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ABSTRACT 

The importance of sensing technologies in the field of transportation is ever 

increasing. Rapid improvements of cloud computing, Internet of Vehicles (IoV), and intelligent 

transport system (ITS) enables fast acquisition of sensor data with immediate processing.  

Machine learning algorithms provide a way to classify or predict outcomes in a selective and 

timely fashion. High accuracy and increased volatility are the main features of various learning 

algorithms. In this dissertation, we aim to use infrastructure- and vehicle-based sensors to 

improve safety and mobility of urban transportation systems. Smartphone sensors were used in 

the first study to estimate vehicle trajectory using lane change classification. It addresses the 

research gap in trajectory estimation since all previous studies focused on estimating trajectories 

at roadway segments only. Being a mobile application-based system, it can readily be used as 

on-board unit emulators in vehicles that have little or no connectivity. Secondly, smartphone 

sensors were also used to identify several transportation modes. While this has been studied 

extensively in the last decade, our method integrates a data augmentation method to overcome 

the class imbalance problem. Results show that using a balanced dataset improves the 

classification accuracy of transportation modes. Thirdly, infrastructure-based sensors like the 

loop detectors and video detectors were used to predict traffic signal states. This system can aid 

in resolving the complex signal retiming steps that is conventionally used to improve the 

performance of an intersection. The methodology was transferred to a different intersection 

where excellent results were achieved. Fourthly, magnetic vehicle detection system (MVDS) was 

used to generate traffic patterns in crash and non-crash events. Variational Autoencoder was used 

for the first time in this study as a data generation tool. The results related to sensitivity and 
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specificity were improved by up to 8% as compared to other state-of-the-art data augmentation 

methods.  
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CHAPTER 1: INTRODUCTION 

Background 

The field of transportation engineering is rapidly advancing with the use of different innovative 

sensing technologies. Real-time sensor data is being used in research and development to 

improve the quality of life. Historically saved data can also help to understand the cause of 

certain unpredictable events like crash.  Machine learning models can aid in this regard to predict 

and classify different events. In this dissertation, we focus on identifying research gaps in certain 

transportation applications that can be improved based on the use of machine learning models on 

sensor data from the infrastructure and/or vehicles. 

There have been studies on two fronts in this regard. The first is mostly related with traffic 

patterns and roadway conditions. These are necessary to control traffic signals and investigate 

the reasons that could lead to safety concerns. The sensors can range from magnetic loop 

detectors to cameras at intersections as well as weather stations. These can be termed as 

infrastructure-based sensors. Secondly, it is also important to understand the individual vehicle 

dynamics to account for safety and mobility in a smart city environment. To this end, the 

research is concentrated on the real-time sensing units on vehicles; the On-board Units (OBUs). 

The technology is relatively new and therefore expensive to integrate into most cars as of today. 

While it is imperative that within a decade or two the system ultimately finds its way to all 

vehicles, the intermediate years are crucial in terms of performance that can be achieved later on. 

Smartphone sensors can provide us with similar information contained in an OBU and can be an 

effective alternative as will be discussed in Objectives 1 and 2a. Every year new chipsets are 

deployed in smartphones which results in more accurate and efficient sensing. With the advent of 

5G, these can be taken to the next level with ultra-fast speed and connectivity. Objective 2b 
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introduces a data augmentation method for crash data analysis. Since crash and non-crash 

samples in such dataset is hugely imbalanced, it is necessary to use a robust data augmentation 

method. The use of variational autoencoder is the first research to this end to the best of the 

knowledge of the author. Finally, Objective 3 relates to predicting signal phasing and timing 

from detector events. We believe this method can reduce the dependance on traditional signal 

retiming methods to a great extent. 

Objectives 

Objective 1: Using smartphone data to estimate vehicle trajectories with machine learning 

models: 

As technology is moving rapidly towards automation and connectivity, it is of paramount 

importance to predict vehicle trajectories ahead of time. This not only enhances safety but also 

ensures mobility in a connected and automated environment. Previous studies have shown that, 

given the previous trajectory, the future trajectory can be estimated. But this method suffers from 

considerable drawbacks in case of intersections. This objective presents an integrated method of 

estimating vehicle trajectories for both general roadway segments and intersections. A lane 

change detection system is taken as an indicator of intersection turning movement estimation and 

corresponding vehicle trajectories are estimated accordingly. This method is implemented by a 

mobile application. Therefore, the system is of low cost but effective as it is able to bring partial 

automation and connectivity to the vehicles that are not automated. Sensor readings are taken 

periodically which are first filtered with a low pass filter to zero out any high frequency noise 

and then fed into a machine learning model to detect lane changes. Finally, vehicle trajectory is 

estimated using Chebychev’s polynomial. 
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Objective 2a: Using novel technique to balance smartphone data and applying it to identify 

transportation modes: 

A data augmentation technique is presented that can improve the classification of transportation 

modes when the training data is insufficient. The proposed method uses a variational 

autoencoder (VAE) based synthetic data generation algorithm for smartphone data. Often the 

data collected by individuals for research is limited due to practical constraints. The algorithm 

discussed would aid in generating similar data from a handful of collected data to give a 

substantial dataset for any machine learning models. We propose a VAE, the decoder of which 

can help generate this synthetic data. We show that the synthetic data closely follows the pattern 

of the real data. We also show that classification accuracy is improved with the use of this type 

of data. Our method would also be a useful tool to boost the samples of an underrepresented 

class in a dataset. The detection of activity recognition using smartphone sensors could be 

applied to multiple aspects of vehicle to pedestrian P2V systems and smart mobility. 

Objective 2b: Evaluation of the data balancing technique to augment crash data: 

In this objective, we present a data augmentation technique to reproduce crash data. The dataset 

comprising crash and non-crash events are extremely imbalanced. For instance, the dataset used 

in this objective consists of only 625 crash events for over 6.5 million non-crash events. Thus, 

learning algorithms tend to perform poorly on these datasets. We have used variational 

autoencoder to encode all the events into a latent space. After training, the model could 

successfully divide the crash and non-crash events in the latent space. To generate data, we 

sampled from the latent space containing crash data. The generated data was compared with the 

real data from different statistical aspects. It was also compared to some of the minority 

oversampling techniques like SMOTE and ADASYN. The results were also compared with 
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GAN framework for generating data. Crash prediction models based on Logistic Regression and 

Support Vector Machine were used to compare the generated data from the different models. 

Overall, variational autoencoder (VAE) showed excellent results compared to the other data 

augmentation methods. 

Objective 3: Signal Phasing and Timing (SPaT) Prediction with high resolution detector data 

from ATSPM: 

Signal retiming methods have been traditionally used to improve traffic flow at intersections by 

reducing delay and improving level of service at signalized intersections. This can often be a 

lengthy process that includes several iterations of various optimization methods. Since traffic 

volumes can be easily obtained at intersections, a real-time signal timing prediction based on 

deep learning algorithms is proposed that will take various traffic flow parameters as input and 

find optimal timing parameters. Detector data available has been used to calculate the traffic 

flow metrics at several intersections. This processed data is then used to predict the signal timing 

and phasing for the next six cycles with reasonable accuracy. Seventeen intersections from two 

distinct corridors have been used in this study. One of the corridors runs adaptive signal control 

and the other corridor runs actuated signal control. The proposed CNN-LSTM model shows that 

cycle length can be accurately predicted with an MAE of 7 to 16 seconds and phase duration can 

be predicted with an MAE of 3 to 8 seconds. The trained model was also successfully validated 

at an unknown intersection with an MAE of 12.7 seconds. 

Dissertation Structure 

In this dissertation, we will first discuss the relevant studies under the specified objectives in 

Chapter 2. Research related to objective 1, 2 and 3 have been completed and presented in 

Chapters 3, 4, 5 and 6, respectively. The results are also discussed extensively in each chapter 
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and possible extensions of the work is also suggested. Finally, Chapter 7 presents the concluding 

remarks and takeaways from the dissertation. 
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CHAPTER 2: LITERATURE REVIEW 

This chapter describes the previous effort relating to each objective presented in Chapter 1. The 

novel contribution proposed is then highlighted along with the key differences to earlier research. 

Previous work related to Trajectory Estimation (Objective 1) 

In this section, we will discuss the current state of trajectory estimation. This will be followed by 

reviewing the methods that have been used in detecting lane changes since this is a integral to 

our proposed trajectory estimation. Finally, the important contributions in our work will be 

underlined. 

Trajectory estimation 

Trajectory prediction has been studied in different branches of robotics as well as computer 

vision. Quite some methods are available that have been used to predict trajectories of vehicles 

(Lefèvre et al., 2014). The most popular of these models are the kinematic or dynamic models as 

presented by Ammoun and Nashashibi (2009). Some studies focused on low-dimensional 

manifold models to account for a minor subset of trajectories that are possible at intersections 

(Ammoun and Nashashibi, 2009). Recurrent neural network (RNN) has also been widely used 

particularly the long short term memory (LSTM) model to understand the complex dynamics of 

vehicle motion (Kim et al., 2017). The concept of occupancy grid map was taken a step further in 

these studies. Further increase in accuracy is obtained using multiple model filter involving the 

Bayesian technique (Kaempchen et al., 2004). The Monte Carlo sampling for assessing statistical 

threat is also noteworthy in this regard (Wiest et al., 2012). There are quite few machine learning 

models to predict vehicle trajectories as well. The Gaussian mixture model (Wiest et al., 2012) 

has been studied and also trajectories have been learned with the Gaussian process as well 

(Laugier et al., 2011; Tran and Firl, 2014) . Some other models include more sophisticated 
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calculations (Brand et al., 1997; Gindele et al., 2015). Most of the machine learning techniques 

involve computer vision. For vehicles, this means separate on-board units with camera and some 

computing power as well. Smartphone data has been mostly neglected in this regard except in 

few cases. The importance of smartphone sensors and sensor fusion have been emphasized in 

several work nonetheless (Kanarachos et al., 2018). Transportation modes has been identified 

using such data (Xia et al., 2014). Human movement states have also been estimated using the 

accelerometer and magnetometer sensors of the smartphone (Iwashita and Shimanuki, 2018). 

Deep neural networks have been used to identify vehicle movement directions (Hernández 

Sánchez et al., 2018). There has been some recent work in the fields of connected vehicles that 

also involve trajectory prediction (Lin et al., 2018), most of these are in simulation environments 

(Rahman et al., 2019). Connected vehicle systems are also mostly implemented on simulation 

environments. Few research efforts use smartphone sensors to predict vehicle trajectories.  

Detecting Lane Change Maneuvers 

The first objective relies on identifying lane change. Therefore, we present some of the work that 

has been done to detect lane changes. Most of the related work has been in computer vision 

fields for automated vehicle studies. It involves finding a suitable time for lane change (Nilsson 

et al., 2016). Takahashi and Ninomiya (1996) used an extended Kalman Filter was used to model 

the lane markings to search within a specified area in the image so that far lane boundaries are 

searched with a smaller area than closer lane boundaries, thus reducing the impact of noise. Rose 

and Bevly augmented this work by fusing an Inertial Measurement Unit with camera vision in an 

Extended Kalman Filter (Rose and Bevly, 2009). Cameras on the smartphone has also been 

widely used in this regard even though this consumes substantial battery. Of the studies using 

low-power smartphone sensors, the activity recognition tool is the most prominent. Most of these 



 

 

 

8 

also have been widely implemented by Android and iOS. Smartphone sensors have also been 

used to recognize road conditions and accidents (Engelbrecht et al., 2015). It has also been used 

to analyze driving behavior and to provide safety information to the drivers (Welch, 1967). The 

summary is presented in the Table 1. 

 

Table 1 Summary of  literature review relating objective 1 

Reference Objective Method Sensor 

Ammoun and Nashashibi 

(2009) 

Trajectory prediction and 

collision estimation 

Bicycle Model based 

on linear Kalman Filter 

GPS Module 

Kim et al. (2017) Predicting trajectories of 

surrounding vehicles 

LSTM Radar, Camera 

Kaempchen et al. (2004) Integration of individual 

filters to predict Stop and Go 

Interacting Multiple 

Model  

Laser scanner, 

Radar, Camera 

Wiest et al. (2012) Probabilistic model of 

trajectory 

Gaussian Mixture 

Model 

GPS 

Laugier et al. (2011) Risk estimation by 

estimating trajectories 

Sensor fusion 

technique with FCTA 

Onboard Unit 

Tran and Firl (2014) Trajectory estimation at 

urban intersection 

Monte Carlo Onboard Unit 

Gindele et al. (2015) Trajectory prediction to aid 

decision making 

Expected 

Maximization of 

Bayesian Model 

Simulation 

 

Kanarachos et al. (2018) Driver Monitoring Review of important 

work 

Smartphone 

Hernández Sánchez et al. 

(2018) 

Vehicle movement detection DNN Smartphone 

accelerometer 
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Reference Objective Method Sensor 

Lin et al. (2018) Vehicle Trajectory 

Estimation 

DNN Smartphone 

Nilsson et al. (2016) Safe lane change maneuver 

possibility 

Threshold based inter-

vehicle gap estimation 

Simulation 

Rose and Bevly (2009) Lane detection and tracking Polynomial counding 

curve 

IMU 

  

Proposed Contribution 

These aforementioned studies are an indicator that the use of smartphone sensors in the field of 

transportation is quite limited. In this objective, the authors have used sensors such as 

accelerometer, magnetometer, gyroscope, to develop a cost efficient, simplistic and user-friendly 

system. These sensors can be fused together to obtain useful information such as accurate driving 

behaviors as shown in (Kanarachos et al., 2018). It also shows how the smartphone can be used 

as an integrated platform in the fields of heterogeneous information sources and deep learning.  

The author in this objective also uses some techniques to fuse the accelerometer and 

magnetometer sensors to obtain useful parameters such as azimuth, roll and pitch. Moreover, this 

objective also proposes a system that is readily applicable in most of the smartphones today. The 

aim of such a system is to design a car-independent system which does not need vehicle mounted 

sensors measuring turn rates, gas consumption or tire pressure. In contrast to state of the art, this 

work uses no external sensors, resulting in a cost efficient, simplistic and user-friendly system 

with the potential for high market penetration. 
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Literature Review on Activity Recognition (Objective 2a) 

In this section, the previous work on activity recognition is summarized in three sections. We 

firstly discuss previous and recent works on activity recognition not limiting to smartphone 

sensors. Use of Variational Autoencoder to augment data in the computer vision field has been 

highlighted thereafter. Thirdly, relevant work to sensor data augmentation has been highlighted. 

Transportation Mode Recognition 

Mode or activity recognition has been studied under various branches under various names. It 

has been often called Human Activity Recognition (HAR), Locomotion Activity recognition 

(LAR), Transportation Mode, etc. HAR is mostly investigated under Applied Biological Science 

where it is important to identify the activity of a patient using wearable sensors Lau et al. (2018). 

LAR is studied under Transportation where it is important to distinguish between different road 

users (Gu et al., 2017). Even though studied under different names from different perspectives, 

the underlying principle remain the same: recognize activity from sensor data. The earliest work 

go back to 1999 where  Foerster et al. (1999) first tried to detect posture and motion by 

accelerometer. Most of the studies were after the extensive popularity of the smartphone in the 

year 2007 (Kakihara). Various sensors and devices have been used thereafter. These mostly 

include video/image sensors, wearable sensors, social network sensors and wireless signals (26). 

