated, the equations of green 

time is shown below. 

    
  

   
 
   

 (C.10) 

 

 