Surveillance cameras were used by Bodor et al. (2003) to identify daily activities. With the wide 

availability of sensor chips, data was collected from wearable sensors and mobile phones and it 

was analyzed using different methods (Bhattacharya and Lane, 2016). There were studies based 

on statistical methods (Madabhushi and Aggarwal, 1999) initially  which soon took a deep dive 

into learning algorithms (Lara and Labrador, 2012). Convincing accuracy was reported from 

many of the studies (Bulling et al., 2014; Chavarriaga et al., 2013; Hassan et al., 2018; Lara and 
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Labrador, 2012; Yin et al., 2008) . This was later followed by deep learning techniques (Wang et 

al., 2019a). Further studies were carried out to account for multimodal sensor technique (Chen et 

al., 2015; Zhang and Sawchuk, 2011). Stacked denoising autoencoders were used in (Fuqiang et 

al., 2018) to remove noise and train the model at the same time. We summarize the important 

works in the Table 2 below. 

Table 2 Summary of literature review on activity recognition 

Reference Objective Method Sensor Field 

Lau et al. (2018) Telemedicine 

middleware platform 

KNN, DT, SMO Smartphone 

Sensor 

Biological Science 

Lin et al. (2016) Patient Handling 

Activity 

KNN Wearable 

Sensor 

Biological Science 

Gu et al. (2017) Locomotion 

Activity 

Recognition 

Neural Network Smartphone 

Sensor 

Indoor Localization 

Bodor et al. (2003) Activity 

Recognition 

Kalman Filter Surveillance 

Camera 

Outdoor Localization, 

Tracking 

Bhattacharya and 

Lane (2016) 

Gesture, 

Transportation 

Mode 

RBM Smart 

Watch 

DNN in resource 

limited fields 

Madabhushi and 

Aggarwal (1999) 

Tracking Activity Bayesian CCD 

Camera 

Tracking human 

activity  

Chen et al. (2015) Human Activity Single layer 

feature selection 

framework 

IMU Feature selection 

scheme 

Fuqiang et al. 

(2018) 

Locomotion 

Activity 

Recognition 

Denoising 

Autoencoder 

Smartphone 

Sensor 

Fitness tracking, aged 

care 

Ordóñez and 

Roggen (2016) 

Human Activity RNN, CNN Body-worn 

Sensors 

Hybrid model activity 

recognition 

Zheng et al. (2016) Indoor Activity CNN, SAE IMU Hybrid time series 

modelling technique 

Liu et al. (2016) Indoor Activity CNN, RBM Smart 

watch, 

Smartphone 

Automated generation 

of daily activity 

routine 
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Variational Autoencoder 

Variational Autoencoders (VAE) were first introduced by Kingma and Welling (2014). The main 

challenges of why a vanilla autoencoder could not be used to generate data were addressed in 

this objective. It consists of an encoder and decoder just like an autoencoder, but the loss term 

and the bottleneck are modified. The reparameterization trick and the special loss function 

described in this study were noticeable to overcome the challenges. The loss function comprises 

two terms: the negative log likelihood with a regularizer. Since then, VAEs have found 

applications in different fields. It has been used to learn images, labels and captions (Pu et al., 

2016), to detect anomaly (An and Cho, 2015), for text classification Xu et al. (2017) etc. 

Different improved version of the VAEs were also available (Sønderby et al., 2016, 2017 #367). 

(Kusner et al., 2017; Sønderby et al., 2016)In this study, we aim to use VAE for generating 

sensor data. To the best of the knowledge of the authors, this is the first time VAEs were studied 

from a sensor data standpoint.  

Sensor Data Augmentation 

Image data augmentation has been gaining popularity in recent time (Frid-Adar et al., 2018). 

Studies have shown much promise and that given a small number of image set, different 

synthetic and accurate images can be generated (Perez and Wang, 2017). Based on the success in 

computer vision fields, augmentation techniques have been studied for synthetic sensor data 

generation as well. CNN was used by Um et al. (2017) and LSTM by Steven Eyobu and Han 

(2018) for wearable sensor data augmentation. RNN was also suggested in (Wang et al., 2018) 

since these models have an internal memory state. GANs were also used in a couple of studies. 

The first by Alzantot et al. (2017) trained GANs on LSTM-based generator. The generator and 

discriminator were trained separately. Wang et al. (2018) first trained both generator and 
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discriminator parallelly to achieve a more realistic approach to data augmentation. Therefore, we 

can classify previous work into two groups: 

• Oversampling based on statistical modelling such as SMOTE, ADASYN 

• Oversampling based on deep learning such as GAN, CNN 

Our contribution is towards the deep learning architectures. 

Proposed Novel Contribution 

In this objective, we look at activity recognition from a different perspective of data 

augmentation. While notable accuracy is reported in the literature, there has been very few 

studies regarding data augmentation of sensor data. This can alleviate the problem of data 

scarcity that is quite common in this field. In fact, different studies rely on collected data which 

are often not enough for learning algorithms.  

Survey of Previous Work Related to Crash Data Augmentation (Objective 2b) 

Crash Prediction and Data Augmentation 

Various methods have been used over the past two decades to predict real-time crash likelihood. 

In most of the previous studies, the traffic data is aggregated at 5-minute intervals. At the start of 

the century there were several statistical methods that began to gain popularity. Initially case 

control logistic regression was studied by Abdel-Aty et al. (2004) which was improved upon 

with log-linear and Bayesian logistic models (Wang et al., 2019c; Wang et al., 2015). Lately, 

there has been increasing work using learning algorithms like Support Vector Machine (SVM) 

(Basso et al., 2018; Yu and Abdel-Aty, 2013), Long Short Term Memory (LSTM) (Li et al., 

2020b), Random Forest (Lin et al., 2015) to predict crashes. Huang et al. (2020) used CNN to 

predict crashes in Interstates and found better results than shallow models. Bao et al. (2019) also 
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used CNN to model citywide short-term crash risk prediction and reported that CNN was able to 

capture local spatial correlation. 

Traffic data related to crashes can be highly imbalanced since generally only none or a handful 

of crashes occur on a segment each year. With the advancement of more safety features and 

warning systems in recent vehicles, the crashes are expected to be reduced even further. If we 

downsample the non-crash data to get a sample size similar to a crash data sample, extensive 

non-crash events are neglected. Therefore, it is necessary to upsample the crash data to properly 

train it with any model, otherwise the model will be skewed to non-crash events. Some studies 

tend to upsample the data with Synthetic minority Oversampling Technique (SMOTE) (Li et al., 

2020b). Another popular method Adaptive Synthetic Sampling (ADASYN) (He et al., 2008) has 

not been used to augment crashes to the best of the knowledge of the authors. In this objective 

we have also upsampled the crash data with ADASYN and we have compared our results from 

the VAE model to ADASYN as well as SMOTE. Qing et. al. recently applied DCGAN to 

augment crash data (Cai et al., 2020) and the results show how deep learning data augmentation 

techniques can be competitive to the statistical models like SMOTE. To summarize, we present 

Table 3. As can be interpreted from this table, most studies have used the conventional data 

balancing methods like SMOTE. 
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Table 3 Crash data augmentation techniques in the literature 

Reference Classification Model Balancing Method 

Ahmed and Abdel-Aty (2011) LR Matched-case control 

Xu et al. (2012) Conditional LR Matched-case control 

Zheng et al. (2010) Conditional LR Matched-case control 

Shi and Abdel-Aty (2015) Bayesian LR Matched-case control 

Yu et al. (2016) LR, negative binomial Matched-case control 

Yu et al. (2018) Bayesian LR Matched-case control 

Xu et al. (2013) Binary Logit Matched-case control 

Basso et al. (2018) SVM, LR SMOTE 

Parsa et al. (2019) SVM, PNN SMOTE 

Yahaya et al. (2019) RF SMOTE 

Li et al. (2020b) LSTM-CNN SMOTE 

Li et al. (2020a) LSTM-RNN SMOTE 

Zhou et al. (2019) Regression SMOTE-ENN 

Cai et al. (2020) SVM, LR, ANN, CNN DCGAN 

Yin et al. (2019) LR SMOTE, under-sampling, 

Matched-case control 

Elamrani Abou Elassad et al. (2020) SVM, MLP SMOTE 

You et al. (2017) SVM,  SMOTE, ADASYN 

Sun et al. (2020) XGBoost Random Over Sampler 

He et al. (2018) MLP Supervised data 

synthesizing 

Yuan et al. (2019) LSTM-RNN SMOTE, matched case 

control 

Peng et al. (2020) RF, MLP Youden Index 

Wang et al. (2019b); Wang et al. (2019c) BPNN SMOTE 

Abou Elassad et al. (2020b) BL, kNN, SVM, MLP SMOTE 

Elamrani Abou Elassad et al. (2020) SVM, MLP SMOTE 

Ke et al. (2019) SVM, AdaBoost SMOTE 
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Reference Classification Model Balancing Method 

Abou Elassad et al. (2020a) SVM, MLP, RF SMOTE 

Parsa et al. (2019) SVM, PNN SMOTE 

Basso et al. (2020) SVM, LR SMOTE, Random over 

sampling 

 

Proposed Novel Contribution 

In this objective, we propose Variational Autoencoder to augment crash data. We have compared 

our results to SMOTE and ADASYN from the metric of specificity and sensitivity, which are 

important parameters to gauge the performance of data augmentation methods. We also 

compared it to DCGAN method (Cai et al., 2020). Overall, VAE outperforms all three with 

respect to the performance metrics. 

Literature Review on Signal Phasing and Timing Prediction (Objective 3) 

This section presents the previous work related to signal phasing and timing prediction. It is one 

of the earliest areas of research in transportation and remains to be a debated topic. Historically, 

signal control has mostly been studied from an optimization point of view. The literature review 

shows extensive optimization techniques and various mathematical formulation of the signal 

timing. More recently, big data analytics has also been used in the mix to identify signal timing 

patterns. In this chapter, traditional methods of signal control are first discussed. Recent studies 

relating to signal control are presented thereafter which can be divided into two broad categories 

from a methodology point of view: mathematical modeling-based signal control and deep 

learning-based signal control. These methods are used whenever an intersection needs retiming 

due to underperformance from mobility standpoints. Several studies proposed optimizing 

methods directly relating to connected vehicles as well as autonomous vehicles. Furthermore, 
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specific application-based studies are also found, such as those related to evacuation, reduction 

of fuel consumption, etc. These will also be discussed in separate sections.  

Traditional Traffic Signal Control Systems 

Traffic signal control systems have evolved tremendously over the years but broadly it can be 

divided into four types from an operation point of view (Gordon et al., 1996; Zhao and Tian, 

2012): 

• Pre-timed (or fixed time) 

• Fully actuated 

• Semi Actuated 

• Adaptive 

Pre-timed or fixed time signal controllers serve each of the available phases at an intersection for 

a set duration regardless of demand. While this is reasonable for off-peak hours, the throughput 

is considerably decreased during peak hour operation. Another ideal case for these types of 

operations could be an intersection in which all the phases have high demand. 

Actuated traffic signal control systems utilize vehicle and pedestrian detectors to activate a phase 

only when there is a demand. The green time of the activated phase would also vary depending 

on the number of vehicles detected. Fully actuated traffic control systems have detectors for all 

phases, whereas semi actuated traffic signal control only has actuators for the minor street.  

For fully actuated systems, the green intervals of each phase can vary within a range of 

predefined values. It can also be extended if a vehicle is detected. This is known as green 

extension or passage time. The phase will automatically terminate after a set time called gap 
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time. Phases can also be skipped if there is no demand. Pedestrian phases are also served based 

on detection or pedestrian calls. Walk intervals are fixed unless there is coordination. 

Semi actuated signals do not have actuators for one of the phases. Usually, this is the major 

through movement that is always served within a cycle while the other phases are served based 

on actuation. If there is any unused phase duration of the actuated phases, it is transferred to the 

major movement. 

Although actuated signal control provides great flexibility than pre-timed control, it is restricted 

in certain parameters such as minimum/maximum green, passage time, etc. The impact of this 

restriction is that actuated signal control cannot always adapt to real-time changes in traffic. This 

resulted in the third-generation urban traffic control systems (UTCS) (Zhao and Tian, 2012; 

Zheng and Recker, 2013) such as Sydney Coordinated Adaptive Traffic System (SCATS), Split 

Cycle Offset Optimisation Technique (SCOOT), Optimization Policies for Adaptive Control 

(OPAC), real-time traffic adaptive signal control system (RHODES), etc. SCATS and SCOOTs 

optimize the signals at a central level to find optimal parameters for the entire network, while 

OPAC and RHODES try to optimize at the intersection level. 

From an application perspective, there can be three types of signal control (Gordon et al., 1996): 

• Isolated 

• Arterial 

• Grid 

Isolated signal controls are used for intersections that are remote from other intersections and 

therefore do not benefit from coordination. Arterial signal controls are applied at the corridor 

level when intersections along a roadway benefit from coordination, while grid signal controls 
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are found in urban areas. Based on the necessity, each of these signal control can use pretimed, 

semi-actuated or fully actuated systems. 

Mathematical Modelling-Based Signal Timing Optimization 

The research in traffic signal control can be divided into three broad categories such as, central, 

hierarchal, and decentralized signal timing approaches. Central signal timing approaches 

considers all signals in a given network and as such the optimization solution is a global 

minimum. Hierarchal approaches divide the network in several levels with several objectives at 

each level. This helps in achieving local optimization solutions at intersection level as well as 

global solutions at the network level. Whereas decentralized optimizations decompose the entire 

network into smaller regions and each of these are optimized individually. While this helps in 

finding the local minimum, but the network level performance is not considered. 

Central Signal Timing Approaches 

Central signal timing approaches has been studied historically with a view to improving 

throughputs in oversaturated conditions by dynamically controlling traffic lights (Abu-Lebdeh 

and Benekohal, 1997; Chang and Sun, 2004; Longley, 1968). Genetic algorithms were proposed 

in contemporary research work by Hajbabaie and Benekohal (2011). A traffic signal 

coordination method using ant colony optimization was also proposed by Putha et al. (2012). 

Some of the optimization methods (Cantarella et al., 2006) focuses on generating a uniform 

pattern of signal timings instead of real-time solutions. There were also several studies that tried 

to improve some other factors like lane layout, traffic assignment, etc. Certain studies also 

focused on improving signal timing and traffic assignment problems (Beard and Ziliaskopoulos, 

2006). Signal timing optimization with route choice was studied by Sun et al. (2006). The route 
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options were investigated to lower the travel cost along with optimizing signal timing by 

Ukkusuri et al. (2013). 

Hierarchal Signal Timing Approaches 

Hierarchical solutions factor the network into a multi-level optimization problem. Sims and 

Dobinson (1980) divided the control strategies into two classes: strategic and tactical. Strategic 

levels deal with ten intersections to determine suitable timings based on average prevailing 

traffic conditions while tactical controls only try to optimize one intersection. Mauro (1990) also 

proposed a two levels of control strategy. The area level controller handles medium- and long-

term forecasting over the entire network while local level controller determines the optimum 

length of signal phases in real time. Three level controller was put forward by Head et al. (1992). 

Dynamic network loading level forecasts network level travel demand, network flow control 

level then uses this information to optimize green time while intersection control level 

determines appropriate phase intervals. Gartner et al. (2001) also proposed a three-layered 

control strategy. The synchronization layer is used for network level optimization, coordination 

layer adapts the cycle length based on real traffic conditions while local control layer adapts the 

phase timings within a cycle.  

Decentralized Signal Timing Approaches 

Decentralized approaches divide the network into multiple sub-levels with varying number of 

intersections. These approaches can be real-time but can find suboptimal solutions that are not 

scalable. Porche and Lafortune (1999) decomposed the network using dynamic programming. 

Each sub-level functioned on their own without coordinating with another but major streets 

could be provided higher weights. Priemer and Friedrich (2009) divided the network into 
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individual intersections and tried minimizing the total queue length at each intersection. Lee et 

al. (2013) proposed an algorithm that allocates green signal time to the approaches with longer 

cumulative travel time. Goodall et al. (2013) proposed predictive microscopic simulation 

algorithm (PMSA) that decomposes the network into individual intersections. Each intersection 

is handles separately assuming connected vehicle environment. Coordination among different 

intersections were not considered. 

Deep Learning-Based Signal Control 

Artificial intelligence and machine learning have also been used to improve traffic control 

performance. Broadly the learning algorithms can be classified into reinforcement learning, 

neural network and fuzzy logic systems. 

Reinforcement Learning for Signal Control 

Reinforcement learning was first used by Thorpe and Anderson (1996) for traffic signal control. 

SARSA  (Sutton, 1996) was applied in this study which was evaluated with three different 

representations of a specific state. Multi-agent reinforcement learning was also studied by 

Wiering et al. (2004); Wiering (2000). Each vehicle communicates its waiting time to the nearest 

traffic light. The goal of the system was to minimize the total waiting time. Abdulhai et al. 

(2003) applied Q-learning as a traffic controller. The reward function in this study was actually a 

penalty which was the total delay between two successive decisions. Wunderlich et al. (2008) 

used reinforcement learning as a tool to create distributed control since the proposed Longest 

Queue First (LQF) algorithm became increasingly complex in multi-intersection scenario. 

Feature based reinforcement learning was proposed by Prashanth and Bhatnagar (2010). 
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Neural Network for Signal Control 

Neural network based adaptive controllers were also studied. Spall and Chin (1997) developed a 

neural network controller to optimize the system. Simultaneous perturbation stochastic 

approximation (SPSA) was used to model the weights of the neural network. Yin et al. (2002) 

developed a fuzzy neural network model to predict the traffic flows in an urban street network. 

The reported improvement was up to 30% against a conventional NN. Choy et al. (2003) used a 

simultaneous perturbation stochastic approximation neural network (SPSA-NN) that was tested 

in different complex situations in the Singapore Central Business District. Teodorović et al. 

(2006) developed a system based on neural network and dynamic programming that makes teal 

time decisions to extend current green time. Chao et al. (2008) used extended neural network 

(ENN) theory for crossroads. This work was more geared to detecting appropriate traffic patterns 

accurately. Nagare and Bhatia (2012) argued that NN usually obtains local solutions and 

therefore suggested using combined optimization methods. 

Fuzzy Logic System for Signal Control 

Fuzzy Logic System (FLS) was used on a single intersection by Pappis and Mamdani (1977). 

The system was evaluated with actuated method and better results were reported. Nakatsuyama 

et al. (1984) applied FLS to two adjacent intersections. Based on fuzzy logic controller (FLC), 

managing and controlling phase length dynamically was suggested by Lee et al. (1995). FLS was 

also used by Favilla et al. (1993), to control isolated intersection with two-way street. Some other 

studies that have used FLC are Wei et al. (2001), Murat and Gedizlioglu (2005), Hu et al. (2007), 

Zeng et al. (2007). 
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Signal Optimization in Connected Vehicle Environment 

Several studies have also been proposed with respect to signal timing strategies in a connected 

environment. Quite a few these studies is devoted to using individual vehicle information such as 

speed, location, etc. to optimize signal timings (Beak et al., 2017; Choi et al., 2016; Day et al., 

2017; Goodall et al., 2013; Gradinescu et al., 2007; He et al., 2012; Hu et al., 2015; Lee et al., 

2013; Priemer and Friedrich, 2009; Yang et al., 2018). The main objectives also vary across the 

different papers. While some studies try to reduce the average vehicle or platoon delay (Beak et 

al., 2017; Goodall et al., 2013; He et al., 2012; Hu et al., 2015; Yang et al., 2018), other try to 

reduce the queue length (Priemer and Friedrich, 2009) or total travel time (Choi et al., 2016; Day 

et al., 2017; Lee et al., 2013). These considered the market penetration rates of CVs as well as 

the different traffic demands. Other studies have focused on improving the discharge time of 

vehicles such as minimization of evacuation time (Wu et al., 2007; Yan et al., 2009), travel time 

(Cai et al., 2012), queue length (Ahmane et al., 2013) , total delay (Pandit et al., 2013; Stebbins 

et al., 2016), etc. 

Signal Optimization in Autonomous Vehicle Environment 

Optimization using autonomous vehicles (Araghi et al., 2015) have also been studied. Dresner 

and Stone (2004) proposed requests from individual vehicles to reserve a time at an intersection 

with and without AVs (Dresner and Stone, 2006). This was extended to a network of intersection 

later on (Hausknecht et al., 2011). Lower levels of automation was also investigated from a 

similar reservation request policy (Au et al., 2015). Some non-reservation-based strategies were 

also studied (Dresner and Stone, 2006; Kamal et al., 2014; Lee and Park, 2012; Li et al., 2014; 

Zohdy and Rakha, 2012). 
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Signal Optimization for Platoon-Based Vehicles 

Platoon based signal timing optimizations were also suggested to over the computational 

complexity of the CAV studies (Liang et al., 2018) that can also be used on real-time scenarios. 

A longitudinal trajectory control algorithm was proposed based on the leading vehicle of the 

platoon while also taking in consideration the vehicle dynamics such as acceleration and 

deceleration. Previous studies related to the same also considered non-CAV vehicles (Xie et al., 

2012).   

There are certain also certain works that uses Signal Phasing and Timing (SPaT) to find optimal 

fuel economy (Asadi and Vahidi, 2010) or to guide a vehicle through a signal (Koukoumidis et 

al., 2011). Vehicle planning scheme for energy efficiency has also been studied (Mahler and 

Vahidi, 2014) for arterials that predicts SPaT based on historical data. SPaT predictions based on 

GPS data from several buses has been studied by Fayazi et al. (2014) for fixed signal timings. 

Floating vehicle data from other sources have also been investigated to estimate fixed timing 

signal parameters by using speed measurements (Ban et al., 2009; Fayazi and Vahidi, 2015; 

Wang and Jiang, 2012). Smartphone camera has also been used to detect signal states 

(Koukoumidis et al., 2011) used historical SPaT from a single intersection to calculate future 

times.  

Proposed Contribution 

None of these previous studies have used real-time detector information for SPaT prediction 

which provides accurate granular traffic flow for all phases. The other drawback is each study is 

limited to a single intersection and as such the reproducibility of such methods on other 

intersections cannot be understood. Additionally, such methods fail to capture the real-time 

vehicle demand fluctuations in the field and would usually suggest an average solution. Based on 
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our literature review, detector data has not been yet studied to predict SPaT. Due to directly 

correlating detector data with signal timing, this method has the potential to provide real-time 

accurate signal timing predictions than any of the previous studies.
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CHAPTER 3: TRAJECTORY ESTIMATION USING SMARTPHONE 

SENSORS 

Islam, Z., Abdel-Aty, M., 2021a. Real-Time Vehicle Trajectory Estimation Based on Lane 

Change Detection using Smartphone Sensors. Transportation Research Record, 

0361198121990681. 

Introduction 

In a smart and connected environment, it is imperative to detect potential conflicts as early as 

possible and to warn drivers and pedestrians as soon as possible. This can only be achieved if the 

vehicle trajectory can be properly estimated several seconds in advance. By definition, vehicle 

trajectory information has the present location of the car as well as future location estimates. 

Given such estimates, it will be possible to detect V2V and P2V conflict scenarios. While most 

of the research revolves around getting vehicle trajectories at straight roadway segments, it is 

also important to have some predictive features for intersections. The authors of this objective 

present an integrated system that can predict vehicle trajectories at both. Separate calculations 

are involved for calculating through, left and right movements at intersections, and only through 

movements are calculated for other locations. The authors also decided not to use a base map 

since this brings the additional task of manually labeling different intersections and roadway 

segments. Instead, intersections are estimated based on previous lane changes and speed. Also, 

there are no origin and destination nodes in the proposed system, and therefore, predicting 

driving trajectories is a challenging task. It is more like reading the mind of the driver. For this 

case, this objective uses two features to estimate intersections and whether the driver will turn 

left and right. A vehicle that made a left lane change and slowed down more likely has a higher 

probability to be approaching an intersection and will make a left turn. Moreover, this system 

would work on any three or four-leg intersections since the calculations are independent of any 
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basemap. The system is simple in itself so that it is possible to implement very quickly and 

efficiently. The reason for this simplicity is the use of smartphone sensors to achieve this 

prediction. It is a rare occasion to find a car without a smartphone. While there have been several 

studies involving on-board units (OBUs) and on-board equipment (OBEs), smartphone data has 

largely been neglected. The OBUs and OBEs have different sensors including 

microelectromechanical systems (MEMS) and Inertial Navigation System (INS) which are also 

present in smartphones nowadays. With the development of technology, these sensors in 

smartphones are also becoming more and more accurate. A study in 2012 (Blum et al., 2012) 

shows that the GPS error is within 10 meters and the compass error is 10 degrees. The authors 

experimented with some smartphones of 2019 (specifically the Samsung Galaxy Note 10, the 

OnePlus 6, and the iPhone XS) which are much more accurate, and the GPS error is under 1 

meter in most cases. The error was calculated from the difference in reading between smartphone 

device and ground truth based on GNSS data. The expected error rate in GPS can increase when 

inside a building or near obstacles that are interfering with the GPS signal. The built-in error 

measurement tool of GPS chipsets in the phones can be used to get an understanding of the 

magnitude of the error. If the error is above a threshold, a warning can be issued to the driver that 

the measurements are not stable due to a large GPS error. The phones also come with multiple 

other sensors like the accelerometer, magnetometer, gyroscope, etc. which are also very precise. 

The usage of these sensors in smartphones eliminates the need for individual OBUs and is, 

therefore, a cost-effective solution for Connected Vehicles. 

The chapter is organized as follows: The first section explains how the dataset for this objective 

was prepared and organized, the second describes the data preprocessing techniques that were 

used in generating the dataset. The methodologies and algorithms used to detect lane changes 
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and predict trajectories are presented in the next along with the results. Finally, concluding 

remarks are made and more interesting topics of research that can be built from this objective are 

discussed. The work presented in this chapter has been published at Transportation Research 

Record (Islam and Abdel-Aty, 2021a). 

Data Collection 

This objective uses data from a smartphone device to conduct the analysis. Smartphone data was 

collected from 4 trips that covered 64 miles. The total number of data points in the raw data was 

15504. The data was collected by two participants. In total the dataset had 94 lane changes.  

Readings from the accelerometer, magnetometer, gyroscope, and GPS were collected. The phone 

was placed on a mount to prevent unwanted jerking. Two Android phones were used to collect 

these data, the Samsung Galaxy Note 10 and the OnePlus 6. The authors developed their 

Android mobile app to get this data. The smartphone app architecture is shown in Figure 1.  

 

Figure 1 Android App Architecture for Data Collection 
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The mobile app did not only collect the data but also made other calculations whenever raw data 

were available. First, the app made the proper adjustment of the axis of the smartphone to the 

axis of the vehicle using rotation matrix. Second, the accelerometer and magnetometer data were 

filtered using a set of low pass filters. Finally, azimuth, pitch, and roll were estimated for each of 

the outputs of the low pass filters. The raw gyroscope values were also captured. A brief 

description of the data is summarized in Table 4. In addition, the filtered data for various sensors 

were also collected.  

Table 4  Data collected from Smartphone 

Sensor/Feature Name Description Values Collected from Smartphone 

Accelerometer Acceleration Profile of a vehicle accx, accy, accz 

Gyroscope Rotating Profile gyrox, gyroy, gyroz 

Magnetometer Strength of Earth’s magnetic field magx, magy, magz 

GPS Location of vehicle lat, lon 

Azimuth The direction of the vehicle from the 

north pole 

azimuth 

Pitch and Roll The tilt of the device pitch, roll 

Difference between 

consecutive azimuth 

Rate of change of azimuth difference 

Magnitude Azimuth conversion to binary magnitude 

 

The most difficult part of any data collection is the labeling. The common way of labeling a 

dataset is manual. The ImageNet dataset (Deng et al., 2009) was created by manually annotating 

images for 9 years. Even this is easier than labeling a lane change because, given a set of sensor 

readings, it is difficult to say which maneuver is a lane change. This research work introduces an 

unusual but effective way to achieve data labeling. The authors have used an extra device (called 

the Flic Wireless Smart Button) to label the lane changes while driving. This device was 
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wirelessly connected to the smartphone. At the beginning of the lane change, a button was 

pressed to indicate a right lane change. The same button was pressed twice to indicate a left lane 

change. After the button press, the lane change maneuver took place. This could also be achieved 

if the mobile app had buttons to tap during a lane change. The main drawback of such an 

approach is that the accelerometer readings and gyroscope readings would change significantly 

due to taps on the screen. Therefore, using an external device to label the lane change was the 

best way to get real driving data and also to efficiently label the dataset. Figure 2 shows the app 

UI and the Flic wireless button used to collect data. 

 

 

 

 

 

 

 

(a) App UI (b) Flic Button 

Figure 2 Android Application UI and the wireless Flic Button 
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Data Processing 

This section explains the steps to process the raw data from the smartphone. First, the calculation 

of the rotation matrix is discussed since this is the primary step for getting consistent readings 

from the smartphone. Second, some signal processing techniques that help to eliminate noise in 

the sensor data are discussed. Fast Fourier Transform is introduced in the next section which 

shows the frequency components of any signal. Using this information a low-pass filter system 

can be designed that can eliminate unwanted noise in sensor data as discussed in the following 

section. Finally, a discussion is carried out with regards to using the processed data to get an 

estimation of the azimuth which is used to detect lane changes. 

Rotation Matrix Calculation 

The inherent problem with placing a phone in a vehicle is its orientation with respect to the 

vehicle. Each sensor has its own 3D axis and the vehicle also has its axis. To match these two 

axes in order to achieve the exact vehicle maneuver, a rotation matrix is used. The main 

advantage of using a rotation matrix in a smartphone application is that the phone can be placed 

in any orientation and still receive consistent readings. If 𝜓 , 𝜃 and ∅ are the rotations about x-

axis, y-axis and z-axis respectively, then the rotation vectors are defined as (Slabaugh, 1999) 

𝑅𝑥(𝜓) =  [
1 0 0
0 𝑐𝑜𝑠𝜓 −𝑠𝑖𝑛𝜓
0 𝑠𝑖𝑛𝜓 𝑐𝑜𝑠𝜓

] 

𝑅𝑦(𝜃) =  [
𝑐𝑜𝑠𝜃 0 𝑠𝑖𝑛𝜃

0 1 0
−𝑠𝑖𝑛𝜃 0 𝑐𝑜𝑠𝜃

] 

𝑅𝑥(∅) =  [
𝑐𝑜𝑠∅ −𝑠𝑖𝑛∅ 0
𝑠𝑖𝑛∅ 𝑐𝑜𝑠∅ 0

0 0 1
] 
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The angles 𝜓, 𝜃 and ∅ are also called Euler’s angles. If analysis is carried out first at x-axis, then 

at z-axis and finally at y-axis then the resultant rotation matrix would look like 

𝑅 =  𝑅𝑥(𝜓)𝑅𝑦(𝜃)𝑅𝑥(∅) 

In the above equation, 𝑅 is a 3x3 matrix. This matrix, when multiplied with the sensor values 

along different axis converts the values to the corresponding axis of the vehicle. This ensures that 

the orientation in which a smartphone is placed in a vehicle does not affect the results. 

Fast Fourier Transform 

The accelerometers of smartphones are usually very sensitive and the same with magnetometers. 

This is an unwanted feature from the perspective of this objective because this inserts a large 

amount of noise to the sensors. To get an idea about the high-frequency noise of the 

accelerometers of the smartphone, the authors used Fast Fourier Transform (Welch, 1967) to 

convert the time series of accelerometer and magnetometer data to frequency series. Fast Fourier 

Transform (FFT) is an efficient way to calculate the Discrete Fourier Transform (DFT) of any 

signal in the time series. If the time series values of a signal are 𝑥0, 𝑥1, … , 𝑥𝑁−1, then the DFT is 

defined as 

𝑋𝑘 =  ∑ 𝑥𝑛𝑒𝑥𝑝 (−𝑖2𝜋𝑘𝑛/𝑁)

𝑁−1

𝑛=0

 

The value of 𝑘 is in the range of 0,1, . . . , 𝑁 − 1. 

Figure 3 shows accelerometer readings before and after FFT has been applied. The graph on the 

left has x-axis as time and the one on the right has frequency as the x-axis. The frequency-

domain graph gives an idea about the frequencies that are present in the accelerometer. 



 

 

 

33 

As can be seen from Figure 3 that the most significant part of the accelerometer data is that 

below 50 Hz. After that, it is mostly DC noise.  

  

(a) (b) 

Figure 3 The graph on the left shows accelerometer readings in the time domain and the one on 

the right shows the same for the frequency domain 

If we calculate the 3dB bandwidth from this plot, we get 3.28 Hz which means that the most 

significant part of the accelerometer data is below contained from 0 to 3.28 Hz. Formally, 3dB 

bandwidth is defined as the range of useful frequency when the signal amplitude gain is above 

70.7% of the maximum gain possible. 

Low Pass Filter 

A low pass filter attenuates the high-frequency components and allows the low-frequency points 

to pass through (Fredendall, 1949). The transfer function of a low pass filter (LPF) is defined as 

𝐻𝑐 =
𝜔𝑐

𝑠 + 𝜔𝑐
 

where, 

𝜔𝑐  =  2𝜋𝑓𝑐 and𝑓𝑐= the cut-off frequency. 
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The cut-off frequency for an LPF is the maximum frequency that will be passed through the 

filter. Figure 4 shows the LPF used in this objective. It has a cut-off frequency of 2 Hz. Figure 4 

also shows the difference between accelerometer readings before and after filtering. The graph is 

smoother with the removal of high-frequency components. 

  

(a) (b) 

Figure 4 The graph on the left shows the Low Pass Filter used in this study and the one on the 

right shows the raw accelerometer and filtered data 

 

Azimuth Estimation Using Accelerometer and Magnetometer 

After proper filtering of the high-frequency components, the accelerometer and magnetometer 

data were used to calculate azimuth. The angle between the device’s compass direction and the 

earth’s magnetic north pole is defined as azimuth. This can be accurately estimated as shown in 

(Zhou et al., 2012). 

As already mentioned, there are two coordinate systems; one for the vehicle (called the vehicle 

coordinate system, VCS) and the other is the co-ordinate system of the earth (also called 

geographic coordinate system, GCS). The relative rotation between these two coordinate systems 
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can be described by three terms called azimuth, pitch, and roll. For the purpose of this objective 

only azimuth calculation is sufficient. 

The transformation VCS and GCS are computed with the following cosine matrix 

𝐶𝑛 
𝑏  =  [

𝑐𝑜𝑠(𝑁, 𝑋) 𝑐𝑜𝑠(𝐸, 𝑋) 𝑐𝑜𝑠(𝐺, 𝑋)

𝑐𝑜𝑠(𝑁, 𝑌) 𝑐𝑜𝑠(𝐸, 𝑋) 𝑐𝑜𝑠(𝐺, 𝑋)
𝑐𝑜𝑠(𝑁, 𝑍) 𝑐𝑜𝑠(𝐸, 𝑋) 𝑐𝑜𝑠(𝐺, 𝑋)

] 

where, 

𝑁, 𝐸, 𝐺 are the three orthogonal axes of GCS and 𝑋, 𝑌, 𝑍 are the three orthogonal axes of VCS. 

The accelerometer readings 𝑥𝑎, 𝑦𝑎, 𝑧𝑎 together with the magnetometer readings 𝑥𝑚, 𝑦𝑚 , 𝑧𝑚 can 

be converted back and forth with this formula. If the errors associated with the accelerometer is 

𝑒𝑎𝑥 , 𝑒𝑎𝑦 , 𝑒𝑎𝑧 and that of the magnetometer is 𝑒𝑚𝑥, 𝑒𝑚𝑦 , 𝑒𝑚𝑧, then the conversion formulae would 

be 

[

𝑥𝑎

𝑦𝑎

𝑧𝑎

] = 𝐶𝑛 
𝑏 [

0
0
𝑓𝑔

]  + [

𝑒𝑎𝑥

𝑒𝑎𝑦

𝑒𝑎𝑧

] 

[

𝑥𝑚

𝑦𝑚

𝑧𝑚

] = 𝐻𝐶𝑛 
𝑏 [

𝑐𝑜𝑠𝛽
0

𝑠𝑖𝑛𝛽
]  + [

𝑒𝑚𝑥

𝑒𝑚𝑦

𝑒𝑚𝑧

] 

The errors shown in these equations is mostly eliminated due to the techniques explained in 

previous sections. 

Finally, the azimuth can be estimated using equation: 

𝜓 =  𝑎𝑟𝑐𝑡𝑎𝑛(
𝑧𝑚𝑠𝑖𝑛𝛾 − 𝑦𝑚𝑐𝑜𝑠𝛾

𝑥𝑚𝑐𝑜𝑠𝜃 + (𝑦𝑚𝑠𝑖𝑛𝛾 + 𝑧𝑚𝑐𝑜𝑠𝛾)𝑠𝑖𝑛𝜃
) 
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Where, 𝜃 is the pitch and can be calculated as 

𝜃 =  −𝑎𝑟𝑐𝑡𝑎𝑛(𝑥𝑎𝑐𝑜𝑠𝛾/𝑧𝑎) 

Figure 5 shows how the difference between azimuth reading from a smartphone device can aid in 

distinguishing between lane changing and non-lane changing instances. The fact that azimuth is 

the measure of direction from the north pole and that lane changing instances lead to a change in 

direction of driving, is an important indicator in this case. Evident from the Figure 5 is that the 

directions are opposite for left and right lane changing instances and it is almost constant for lane 

keeping instance. 

 

Figure 5  Difference in azimuth estimations from sensor values 

Methodologies and Discussion 

The methodologies are discussed in two sections; the first describes how various sensor values 

are used to identify lane changes and the next describes how the trajectory is estimated based on 

the previous GPS co-ordinates. 
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Lane Change Classification Using Machine Learning 

Feature Extraction 

The developed mobile application collected data from several sensors. The authors used machine 

learning models to detect lane changes in real time. The reason behind choosing machine 

learning to estimate lane changes is to capture the pattern in multiple sensors across multiple 

axes. In order to find out the best feature to identify lane changes, the authors carried out several 

feature extraction strategies. 

Pearson coefficient (78) was evaluated on the entire dataset and the values are shown in Figure 6.  

 

Figure 6 Pearson Correlation Coefficient across various sensors 
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The values for the row lanechange show that the most significant features are gyroscope z, 

accelerometer z, magnetometer x, magnetometer y, pitch, roll, difference and magnitude. This is 

an indication that identification of lane changing is dependent on the values of different sensors. 

To get more conclusive results, several other feature extraction methods were carried out 

namely, Select Percentile, Select K-best and RFECV. Select Percentile and Select K-best are 

based on univariate feature selection statistical methods. Select K-best works by calculating 

ANOVA F-values of the provided sample and then selecting K features with highest F-values. 

Select Percentile also computes the F-values but selects all the features with the percentile of 

highest score. Recursive feature elimination (RFE) works by recursively considering smaller and 

smaller features. Given a model, RFE initially trains itself on the all the features and then on 

smaller subset of the features to find the desired number of features, RFE with cross-validation 

(RFECV), iterates over a loop to find the optimal combination of features. The features extracted 

with the above four methods are summarized in Table 5. 

Table 5 Feature Extraction Methods Summary 

Methods Optimal Features 

Pearson Coefficient gyroscope z, accelerometer z, magnetometer x, 

magnetometer y, pitch, roll, difference and 

magnitude 

Select Percentile (top 10%) accelerometer x, accelerometer y, gyroscope y, 

magnitude, roll 

Select K Best accelerometer x, accelerometer y, gyroscope y 

Recursive Feature Elimination magnetometer x, magnetometer y, magnetometer 

z, azimuth, roll, pitch, accelerometer x, 

accelerometer y, magnitude 
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This leads us to the conclusion that accelerometer and gyroscope are an important indicator of 

lane change behavior. While some models suggest that magnetometer readings are also 

important, we can rule it out based on the fact that magnetometer readings measures the amount 

of magnetic flux at any place and cannot be an indicator of lane change indicator. It is also 

important to note that, the combination of the uncommon parameters like roll, azimuth and 

magnitude of azimuth are also important indicators. This can be explained with the logic that 

these parameters are nothing but sensor fusion of accelerometer and magnetometer. For training 

purposes, we have selected gyroscope y, accelerometer y, difference of azimuth, magnitude of 

azimuth, pitch as our features for lane change detection. 

Model Description 

The raw dataset that was used in this objective composed of 57 left lane changes, 37 right lane 

changes and 47 lane keeping instances. So that we do not make our model biased towards any 

individual outputs, it is essential to have a balanced dataset. There are several methods to balance 

dataset and we have chosen the ADASYN (He et al., 2008). Unlike undersampling or 

oversampling which merely copies of the same data, ADASYN generates synthetic data. It has 

an adaptive nature in the sense that it generates more samples for the minority class that are 

harder to learn. After this algorithm was applied, the new dataset had 57 left lane changes, 57 

right lane changes and 53 lane keeping instances.  

To successfully differentiate between lane change and non-lane change maneuvers, the authors 

have tried and tested different models. We tried out several models ranging including Stochastic 

Gradient Descent (SGD), Support Vector Classification (SVC), Gaussian Naive Bayes (GNB), 
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AdaBoost (ADA), Decision Tree (DT), Random Forest (RF) and Extra Tree (EXTR). All the 

models were implemented by scikit-learn (Pedregosa et al., 2011). 

Model comparison and Results 

The results of all the models are summarized in Table 6. To get an understanding of the actual 

behavior of a model, it is necessary to not only take accuracy under consideration but also some 

other metrics. Precision is defined as the number of true positives to the number of total 

predicted positive while recall is the number of true positives to the number of total actual 

positive. F1 score is the weighted average of the precision and recall. In general, if precision is 

high, then the model does not classify anything negative as positive and if recall is high, then the 

model does not classify something positive as negative. 

Table 6 Model Summary 

Models Accuracy (%) F1 Score (%) Precision (%) Recall (%) 

SGD 58 55 64 57 

SVC 89 89 89 89 

GNB 72 69 75 71 

ADA 66 66 76 66 

DT 95 95 95 95 

RF 97 97 97 97 

EXTR 98 98 98 98 

GB 87 87 89 87 

XGB 90 90 91 90 

 

Based on all these values, Extra Tree Classifier outperforms all the other models by some 

margin. The precision and recall are also very high. The confusion matrix of this classifier is also 

shown in Figure 7. The confusion matrix helps to visualize if any of the classes has been 
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misclassified. Based on the figure, it is clear that the model does well to classify each instance. In 

the labels, 0 indicate left lane changes, 1 indicate right lane changes and 2 indicates lane keeping 

instances 

 

Figure 7 Confusion matrix for Extra Tree Classifier.  

Another way to understand a model is also from its performance metrics across different folds of 

the dataset. The models were tried out with K cross fold validation (Kohavi, 1995). This gives us 

an idea about the performance of the model across 10 different folds of data. We are also able to 

obtain a mean and standard deviation from this analysis. The results are shown in Figure 8. In 

this plot, the mean accuracy of the cross-validation is shown with a yellow line. The box shows 

the standard deviation and whiskers show the entire accuracy range. SGD has a very high 

variance and should definitely be discarded. SVC does not have expected accuracy. ADA is 

performing pretty well in this case too but the most interesting find from this figure is the 

performance of EXTR, DT, RF, GB and XGB. All these models have low variance which 

indicates that the performance of these model is more consistent. Therefore, the conclusion is 

that each of DT, RF, EXTR, GB, and XGB can accurately classify lane-changing instances.  
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Figure 8  Comparison Between Different Models with Cross-Validation  

 

The decision boundary of a model gives a visual understanding of the performance of a model. It 

also gives an idea about the cluster of the input data points and also how each model is creating a 

boundary to separate one from the other. This is shown in Figure 9(a) and Figure 9(b). The 

performance of each model is shown at the lower right of each plot. Subplot (a) shows the 

decision boundary for lane change and non-lane change instances. Red dots indicate lane-

keeping instances and blue indicate lane-changing instances. Subplot (b) shows the decision 

boundary for left and right lane change instances. Red dots indicate left lane changing instances 

and blue indicates right lane changing instances. 

The main reason that EXTR, RF, and ADA outperformed the other models can be understood 

from this figure. These are methods from a branch of data science called ensemble techniques. 

They outperform general models because these models can generate a set of hypotheses to 
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describe the data. Detailed descriptions can be found in (Dietterich and others, 2002). Different 

shades indicate different percentages of the surety of the model. For the model SGD, we see that 

the model tries to find a linear boundary between the different classes. While this is feasible for 

differentiating right and left LC (Figure 9(b) SGD), this cannot quite capture the decision 

boundary for LC and non-LC (Figure 9(a) SGD). The decision boundary of SVC and NB forms a 

contour. The ensemble methods form rectangular decision boundaries around groups of data 

points. The size of the rectangles depends on the number of data points that can be grouped. Due 

to the ability of these models to form these complex and intertwined decision boundaries, it has 

better performance than the models with linear or continuous boundaries. 

 

(a) 

 

(b) 

Figure 9 The input data along with the decision boundary for different models 
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Trajectory Estimation Using Chebychev’s Polynomial 

After lane change detection, the GPS coordinates can be estimated. Different polynomial fitting 

methods have been used in previous studies to estimate trajectories (Deo et al., 2018; Houenou et 

al., 2013; Woo et al., 2017). To get an estimate of the future traveling coordinates the authors 

used Chebyshev’s polynomial (Wiest et al., 2012) that has been shown to achieve good accuracy 

for probabilistic trajectory prediction. Initially, the authors have used this polynomial to predict 

through movements. To obtain turning movements, we used logarithmic functions thereafter. No 

base maps have been used in this study which makes it more robust and easily applicable to other 

intersections. The Chebychev polynomial is defined by 

𝑇𝑛(𝑥)  =  𝑐𝑜𝑠(𝑛 𝑎𝑟𝑐𝑐𝑜𝑠 𝑥) 

The formula can be expanded to a polynomial, even though this looks trigonometric. The first 

terms of the polynomial yield explicit expressions of𝑇𝑛(𝑥) 

𝑇𝑜(𝑥)  =  1 

𝑇1(𝑥)  =  0  

                                                                          … 

𝑇𝑛+1(𝑥)  =  2𝑥𝑇𝑛(𝑥)  − 𝑇𝑛−1(𝑥), 𝑛 >= 1 

Any function 𝑓(𝑥) in the interval [−1,1] can be approximated by this polynomial. To get the 

polynomial, co-efficient 𝑐𝑗 , 𝑗 = 0,1, . . . , 𝑁 − 1are to be calculated first. The equation below is 

used to achieve this 

𝑐𝑗 =
2

𝑁
∑ 𝑓(𝑥𝑘)𝑇𝑗(𝑥𝑘)

𝑁−1

0

 

The approximate formula of 𝑓(𝑥) then can be calculated as 
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𝑓𝑥  ≈  ∑ 𝑓(𝑐𝑘)𝑇𝑘(𝑥)  − 𝑐0/2

𝑁−1

0

 

The details of the calculation can be found in Press et al. (2007). This method is suitable for 

estimating trajectories in general roadway segments, but it fails to capture the turning movement 

at the intersections. Therefore, the authors use two separate formulae for capturing the right and 

left-turn movements at intersections. The formula is a logarithmic function that is rotated and 

translated by 𝜃, 𝛿 to match the current vehicle coordinate. 

𝑥𝑟 = (𝑥 + 𝛿)𝑐𝑜𝑠𝜃 − log[𝑏(𝑥 + 𝛿)] 𝑠𝑖𝑛𝜃 

𝑦𝑟 = (𝑥 + 𝛿)𝑠𝑖𝑛𝜃 − log[𝑏(𝑥 + 𝛿)] 𝑐𝑜𝑠𝜃 

The negative logarithm of the same equation is used to capture the left turns. 

𝑥𝑙 = (𝑥 + 𝛿)𝑐𝑜𝑠𝜃 − log[−𝑎(𝑥 + 𝛿)] 𝑠𝑖𝑛𝜃 

𝑦𝑙 = (𝑥 + 𝛿)𝑠𝑖𝑛𝜃 − log[−𝑎(𝑥 + 𝛿)] 𝑐𝑜𝑠𝜃 

The mobile app collects GPS points every second, but these are some decimal numbers. There 

are several techniques to convert these into functions, the most common is the Web Mercator 

Projection (Janssen, 2009; Kessler et al., 2017) which is widely used in almost all maps available 

online. The Web Mercator uses spherical formula at all scales which is different from the way 

Mercator is defined. If 𝛾 𝑎𝑛𝑑 𝜃 are the longitude and latitude respectively, then the Web 

Mercator is defined as 

𝑥 =
256

2π
2𝑧𝑜𝑜𝑚−𝑙𝑒𝑣𝑒𝑙(γ + π) 

𝑦 =
256

2π
2𝑧𝑜𝑜𝑚−𝑙𝑒𝑣𝑒𝑙 (π − ln [𝑡𝑎𝑛 (

π

4
) +

ϕ

2
]) 
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After this conversion, the Web Mercator points are now ready to be fed into Chebychev 

polynomial for prediction. The general system algorithm is shown in the flowchart in Figure 10. 

 

Figure 10 Flowchart of the system algorithm 

Figure 11 shows an instance of the above algorithm based on a previous lane change. The green 

GPS points are the input to the system while the blue ones are the predicted trajectory 

 

Figure 11 A particular case (the right turn prediction) of the trajectory prediction algorithm 
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The errors of the estimations were calculated based on the GPS error rate between the ground 

truth and the predicted paths. The overall summary is presented in Table 7. The results were 

obtained from three different intersections that had a total of nine different movements. 

Table 7 GPS Error 

Movements GPS Error (in meters) 

Through 9.77 

Left 12.4 

Right 4.64 

Overall 9.27 

 

The GPS error is plotted against time to visualize the effect of the error rates ahead of time. 

Figure 12 shows that the error rate for the three turning movements at a particular intersection. 

The error rate for the left turn is the highest. Individually, the errors tend to increase as the 

algorithm tries to predict more seconds into the future. 

 

Figure 12 Error involved in future GPS estimates 
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Summary 

This chapter introduces new techniques that have not yet been explored in the field of Connected 

and Automated Vehicles (CAV). The proposed system is simple in that it only uses smartphone 

sensors to estimate trajectories. Initially, the rotation matrix is used to match the orientation of 

the smartphone to the vehicle. Azimuth, pitch, and roll are also estimated from the raw sensor 

values. The dataset thus obtained was used to train models that can identify lane-changing 

instances. Experiments showed that ensemble methods like Extra Tree, Gradient Boosting 

perform better than linear models. Finally, the trajectory was estimated using GPS data and by 

taking lane-changing detection as an indicator of the turning movement at intersections. This 

study shows a realistic example of how a learning algorithm can be fused with traditional 

polynomial prediction algorithms to obtain more meaningful trajectory estimations. This type of 

method would be especially applicable to intersections with a large volume of turning vehicles as 

well as a good number of pedestrians. Parameters like time-to-collision can be calculated based 

on trajectory prediction to identify the safety concerns at an intersection. 

The road to automation is still work in progress and while there are a few industry-grade vehicles 

that are level 3 automated, fully autonomous vehicles are still some time away. Even when level 

5 vehicles are available, there would still be vehicles in the market that are only level 1 or 2. To 

address this gap in technology, a smartphone is presumably the best option. Also, since 

smartphones are updated every year, it is possible to get more accurate sensors with higher 

ratings that can adjust to extreme conditions in a car. Another important advantage of 

smartphones as OBUs is that they are readily movable from a vehicle and therefore are less 

subjected to extreme conditions of heat and cold than actual OBUs. For vehicles with lower 

levels of automation, such mobile-based systems could be a way to achieve partial automation. 



 

 

 

49 

The main contribution of this chapter is in identifying new sensor fusion data like azimuth, pitch, 

etc. Subtle changes in these data need to be captured to properly identify any maneuvers. Then 

again, too much sensitivity can ruin the original purpose of the system. The optimum method 

was to try different sensitivity and finally settle on the one that suits our purpose. The second 

part of the chapter is also significant in that it adds to the existing through movement for 

trajectory prediction. The algorithm can be used to get left turn and right turn trajectories at the 

intersection. Overall, this can be very insightful in several research fields in CV and safety. It can 

also be used to calculate potential conflicts between vehicles and pedestrians. Future studies 

could include trajectory prediction with the sensor data other than GPS as well as a comparison 

between more machine learning approaches for lane change detection. Moreover, the addition of 

a base map can further improve the trajectory prediction accuracy. 
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CHAPTER 4: ACTIVITY RECOGNITION WITH VARIATIONAL 

AUTOENCODERS 

Islam, Z., Abdel-Aty, M., 2021b. Sensor-Based Transportation Mode Recognition Using 

Variational Autoencoder. Journal of Big Data Analytics in Transportation 3(1), 15-26. 

Introduction 

For almost the past two decades there has been tremendous progress in all forms of technologies. 

The development of microelectronics and chipsets made it possible to obtain highly accurate 

sensors that use the least of powers and that sit in the smallest of spaces. This allowed the move 

to ubiquitous sensing (Wang et al., 2019a) which is an active area of research that aims to extract 

useful information from pervasive sensors. The recognition of human activity is still at the 

forefront of these efforts because of its massive usefulness in the fields of medical, security, and 

transportation. The move to smart sensing and smart cities requires that the current mode or 

activity of a road user is accurately and quickly identified to ensure safety and efficient mobility. 

For example, if the activity can be quickly recognized, then potentially dangerous conflicts 

between vehicles and pedestrians or between vehicles and vehicles can be identified and the 

information can be relayed to the conflicting road users. Thus, the importance of classification of 

human activities in the transportation fields carries huge importance. While most work focus on 

either wearable sensor data or smartphone sensor data but there is research in the computer 

vision field as well (Song et al., 2010). 

Although the first works on human activity recognition (HAR) go back to the ‘90s (Foerster et 

al., 1999), there are still many issues that motivate new algorithms. In this objective, we 

specifically look at one issue of the sensor data: limited data for learning algorithms. With the 

rapid change in technology, newer chipsets become available each year with more and improved 
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sensors. Therefore, it often becomes necessary to repeat some earlier works with the new sensor 

data. Often it becomes necessary that data is collected with a new device that has never been 

used in the past. Most data collected by this process are usually limited and therefore, realistic 

accuracy cannot be obtained. In this objective, we propose a method to generate synthetic data 

from a sample of collected data. We also show that the synthetic data generated in this process 

are very similar to the real data. We demonstrate that the classification accuracy improves with 

the use of this synthetic data. 

We propose using Variational Autoencoder (VAE) for generation of synthetic data. Previously, 

VAEs have been successfully used to generate samples of data in the computer vision field and 

our intuition was that it could prove to be useful for various sensor data as well. This objective is 

organized as follows: we first discuss the previous work followed by the basics of a VAE. Next, 

we show the architecture of our VAE and how it can generate data. Finally, the data is compared 

to the real data and evaluated based on several criteria. 

We have used the openly available SHL dataset (Gjoreski et al., 2018; Wang et al., 2019d) for 

the purpose of this study. All through the objective, the term real data is used to refer to the data 

from the SHL dataset. The data generated by our VAE model is interchangeably referred to as 

generated data or synthetic data. The combination of the two is referred to as hybrid data. The 

work presented in this chapter has been published in the Journal of Big Data Analytics in 

Transportation (Islam and Abdel-Aty, 2021b). 

Dataset 

This objective uses the Sussex Huawei Locomotion (SHL) dataset which is openly available. The 

dataset is especially remarkable since it has 750 hours of labeled smartphone sensor data 

available from 3 different users. Each user uses three smartphones simultaneously to record data. 
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One is carried by the user in one hand, the second is placed in his pocket and the third in a 

backpack. Almost all sensor data that is available from a smartphone were collected. For this 

objective, we only used the sensors that are responsible for motion detection. These are an 

accelerometer, gyroscope, orientation, and linear acceleration. The labeled data is from eight 

different transportation modes; three are pedestrian modes (still, walk and run), one is bike mode 

and the rest three are vehicle mode (car, bus, train). 

Proposed Method 

Variational Autoencoders (VAE) are a type of autoencoder that has gained tremendous 

applications in computer vision recently. Proposed by Kingma and Welling (2014) it was quickly 

adapted to much of the available vision datasets. Since multiple sensor data with a fixed window 

is numerically the same as that of an image of the same dimension, the intuition was to use these 

models in sensor networks as well. To the best of the knowledge of the authors, this is the first 

time variational autoencoders are being investigated from a mobile sensor point of view. In this 

section, we will first present the basics behind a VAE and then describe the model that gave the 

best results for transportation modes generation. 

An autoencoder is a neural net that maps its input to an output of exactly the same dimension. 

Towards the middle of the neural net, there is a bottleneck that is the unique feature of an 

autoencoder. These can help in reducing noise or getting a lower-dimensional representation of 

the input. A special variation of the autoencoder is the variational autoencoder. In general, all 

autoencoders have an encoder and a decoder. An encoder compresses the input into a latent 

space and a decoder decodes from this latent space. For an autoencoder, the latent space is 

discrete, and therefore sampling from this space would not result in anything meaningful. 

Variational autoencoder takes these discrete values and tries to find a normal distribution of the 



 

 

 

53 

latent space. If we denote 𝑥 as the input, 𝑧 as the latent space representation and𝑥̂ as the output of 

an autoencoder, then 𝑞(𝑧|𝑥) can be the encoder and 𝑝(𝑥|𝑧) can be the decoder. The loss function 

consists of two terms; the first term penalizes the reconstruction error between the input 𝑥 and 

the output  𝑥̂ and the second term penalizes the error between the prior 𝑝(𝑧) and the learned 

distribution 𝑞(𝑧|𝑥). 

𝐿 =  −𝐷𝐾𝐿(𝑞(𝑧|𝑥)|| 𝑝(𝑧)) +  log 𝑝(𝑧|𝑥)  

For the purpose of data augmentation, we used multiple VAEs; one for each mode of 

transportation. This was important since it would have been difficult to trace which latent space 

gives rise to which mode. From the SHL dataset, we excluded the train and subway modes 

because the main focus of the objective is the data from pedestrians and vehicles. The data was 

split into windows of 200 samples. Since the SHL dataset was sampled at 100Hz, this means that 

we have a window size of 2 seconds. The dataset was divided into training and testing subsets. 

Finally, after reshaping, there were 57784 ‘still’ samples, 51280 ‘walk’ samples, 6162 ‘run’ 

samples, 25496 ‘bike’ samples, 48608 ‘car’ samples, and 28528 ‘bus’ samples. We trained the 

VAEs on the training dataset and evaluated the generated data on the test dataset. The VAE 

model is shown in Figure 13. The number of neurons has been scaled down and actual numbers 

are shown above each layer.  

We considered a two-layer densely connected encoder model for our VAE. The input to the 

encoder is the real sensor data. The real sensor data was normalized and flattened to a shape of 

3200. It is then connected to the first layer of the encoder which has 800 neurons. The first layer 

is also densely connected to the second layer which has 800 neurons. The encoder ends in the 

latent layer and this is the bottleneck of an encoder. We decided to have a code size of 2 for this 
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layer. To find the perfect fit, we also tried other densely connected layers of 20, 40, 50, 200, 400, 

800, 1600, and 2000. We selected 800 because we noticed that the reconstruction loss to be the 

lowest for this case. 

 

Figure 13 VAE model presented in the objective. The numbers above each layer represent the 

number of neurons. 

The decoder takes the latent layer code and tries to reconstruct the original sensor data. For the 

decoder, we also had 800 neurons for the first layer and the same for the second layer. The 

output layer would be the same as the input which is 3200. All the neurons were densely 

connected to one another. 

We used individual VAEs for synthetic data generation. This aided in the proper labeling of the 

generated data. The pseudocode for training and data generation of VAE is shown in Table 8. 

The input for training is the real data. The optimization technique used was Adam with a 

learning rate of 0.001. In each iteration, we also calculated loss on the test samples for visual 
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evaluation. For data generation, we sampled from the latent space generated from the training 

phase and passed it through the decoder to obtain synthetic data. 

 

Table 8 Algorithm for generating synthetic data 

1: Input: Real Sensor Data 

2: Initialize: decoder, encoder, prior, latent space dimensions 

3: Training: 

4: for the number of iterations do 

5:  for the number of batches do 

6:   input the batch into the encoder 

7:   calculate loss using equation 1 and optimize over the training dataset  

8:  calculate loss for the test dataset for evaluation 

9: Data Generation: 

10: for number of samples do 

11:  sample from the latent space 

12:  use the trained decoder from training step to obtain synthetic data 

 

Experiments 

Training Loss of VAE 

The main objective of a VAE is the variational lower bound of the marginal likelihood of data. 

Marginal likelihood also includes the KL divergence loss and is the sum of overall likelihood of 

all data points.  



 

 

 

56 

 

Figure 14 Training loss of the VAE model 

The latter loss is also called the reconstruction loss and is responsible for generating similar data 

while the former is responsible to create a known distribution of the latent space. This slight 

restriction aids in generating data points from the latent space. The total loss is often called 

evidence lower bound objective (ELBO). The figure shows ELBO for ‘run’ data. The loss 

function for other activities is also similar and hence not presented. It is evident from Figure 14 

that the loss function converges moving closer to zero. 

Evaluation of Generated Data 

In most data augmentation, the first step is to have a visual observation of the generated data 

(Bulling et al., 2014). We investigated our generated data from different visual criteria. Local 

visual evaluation is used first to see the pattern of the generated data during training of the 

VAEs. Secondly, global visual evaluation is used to understand the range of values between the 

synthetic data and real data. This is also referred to as the quality of the synthetic data (Bulling et 

al., 2014). Finally, we used memory independence evaluation to prevent overfitting of the data. 
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Local Visual Evaluation 

In this evaluation, we randomly selected a synthetic sample of data and compared it with the test 

data. Since there are multiple sensors available, we decided to pick the gyroscope x-axis sensor 

values. The results from the other sensor axis are not shown but it follows the trend shown in 

Figure 15.  

 

Figure 15 Comparison of real and synthetic data from VAEs 

Real data samples from the SHL dataset are shown in blue and generated data samples are shown 

in orange. Almost all the synthetic data show some pattern of the real data except the data for 

‘run’. In fact, when ‘run’ and ‘walk’ data are plotted together, it seems that the decoder of our 

VAE generates ‘walk’ samples instead of ‘run’. This can be attributed to the fact that walking 

and running are closely related activities (the main difference is the speed which we did not 

include in this objective) and the VAEs think both of these are the same. The other reason could 
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be the smaller number of ‘run’ data. The sample size of ‘run’ data in the SHL dataset was three 

times lower than ‘walk’ data. The other observation from this data is that the most variation in 

sensor values is for ‘run’; the difference in peak to peak values is about 0.20 while for the other 

data it is 0.02. 

Global Visual Evaluation 

The global evaluation takes all the data into consideration and not just one sample as in the local 

evaluation. We illustrate this in Figure 16 with a grouped boxplot where we show the real data in 

blue and synthetic data in orange.  This shows that the generated data has the same mean and 

interquartile range as with the real data. This figure also gives insight into the fact that vulnerable 

road users like pedestrians and bicyclists (with the modes ‘walk’, ‘run’ and ‘bike’) have higher 

standard deviation than the road users in ‘car’ or ‘bus’. This is also consistent with our real-life 

experience. Generally, phones are subject to most movements during the pedestrian phase and 

the least movements during the vehicle phase. 

 

Figure 16 Boxplot showing the mean and standard deviation of real data and generated data 
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Memory Independence Visual Evaluation 

This evaluation helps us to decide if there is any overfitting tendency of the synthetic data while 

training the VAE model. Figure 17 shows that VAEs can successfully discard overfitting when 

learning different data.  

 

Figure 17 Memory Independence Evaluation of generated data and noisy data 

The figure shows synthetic data in orange and bad data. The bad data shown was collected from 

the training dataset. This shows that our VAEs can avoid learning from the bad data. In general, 

time-series data that has multiple sensors involved tend to have the impurity problem where one 

data can be mixed with the other but VAEs can successfully overcome this given that the sample 

of bad data is only a handful. 
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Data Distribution Evaluation 

The distribution of the synthetic data should closely match that of the real data. We have used 

violinplot to compare the two. The mean and spread of the data can also be approximately 

understood from this plot. Figure 18 shows this comparison.  

 

Figure 18 Data Distribution Evaluation 

The real dataset is shown in green and the synthetic dataset in orange. We show the distribution 

of one axis of the five different sensors in Figure 18. The five values shown are accelerometer x-

axis (acc_x), gravity x-axis (gra_x), linear acceleration y-axis (lin-acc_y), gyroscope x-axis 
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(gyri_x) and orientation (ori_w).  For each of the six different activities, we can see that all of the 

distributions closely match the real dataset. 

Statistical Evaluation 

To conclusively prove the similarity between the real data and synthetic data, three different 

statistical tests were also used. 20 samples were randomly selected from each dataset for the 

tests. t-Test was used to evaluate if the mean of the two datasets are statistically different while 

Levene test and Kolmogorov Smirnov test was used to compare variance and distribution. The p-

values of all the tests for each of the 16 features used are presented in Table 9.  

Table 9 Statistical Comparison between Real Data and Synthetic Data 

 Real Data Synthetic Data p-values 

Variable Min Max Mean STD Min Max Mean STD t-test Levene- 

test 

Ks-test 

acc_x 0.11 0.96 0.51 0.08 0.27 0.59 0.48 0.06 0.13 0.17 0.21 

acc_y 0.29 0.9 0.54 0.05 0.46 0.6 0.52 0.02 0.66 0.83 0.06 

acc_z 0.28 0.72 0.49 0.03 0.44 0.52 0.48 0.01 0.84 0.34 0.13 

gyro_x 0.51 0.83 0.66 0.03 0.57 0.74 0.67 0.02 0.68 0.17 0.01 

gyro _y 0.23 0.61 0.42 0.03 0.37 0.47 0.42 0.01 0.07 0.08 0.04 

gyro _z 0.28 0.77 0.47 0.04 0.4 0.58 0.47 0.03 0.76 0.34 0.07 

ori_w 0 0.99 0.45 0.21 0.02 0.82 0.35 0.24 0.05 0.03 0.19 

ori _x 0.06 0.99 0.64 0.23 0.06 0.93 0.64 0.2 0.36 0.57 0.97 

ori _y 0 0.99 0.5 0.27 0.12 0.98 0.66 0.17 0.3 0.34 0.19 

ori _z 0.01 1 0.53 0.21 0.14 0.92 0.53 0.17 0.66 0.57 0.92 

gra _x 0 1 0.61 0.35 0.01 0.99 0.42 0.41 0.41 0.57 0.24 

gra _y 0.04 1 0.67 0.24 0.34 1 0.58 0.1 0.54 0.34 0.27 

gra _z 0 1 0.43 0.16 0.05 0.75 0.39 0.16 0.4 0.57 0.89 

l_acc_x 0.13 0.94 0.53 0.06 0.4 0.67 0.53 0.03 0.46 0.57 0.13 

l_acc _y 0.34 0.82 0.51 0.05 0.37 0.59 0.52 0.03 0.69 0.83 0.28 

l_acc _z 0.35 0.78 0.54 0.03 0.47 0.62 0.53 0.03 0.88 0.98 0.86 
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It can be seen that the p-values are mostly greater than 0.05 which confirms that the two datasets 

are not statistically different. Besides, the minimum, maximum, mean, and standard deviation of 

the two datasets presented in Table 9, also show approximately similar values. 

Classification using real and synthetic data 

In this section, we train several classic activity recognition models on real data as well as 

synthetic data. We propose the flow chart in Figure 19 to show how we plan to evaluate real data 

and synthetic data.  

 

Figure 19 Flowchart for the evaluation of generated data 

 

It shows that at first the dataset was divided into train and test subsets and only the train dataset 

was used to generate synthetic data. The test data was left for final evaluation. We then propose 

two-stage evaluation criteria to match the performance of the synthetic data and test data. The 

assumption is that the learning algorithms should be able to perform similarly on the synthetic 

and test datasets given that the models are trained with the training dataset. The evaluation 

metrics used are accuracy, precision, recall, and f1-score. We like to emphasize that the precision 

and recall are the most important characteristics that have been used in previous studies to 

measure the performance of synthetic data. Stage 1 compares the performance metrics applied to 
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the test and synthetic datasets. Stage 2 fuses the real dataset with the synthetic dataset to create a 

hybrid dataset which is then used to compare if using synthetic dataset improves the performance 

metrics. 

Data Generation 

We used our trained VAE model to generate synthetic data. For each of the transportation modes 

‘still’, ‘walk’, ‘run’, ‘bike’, ‘car’ and ‘bus’, we trained separate VAE models. Therefore, during 

each run, we generated data corresponding to one mode only. This way of training made it easier 

to label the generated data. In the final generated data sample, we had 31247 ‘still’ samples, 

39179 ‘walk’ samples, 12155 ‘run’ samples, 37460 ‘bike’ samples, 35212 ‘car’ samples, and 

25379 ‘bus’ samples. In the SHL dataset, the number of ‘run’ data was almost 4 times lower than 

the other data. After generating data, we have managed to double the total samples.  

Next, we divided our entire dataset into three groups. The first group contains real data from the 

SHL dataset only. The second group contains both real data and synthetic data and the third 

group contains only synthetic data.  

Data Preprocessing 

While it is customary to extract different features of the sensor data like mean, max, skew, 

kurtosis, etc., we decided to train some common activity recognition models on the raw sensor 

data. Our intuition is that if these models show improvement on raw values, it should definitely 

improve further on different hand-crafted features. The aim of the objective is primarily to show 

how useful synthetic data can be and does not focus on improving traditional classification 

accuracy. 

 For each of the three different data sets, we divided the data into 80-20 for training and 

testing, respectively. We also took a window size of 2 seconds or 200 samples. While most 
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previous research usually takes longer window size like 5 seconds (Wang et al., 2018) or even 8, 

16 seconds (Vavoulas et al., 2016), we would like to emphasize that in real-life situations and 

considering the move to smart mobility, a model should be able to classify pedestrians and 

vehicles as quickly as possible to make life-saving decisions.  

Classification Results and Discussion 

After taking this window size, we normalize the sensor values and feed them into some popular 

activity recognition algorithms like Extra Tree (EXTR), Random Forest (RF), Neural Net (NN). 

NN had a hidden layer size of (300,100,). The classifiers were implemented with scikit-learn 

(Pedregosa et al., 2011). 

For stage 1, the algorithms were trained with the training dataset and then the performance 

metrics were evaluated on the test and synthetic dataset. The results are shown in Figure 20.  

 

Figure 20 Performance metrics of the test and synthetic data 

 

We see that the performance metrics of the EXTR classifier improves greatly on the synthetic 

dataset. The other two classifiers have similar performance metrics. The accuracy as well as 

precision and recall are improved to a near-perfect score. The performance of RF is similar 

across the two datasets, but it is somewhat lower for the NN dataset. The performance metrics 
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were also compared to the synthetic data generation method SMOTE (Chawla et al., 2002). This 

can bring us to the conclusion that VAE generated data performs better on ensemble tree-based 

classifiers than on other models. This also shows that having a pipeline that has a data generation 

scheme improves the overall performance of the models.  

For stage 2, the train data and synthetic data from VAE were combined to obtain the training 

dataset, and evaluation was performed on the test data. The results are presented in Figure 21. 

The accuracy, precision, recall, and f1-score of EXTR are similar to the test data in Figure 20. 

This leads us to the conclusion that the performance on the test data is relatively constant 

whether using real data or synthetic data. Therefore, the synthetic data closely mimics the real 

data. 

 

Figure 21 Performance metrics of hybrid data 

All the three datasets were individually fed into the same classifier and compared. Table 

10shows the obtained results. Synthetic data showed maximum efficiency since our VAE only 

captured the core sensor values related to any activity and discarded the noise. Real data always 

has some noise and therefore the classification accuracy is not always satisfactory. It depends on 

the individual model’s capacity to filter the noise to obtain better accuracy in this case. Hybrid 
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data showed optimal results in between the two extremes. The classification accuracy with 

hybrid data always shows improvement compared to the classification with real data.  

Table 10 Accuracy of different classifiers 

Classifier Real Data Hybrid Data Synthetic Data 

EXTR 0.90 0.94 1.00 

RF 0.88 0.93 1.00 

NN 0.78 0.83 0.98 

 

Summary 

In this chapter, we explored VAEs for sensor data generation purposes. Our motivation was the 

limitation of sensor data needed for research in this area. We showed that VAEs can be used as a 

data generation unit that can help overcome this limitation. We compared our generated data 

with the real data from SHL dataset. The mean, standard deviation, and interquartile range of the 

two datasets indicated that the generated data was closely related to the real data. The generated 

data was also used on several learning algorithms to test the performance and good results were 

obtained in terms of accuracy. We evaluated the datasets on certain criteria such as local and 

global visual evaluation and also memory independence visual evaluation. We also tested the 

dataset on common activity recognition models. The accuracy was improved considerably with 

the use of the generated data. We also noticed that hybrid data performed much better than real 

data. The improvement in accuracy was as high as 20% in some cases.   

We can conclude that this work would be able to achieve optimal results in data-constrained 

studies not limited to activity recognition but in the applications of smartphone sensors in 

general. We also demonstrated that it can be used to upsample an underrepresented class in a 
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dataset. This is especially helpful for cases where there could be an imbalanced dataset. The 

work can also be extended to other learning tasks that have these types of datasets like V2I 

vehicle maneuver classifications where for example the number of U-turns can be significantly 

lower than the left and right turns. We designed individual VAEs for each activity. For future 

work, we could explore a unified VAE network that can generate sensor data.  

The detection of activity recognition using smartphone sensors can also be extended to wearable 

sensors. In general, the task of vehicle and pedestrian detection remains an important aspect of 

any type of P2V/V2P applications and smart mobility. Our work not only balances the data that 

might create bias in learning algorithms but also accurately classifies among different classes. 
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CHAPTER 5: CRASH DATA AUGMENTATION USING VARIATIONAL 

AUTOENCODER 

Islam, Z., Abdel-Aty, M., Cai, Q., Yuan, J., 2020. Crash data augmentation using variational 

autoencoder. Accident Analysis & Prevention 151, 105950-105950. 

Introduction 

Real-time crash likelihood prediction has been an important area of study for the past two 

decades. Expressways, being a vital part of any roadway network, must be evaluated not only 

from a capacity standpoint but also from a safety stance. With modern sensors deployed along 

the expressways, it is convenient to get different roadway information in real-time. A major 

drawback with such data is that the data is highly imbalanced. The ratio of crash to non-crash 

data can be as imbalanced as 1:11,000 (Cai et al., 2020). Machine learning algorithms struggle to 

correctly predict outcomes with such data. As we will show later in this study, a model trained 

with such data always predicts non-crash events. 

Crash prediction is an important tool to ensure safety in freeways. Figure 22 shows the number 

of deaths from motor vehicle accidents from 1992 to 2018 in a report (NSC-and-NHTSA-Report, 

2019). It is evident that the number of fatal deaths has remained more or less around the 40,000 

mark in these 26 years. In 2018 alone, 4.5 million of the crashes needed paramedic support. 

These has led to several research attempts in the field of safety and the recent values show that 

more and more work is necessary. Since crash like situations develop within short-term 

turbulence of traffic flow (Lee et al., 2003), it is necessary to have real-time crash risk 

monitoring systems. To reduce crashes there have been research from a planning perspective in 

which studies try to quantify how the demographic characteristics aids in a crash. From an 

engineering perspective, it can be the lighting of a roadway or its geometric design and from the 
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viewpoint of control solutions, it can be countermeasures like ramp metering and variable speed 

limit. To identify which method to use, data is a basic requirement. While statistical methods can 

be tweaked to counter being biased, machine learning method can easily become biased. As 

more and more machine learning crash risk predictive schemes are being proposed (Li et al., 

2020b; Yu and Abdel-Aty, 2013), it is important to balance these datasets. While most data 

augmentation techniques are applied to the computer vision dataset (Frid-Adar et al., 2018; Perez 

and Wang, 2017), there has been not much work in crash data until recently, where Qing et. al. 

used DCGAN to augment crash data (Cai et al., 2020). 

 

Figure 22 Motor vehicle deaths, National Safety Council (NSC) and National Highway Traffic 

Safety Administration (NHTSA), 1992-2018 

In this objective, we propose to augment crash data using Variational Autoencoder 

(VAE). VAEs have been used to augment data successfully in the computer vision field. It was 

also helpful to balance smartphone dataset as described in Chapter 4. Our intuition was it can be 

used in other areas of research that have imbalanced datasets. In the following sections, we 

describe how we initialized the data for quick convergence and also how the normal distribution 

was used to encode the data. The generated data was then compared with the real data using t-

test, Levene-test and Kolmogorov–Smirnov test to compare mean, variance and distribution 
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respectively. To better understand the data, it was finally tried on three crash risk prediction 

algorithms: Logistic Regression (LR), Support Vector Machine (SVM) and Artificial Neural 

Network (ANN). The metrics used for evaluation was specificity, sensitivity and area under 

receiver operating characteristics curve (AUC). The generated data was also compared with 

SMOTE and ADASYN to assert the improvement in performance. The work presented in this 

chapter has been published in Accident Analysis and Prevention (Islam et al., 2020). 

Dataset 

This objective used the crash dataset obtained from processing the MVDS (Microwave Vehicle 

Detection System) data from expressway SR 408 in Orlando. It is 21.4 miles long with an 

average 417,000 vehicles using it each day (CFXWAY, 2021). It has a total of 110 MVDS 

detectors. The data from the year 2017 was used in this study. The roadway is shown in Figure 

23. 

 

Figure 23 Study area showing SR 408 along with the MVDS detectors 
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The MVDS detectors in SR 408 are able to report speed, volume, lane occupancy in real time. 

This was further processed to obtain average and standard deviation of speed and volume. All of 

the 24 features that were derived from the MVDS data are summarized in Table 11. Each of the 

parameters has two values (as indicated by 1 and 2) because for each event, two detectors 

upstream and two detectors downstream were considered. The data was aggregated in 5-minute 

intervals to prepare the features. There were 625 crash events in the year 2017 and about 

6,749,447 non-crash events. For each of the crashes, 5-10 minutes before the event was labeled 

as a crash data. In addition, six hours prior to the crash were discarded since the data points 

before a crash may contain some traffic variation leading to the crash and therefore does not 

represent steady-state conditions. Moreover, six hours after the crash was also removed since it 

will take some time to reach steady state condition after a crash event. 

Table 11 Feature Extracted from MVDS Dataset 

Features Upstream Downstream Description 

Volume volume_up1,  

volume_up2 

volume_down1,  

volume_down2 

Directly obtained from MVDS 

Average 

Speed 

avg_speed_up1,  

avg_speed_up2  

avg_speed_down1,  

avg_speed_down2 

Directly obtained from MVDS 

Standard 

Deviation of 

Speed 

std_speed_up1,  

std_speed_up2  

std_speed_down1,  

std_speed_down2 

Calculated from average speed and actual speed 

Coefficient 

of Variation 

of Speed 

cv_speed_up1,  

cv_speed_up2 

cv_speed_down1,  

cv_speed_down2 

Calculated from average speed and actual speed 

Speed 

Difference 

speed_diff_up1,  

speed_diff_up2 

speed_diff_down1, 

speed_diff_down2 

Difference in speed between inner and outer lanes 

Congestion 

Index 

CI_up1,  

CI_up2 

CI_down1,  

CI_down2 
𝐶𝐼 = {

 
𝑠𝑝𝑒𝑒𝑑𝑙𝑖𝑚𝑖𝑡 −  𝑎𝑐𝑡𝑢𝑎𝑙𝑠𝑝𝑒𝑒𝑑

𝑠𝑝𝑒𝑒𝑑𝑙𝑖𝑚𝑖𝑡
, 𝐶𝐼 > 0

0,                                                      𝐶𝐼 ≤ 0
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Proposed Method 

Variational Autoencoders (VAE) are a type of autoencoder that has gained tremendous 

applications in computer vision recently. Proposed by Kingma and Welling (2014), it was 

quickly adapted to much of the vision available datasets. Since traffic data with a fixed window 

is numerically the same as that of an image of same dimension, the intuition was to use these 

models in traffic data as well. To the best of the knowledge of the authors this is the first time 

variational autoencoders is being investigated from crash data augmentation point of view. In 

this section, we will first present the basics behind a VAE and then describe the model that gave 

the best results for crash data generation. 

An autoencoder is a neural net that maps its input to an output of exactly the same dimension. 

Towards the middle of the neural net there is a bottleneck that is the unique feature of an 

autoencoder. These can help in reducing noise or getting a lower dimensional representation of 

the input. A special variation of the autoencoder is the variational autoencoder. In general, all 

autoencoders have an encoder and a decoder. An encoder compresses the input into a latent 

space and a decoder decodes from this latent space. For an autoencoder, the latent space is 

discrete and therefore sampling from this space would not result in anything meaningful. 

Variational autoencoder takes these discrete values and tries to find a known distribution of the 

latent space. Therefore, a variational autoencoder not only tries to reconstruct its input, but also 

tries to form a distribution in the latent space. If we denote 𝑥 as the input, 𝑧 as the latent space 

representation and 𝑥̂ as the output of an autoencoder, then 𝑞(𝑧|𝑥) can be the encoder and 𝑝(𝑥|𝑧) 

can be the decoder. The loss function consists of two terms; the first term penalizes the 

reconstruction error between the input 𝑥 and the output  𝑥̂ and the second term penalizes the error 

between the prior 𝑝(𝑧) and the learned distribution 𝑞(𝑧|𝑥). 
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𝐿 =  −𝐷𝐾𝐿(𝑞(𝑧|𝑥)|| 𝑝(𝑧)) +  log 𝑝(𝑧|𝑥)   

For crash data augmentation, we used the VAE model shown in Figure 24. The leftmost layer 

labeled 𝑥 is the input and the rightmost layer labeled 𝑥 is the output. The bottleneck is the layer 𝑧 

which we have chosen to have a dimension 3 since better latent space was obtained with 3 rather 

than 2. All the weights and biases of the encoder and decoder were initialized with Xavier Glorot 

initialization (Glorot and Bengio, 2010). This initialization is able to bring faster convergence for 

deep learning networks. The latent space was encoded to a normal distribution with a mean of 0 

and standard deviation of 0.1. 

 

Figure 24 VAE model (the numbers above each layer represents the number of neurons) 

 

Encoder Model of VAE 

We considered a two layer densely connected encoder model for our VAE. The next two layers 

after the input 𝑥 are the decoder. The number of neurons chosen was (24, 24). We also 
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experimented with lower numbers such as (10,10), (15,15), (20,20) and (24,20). Best latent space 

visualization was obtained for (24,24).  

Decoder Model of VAE 

The decoder takes the latent layer code and tries to reconstruct the original crash data. For the 

decoder we also had 24 neurons for the first layer and the same for the second layer. At the end 

of the decoder a sigmoid activation function was used. The output layer would be the same as the 

input which is 24. All the neurons were densely connected to one another. 

Data Generation Pseudocode 

The pseudocode for training and data generation of VAE is shown Table 12. The input for 

training is the real data (70% was used for training). The optimization techniques used was 

Adam with a learning rate of 0.0001. The batch size was selected as 874. Of these 874 samples, 

437 was crash and 437 was non-crash. Therefore, we have used the same crash values over the 

entire epoch. This was necessary otherwise the VAE model would overfit with only the non-

crash values. In each iteration, we also calculated loss on the train samples for visual evaluation. 

It was trained for a total of 12,000 epochs since this is required to consider all the non-crash data. 

For data generation, we sampled from the latent space generated from the training phase and 

passed it through the trained decoder to obtain synthetic data at least once. 

It is also important to determine the latent space boundary from which we have to sample to get 

crash data. Generally, VAEs generate the latent space in which there is overlap between classes 

of data. If we want to sample any particular class, it is necessary to estimate the cluster boundary 

of the class. Visual interpretation may often lead to false selection of the boundary. For our case, 

since we are interested to sample crash data, it is important to find the cluster volume of the 

crash data. We have used confidence ellipsoid to draw this latent space boundary. A confidence 
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ellipsoid draws a cluster boundary based on the confidence level. An 80% confidence ellipsoid 

means that 80% of the observed data falls within the boundary of the ellipsoid. We have used 

three confidence levels: 80%, 85% and 90%. Next, we could easily sample from the space within 

the ellipsoid to get generated data. 

Table 12 Algorithm for generating synthetic data 

1: Input: Real Data 

2: Initialize: decoder, encoder, prior, latent space dimensions 

3: Training: 

4: for the number of iterations do 

5:  for the number of batches do 

6:   input the batch into the encoder 

7:   calculate loss using equation 1 and optimize over the training dataset  

9: Data Generation: 

10: Determine crash boundary in latent space with confidence ellipsoids 

11: for number of samples do 

12:  sample from the latent space 

13:  use the trained decoder from training step to obtain synthetic data 

 

Experiments 

Latent Space Visualization 

The latent space for a VAE gives the impression as to how effective a model is in separating a 

dataset into its target. By properly interpreting the latent space boundary it is possible to create 

new samples of data. It is also an important indicator as to how effective is the KL divergence 

loss. In the Figure 25, we display the results obtained from our VAE model.   
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Figure 25 Latent Space Visualization of the VAE Model 

Since there are three neurons in the bottleneck of the model, the latent space is best visualized in 

3D as is shown in Figure 25 (a). 𝑧1, 𝑧2, 𝑧3 are the three neurons which are being displayed. This 

figure gives the idea that the system is able to create different clusters for the crash and non-

crash data. The crash data, which is encoded in yellow, is at the surface of the 3D plot as shown 

in Figure 25 (a). We also show the 2D plots in Figure 25 (b), 3 (c) and 3 (d). All of these figures 

show that even though the surface of the latent space mostly contains the crash data, the overlap 

between crash and non-crash events is also significant. This can be explained from the fact that 

certain crash events may not result in a crash due to number of other factors like driver reaction, 

automatic breaking or other safety features that are becoming more and more popular in cars. 

 

(a) (b) 

 
(c) 

 
(d) 
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This is also clearly depicted in Figure 26 where we plot one crash and one non-crash sample in 

each sub-figure (a) and (b). It shows how close the values of the two events might be. 

Nevertheless, the overlap is an indicator that the conditions are getting risky and that a crash is 

likely. 

 

Figure 26 Similarities between crash data and non-crash data 

Figure 27 shows the 80% confidence ellipsoid that we have used to determine the latent space 

boundary of the crash data. This was a very important step because visual evaluation of the latent 

space may often lead to capturing false boundary and eventually false data. The yellow dots are 

the crash data and the purple ellipsoid is the 80% confidence ellipsoid. This region was selected 

to sample generated crash data. The same was done for two other confidence levels: 85% and 

90%. 

Synthetic Data Evaluation 

After training the VAE, we can sample from the latent space shown in Figure 27 to generate 

more crash data. For our case, we have generated over 20 million crash events. In most data 

augmentation, the next step is to have a visual observation of the generated data (Wang et al., 

(a) (b) 
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2018). We evaluate the data from a global viewpoint of mean and standard deviation. We also 

plot the data distribution and analyze if both real and generated data show similar pattern. 

 

Figure 27 Latent space showing the crash data samples and 80% confidence ellipsoid 

 

Global Mean and Standard Deviation Evaluation 

We illustrate the mean and standard deviation of the generated and real data in the Figure 28. We 

have compared 2 million synthetic crash samples with the 437 crash samples in the training data. 

Each VAE has two losses. We showed in the previous section that the KL divergence loss limits 

the data within a fixed area. The other loss which is the reconstruction loss shows how close the 

generated data is to the real data. The mean and standard deviation gives an idea about this. As 

can be seen from Figure 28, the quartile range of values for the generated data mimics the real 

data. The mean of some of the values have shifted considerably. This can be attributed to the 

huge difference of data samples between the two sets. An outlier in the real data can easily push 

the mean aside which cannot happen for the 2 million generated data.  
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Figure 28 Boxplot showing the mean and standard deviation of real data and synthetic data 
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Data Distribution Evaluation 

The distribution of each of the 24 variables used in this study is shown in Figure 29. We have 

used a violinplot to compare between the distributions of the generated data and the real data. 

This helps us to compare not only the distribution but also the gives an idea about the mean of 

the two datasets. Synthetic data is shown in green and real data in orange. For all of the 

variables, the generated data pattern closely resembles the distribution of real data. One 

important insight from this figure is that the spread of the generated dataset is always less than 

the spread of the real dataset. This is due to the reason that the real dataset only has 437 crash 

events whereas the synthetic dataset has 2,000,000 crash events. Also, while sampling, we 

intentionally left out some outliers that were too far from the crash cluster. Thus, the distribution 

standard deviation is lower for the larger dataset since it has less percentage of outliers.  

 

Figure 29 Data distribution evaluation of generated data and noisy data 
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Statistical Evaluations 

The minimum, maximum, mean and standard deviation of all the variables in the real and 

synthetic data is summarized in Table 13. In addition, three different tests were carried out to 

confirm that the two datasets do not differ from each other statistically. 30 random samples were 

taken from the two datasets. The p-values of each of the tests are presented in the table. For t-

test, it can be noted that, the p value is greater than 0.05 for all of the variables. This confirms 

that the mean of the two datasets are not significantly different. Levene’s test was carried out to 

compare the variances between the two datasets. The p-value is greater than 0.05 for all variables 

except five. This indicates that the variance of the datasets is not statistically. Similarly, the p 

values from Kolmogrove Smirnov test are also greater than 0.05 indicating that the distribution 

of the variables in the two datasets are not statistically significant. Therefore, we can conclude 

that the two datasets are statistically similar. 

Classification using real and synthetic data 

In the previous section, we examined the data from a statistical point of view. It is also important 

to see how the data performs under learning algorithms that have used in the past to classify 

crash and non-crash data. We used Logistic Regression (LR) to classify crash and non-crash data 

since this was a common methodology used in previous work (Cai et al., 2020; Li et al., 2020b; 

Lin et al., 2015). We also used Support Vector Machine (SVM) that has also been previously 

studied (Basso et al., 2018; Yu and Abdel-Aty, 2013). 



 

 

 

82 

Table 13 Descriptive statistical features of real and synthetic data as well as comparison between the two based on t-test, Levene-test 

and Kolmogrove Smirnov test (ks-test) 

 Real Data Synthetic Data Statistical Tests between the real dataset and synthetic dataset 

Variable Min Max Mean STD Min Max Mean STD t-test (p-value) Levene-test (p-value) ks-test (p-value) 

volume_down2 0.20 0.95 0.68 0.10 0.47 0.83 0.67 0.05 0.92 0.93 0.39 

avg_speed_down2 0.52 0.93 0.84 0.08 0.66 0.93 0.82 0.06 0.26 0.18 0.80 

std_speed_down2 0.20 0.77 0.43 0.14 0.24 0.66 0.46 0.07 0.43 0.15 0.39 

speed_diff_down2 0 0.76 0.44 0.15 0.19 0.72 0.45 0.10 0.49 0.74 0.59 

volumne_down1 0.31 0.94 0.68 0.11 0.48 0.84 0.68 0.05 0.43 0.45 0.59 

avg_speed_down1 0.46 0.93 0.83 0.08 0.62 0.94 0.81 0.07 0.32 0.26 0.39 

std_speed_down1 0.15 0.83 0.44 0.14 0.22 0.72 0.49 0.09 0.42 0.52 0.13 

speed_diff_down1 0 0.82 0.50 0.17 0.14 0.89 0.54 0.16 0.63 0.29 0.23 

volumne_up1 0.20 0.95 0.69 0.10 0.48 0.84 0.68 0.05 0.58 0.56 0.03 

avg_speed_up1 0.47 0.92 0.82 0.09 0.57 0.94 0.80 0.08 0.18 0.26 0.59 

std_speed_up1 0.22 0.82 0.47 0.15 0.22 0.75 0.51 0.10 0.83 0.60 0.59 

speed_diff_up1 0 0.83 0.48 0.16 0.17 0.80 0.50 0.13 0.94 0.74 0.39 

volumne_up2 0.21 0.95 0.68 0.11 0.49 0.84 0.68 0.05 0.90 0.62 0.39 

avg_speed_up2 0.48 0.92 0.83 0.08 0.60 0.94 0.81 0.07 0.15 0.33 0.39 

std_speed_up2 0.21 0.84 0.47 0.15 0.24 0.71 0.50 0.10 0.66 0.86 0.80 

speed_diff_up2 0 0.75 0.45 0.15 0.18 0.74 0.47 0.11 0.43 0.18 0.39 

cv_speed_down2 0.003 0.12 0.02 0.02 0.008 0.07 0.03 0.01 0.57 0.03 0.23 

cv_speed_down1 0.002 0.12 0.02 0.02 0.007 0.08 0.03 0.01 0.70 0.64 0.07 

cv_speed_up1 0.011 0.35 0.07 0.06 0.02 0.21 0.09 0.04 0.70 0.23 0.13 

cv_speed_up2 0.009 0.35 0.07 0.06 0.01 0.21 0.08 0.04 0.65 0.37 0.59 

CI_down2 0 0.85 0.25 0.23 0.03 0.73 0.32 0.19 0.26 0.19 0.59 

CI_down1 0 0.88 0.26 0.23 0.02 0.81 0.34 0.21 0.39 0.32 0.59 

CI_up1 0 0.84 0.26 0.23 0.01 0.83 0.32 0.22 0.26 0.25 0.39 

CI_up2 0 0.84 0.23 0.22 0.01 0.80 0.28 0.20 0.13 0.32 0.13 
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Data Preparation 

The real dataset was split into train and test datasets. 70% data was used for training and the rest 

for evaluation. It can also be mentioned here that a set of 100 different random splits of the 

dataset was generated and then evaluated with the chosen dataset. Statistical t-test, Levene test 

and Kolmogorov–Smirnov test was carried out. It was noted that the p-values of all the tests 

were greater than 0.05 which concludes that the chosen dataset and the other 100 datasets were 

similar with respect to mean, variance and distribution.  

Only the 70% data was used to train our VAE model and it was tested on the rest of the data that 

the model did not see. This helps us to identify if the model can actually perform on real data that 

it has never been used before. We have also used this data to generate data with other popular 

data augmentation techniques like ADASYN (He et al., 2008) and SMOTE (Chawla et al., 

2002). SMOTE generates minority samples along the line joining the k (mostly takes as 5) 

minority samples.  On the other hand, ADASYN is a sampling approach that is focused on 

generating samples of data that are harder to learn.  It assigns different weights to different 

minority samples. Higher weights mean higher difficulty in learning and therefore more data 

points are generated in that vicinity based on kNN. We have also used an undersampled dataset 

to see how sampling a little fraction of the non-crash data and all of the crash data perform to 

train a model. Random undersampling method was used to create the undersampled dataset. 

Finally, the data generated from the VAE model is also evaluated. The summary of the train 

dataset and test dataset are provided in Table 14. We have also included the sample size of each 

dataset in the table. We generated 3 sets of VAE data for three different confidence ellipsoids. 

The data generated from the latent space of 80% confidence ellipsoid is referred to as VAE Data 

A. The data from 85% and 90% confidence intervals are labeled as VAE Data B and VAE Data 
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C respectively. The number of crash samples increased from VAE Data A to C is because of the 

increase in volume of the confidence ellipsoids. 

Table 14 Datasets used for evaluation 

 

Evaluation Procedure 

To evaluate whether the generated data performs as expected, we propose the methodology in 

Figure 30. The real data from the MVDS detectors are firstly divided into train and test sets. 

Only the trained data is used thereafter, and test data is left for final evaluation. The train data is 

processed into five different datasets. “Real Data” is exactly the train data and is used as a 

reference. “Undersampled Data” contains all the crash data in the train data and a sample of the 

non-crash data. It is perfectly balanced meaning that the number of crash and non-crash samples 

are exactly equal. “ADASYN Data” also contains a balanced dataset based on the work by He et 

Train Dataset Test Dataset 

Description 
# of crash 

samples 

# of non-crash 

samples 
Description 

# of crash 

samples 

# of non-crash 

samples 

Real Data (70% of 

the MVDS Data) 
437 4,724,612 

Real Data 

(30% of the 

MVDS Data) 

188 2,024,835 

Undersampled Data 437 437 

ADASYN Data 4,724,612 4,724,612 

SMOTE Data 4,724,612 4,724,612 

VAE Data A 5,583,020 4,724,612 

VAE Data B 6,738,161 4,724,612 

VAE Data C 8,336,539 4,724,612 
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al. (2008). The minority samples of crash data are increased in this method. SMOTE is also a 

minority oversampling technique as proposed by (Chawla et al., 2002). “SMOTE Data” contains 

the data from this algorithm. Finally, “VAE Data A” (also B and C) contains the samples 

generated by the VAE model described above and also the 437 real crash data. All these five 

datasets are fed into two learning algorithms namely Logistic Regression and Support Vector 

Machine. Finally, the model is evaluated based on three values: specificity, sensitivity and AUC 

(area under the ROC curve). These metrics have been used in different data augmentation 

techniques. 

 Specificity is defined as the ability of a model to predict true negative values. For our 

case, this is the ability to predict a non-crash as a non-crash. 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

 Sensitivity is the ability to predict true positive values. For the case of crash data, this 

shows how good a model is to predict a crash as a crash. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

AUC or area under the receiver operating characteristics curve is used to tell how effective a 

model is in distinguishing between classes. In this scenario, it refers to the ability to segregate 

crash and non-crash events. 
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Figure 30 Flowchart for the evaluation of generated data 

Classification Results and Discussion 

It is also important to look at the confusion matrix to better understand the true positives and the 

false positives. Confusion matrix lists all the predicted values and true values of the test dataset. 

Table 15 presents different confusion matrix calculated. The actual number of the classes are 

shown in each cell along with its percentage in italics. 

The confusion matrix for the models LR and SVM are shown along with the different confidence 

ellipsoids. True labels presented along the rows are the labels obtained from the test data while 

predicted labels along the columns show the model predictions. Let us refer to the values “True = 

YES” and “Predicted = YES” as True Positives (TP) and “True = NO”, “Predicted = NO” as 

True Negatives (TN). “True = NO”, “Predicted = YES” is referred to as False Positives (FP) and 

the inverse as False Negatives (FN). As we increased the confidence level, it was seen that the 
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TP values steadily increased. Out of the 188 crashes in the test dataset, the LR model correctly 

classified 139, 150 and 154 crashes along the different confidence levels while the SVM model 

correctly classified 163, 165 and 169, respectively. 

 

Table 15 Confusion Matrix of the models with different confidence 

 

80% Confidence Ellipsoid 

85% Confidence 

Ellipsoid 

90% Confidence 

Ellipsoid 

Predicted = 

NO 

Predicted= 

YES 

Predicted= 

NO 

Predicted= 

YES 

Predicted= 

NO 

Predicted= 

YES 

True =  

NO 

1877900 

0.93 

146935 

0.07 

1816510 

0.90 

208325 

0.10 

1776680 

0.88 

248155 

0.12 

L
R

 

True = 

YES 

49 

0.26 

139 

0.74 

38 

0.2 

150 

0.8 

34 

0.18 

154 

0.82 

True =  

NO 

1792742 

0.89 

232093 

0.11 

1762788 

0.87 

262047 

0.13 

1693220 

0.84 

331615 

0.16 

S
V

M
 

True = 

YES 

25 

0.13 

163 

0.87 

23 

0.12 

165 

0.88 

19 

0.10 

169 

0.90 

 

Also, TN values decreased as the confidence level was increased. This means that even though 

the models have predicted crashes more accurately, it sometimes classified some non-crash event 

as a crash. This is the expected trend since increasing the confidence ellipsoid, increases the size 
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of the ellipse and therefore it captures not only more of the crash data but also non-crash data 

that may be located between the newly captured crash events. We would also like to present our 

argument in favor of the fact that, these newly captured non-crash data that are predicted as crash 

lies in the grey boundary between the crash and non-crash data. These may or may not result in a 

crash owing to a number of other factors like driver skill or safer vehicles, but it is safe to 

consider that these events have a good chance of resulting in a crash. Therefore, the increase of 

FP values can also be an indicator that the models are performing towards our expectations. 

Based on this reasoning, we can argue that the 90% confidence ellipsoid should be selected as 

the method going forward. The best result for LR is marked green and that of SVM blue in Table 

15. 

Table 16 shows the comparison of the confusion matrix of VAE with SMOTE and ADASYN. 

From this table it can be seen that the maximum number of crashes correctly classified is 176 for 

the ANN model. While the performance of the LR model is better for SMOTE and ADASYN, 

for SVM and ANN, the performance of VAE data is better than the two minority oversampling 

methods. 

We compared VAE model to the results obtained from the work of (Cai et al., 2020). The authors 

reported similar performance metrics as we have used in our study. The data used by them was 

also for SR 408 for the year 2017. The comparison on the test data is shown in Figure 31. In this 

case as well, we observe that the specificity, sensitivity and AUC improvement is remarkable for 

both the VAE models. The improvement in specificity is 8% for the LR model and 4% for the 

SVM model. The improvement of sensitivity is also increased by 6% and 5%, while that of AUC 

is 7% and 1%, respectively. Therefore, we can conclude that the VAE performs better for the LR 

and SVM models than the DCGAN method. 
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Table 16 Confusion Matrix of the models with VAE, SMOTE and ADASYN 

 

SMOTE ADASYN 
90% Confidence Ellipsoid  

(VAE Data C) 

Predicted = 

NO 

Predicted= 

YES 

Predicted= 

NO 

Predicted= 

YES 

Predicted= 

NO 

Predicted= 

YES 

True = NO 
1744736 

0.86 

280099 

0.14 

1748582 

0.86 

276253 

0.14 

1776680 

0.88 

248155 

0.12 

L
R

 

True = YES 
24 

0.13 

164 

0.87 

24 

0.13 

164 

0.87 

34 

0.18 

154 

0.82 

True = NO 
1773173 

0.88 

251662 

0.12 

1762788 

0.86 

262047 

0.14 

1693220 

0.84 

331615 

0.16 S
V

M
 

True = YES 
24 

0.13 

164 

0.87 

22 

0.12 

166 

0.88 

19 

0.10 

169 

0.90 

True = NO 
1739254 

0.86 

285581 

0.14 

1709736 

0.84 

315099 

0.16 

1601701 

0.79 

423134 

0.21 A
N

N
 

True = YES 
20 

0.10 

168 

0.9 

18 

0.10 

170 

0.9 

12 

0.07 

176 

0.93 

 

 

Figure 31 Comparison between DCGAN and VAE as a data augmentation method 
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We also compared the results with other data sampling methods. The results are shown in Figure 

32. The real dataset is also shown for reference. For this dataset, we see that the model predicts 

everything as non-crash, since the specificity is 1 and sensitivity is zero. The undersampled 

dataset also performs well but the specificity is lower than the other techniques since it was only 

trained with a handful of non-crash data and therefore cannot recognize properly some of the 

non-crash events in the test data. ADASYN and SMOTE are also well recognized minority 

sampling techniques and therefore perform better than random undersampling. The performance 

of the VAE data is shown toward the right end of Figure 31.  

 

Figure 32 Comparison of the evaluation metrics across various models and proposed model 

 

The VAE model has improved specificity for the LR model (about 2% increase) than that 

of both ADASYN and SMOTE while the sensitivity is lower by 4%. For the SVM model, VAE 
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generated data has better sensitivity. The specificity is comparable to ADASYN and SMOTE 

while the sensitivity is improved by 3%. The AUC (for SVM) of the VAE generated data is also 

better than both ADASYN and SMOTE by 1%. The reason for this variation can be attributed to 

the selection of the confidence ellipsoids. A higher confidence level would mean better crash 

prediction, but also higher false alarms and lower confidence interval would lower the crash 

prediction and also lower false alarms. We are, therefore, convinced that the confidence level of 

the ellipsoid is an important hyperparameter to be tuned. From a crash prediction point of view, 

it is safe to have a higher confidence level since the false alarms would be a type of indicator that 

traffic conditions are likely to result in a crash. We also propose that, sensitivity is a better 

measure of the performance of generated crash data owing to this intuition. The SVM model 

outperforms the minority oversampling techniques with respect to sensitivity. For the ANN 

model, the sensitivity value peaks for all the models that have been trained. This model 

successfully classifies 93% of the crashes. 

Summary 

To predict crashes in real-time is of utmost importance in safety. It is also important to mark 

certain areas as unsafe where there are frequent crashes so that authorities can take long term 

measures to better the location. Due to insufficient data, the analysis of such metrics does not 

always provide conclusive results. Variational autoencoder can help leverage this by producing 

synthetic data. Given a small bunch of sample data, it can, theoretically, produce infinite data 

samples.  

To summarize, the work in this chapter we have generated over 20 million crash data with only a 

handful of 437 crash samples. We also used the concept of confidence ellipsoid to accurately 

capture crash data from the latent space of a VAE. We then compared the generated data with the 
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real data from statistical standpoints. The mean, standard deviation of the two datasets were 

similar. While it is known that autoencoders tend to reduce the noise in the data and thus the 

generated data could lose some important feature in the process, the data distribution of each of 

the 24 variables (in Figure 29) shows that the synthetic dataset closely follows the distribution of 

the real data. Finally, we evaluated the performance of the dataset with three crash prediction 

models: LR, SVM and ANN. The metrics chosen for evaluation was specificity, sensitivity and 

AUC. The real crash data was also augmented with state-of-the-art minority sampling techniques 

like SMOTE and ADASYN. These datasets were also used on LR, SVM and ANN to obtain the 

evaluation parameters. The results of the VAE model showed improvements from the view of 

specificity, sensitivity and AUC. The results were also compared with data augmentation 

technique involving DCGAN. Our VAE model outperformed most studies in the literature. The 

results from the confusion matrix, that was used to compare across different confidence 

ellipsoids, was also very insightful. It indicated that increasing the confidence ellipsoid increases 

the chances of getting false alarms but that is also an indicator that conditions are favorable for a 

crash. Overall, the results were encouraging, and can aid to balance an imbalanced crash dataset. 

Future studies can train crash prediction models on more complex and non-linear algorithms that 

do not perform well on small datasets. Using VAE as a data generation tool in the pipeline would 

definitely aid in generating substantial data to train on non-linear models. Furthermore, there 

could be more work relating VAE that could have one more class in between crash and non-

crash: crash-prone. The training data of this region could be derived from the false positives from 

our VAE model.  
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CHAPTER 6: SIGNAL PHASING AND TIMING PREDICTION AIDED BY 

DETECTOR DATA  

Traffic signal control is one of the earliest areas of research in transportation and remains to be a 

debated topic. Traditionally, the problem of signal control can be decomposed into a two-stage 

solution. The first stage is to develop traffic flow models that help to estimate macroscopic 

traffic parameters at intersections. This can be flow-based analytical models or simulation-based 

iterative models. But for complex traffic conditions, the modeling costs and errors also have to 

be taken into account. Artificial intelligence can also be used in simulation to train macroscopic 

traffic flow. In this case too, the tuning of hyperparameters can prove to be a costly and time-

consuming process (Li et al., 2016).  

The next stage is to develop appropriate signal plans based on the estimated traffic flow 

parameters. Mathematical programming models can then be used to optimize delay or queue 

length (Liu et al., 2015; Yang and Jayakrishnan, 2015)  Artificial intelligence can also be used to 

generate optimal signal plan which can learn the dynamics of the system and correlate it with the 

changes in traffic flow (Bingham, 2001; Li et al., 2016; Prashanth and Bhatnagar, 2010). 

In this work, we focus on using deep learning architecture to model signal timing parameters 

directly from traffic flow. Each approach level volume and occupancy were also aggregated at 

the cycle level from high-resolution detector data which were then fed into the proposed model 

to obtain signal parameters appropriate for that traffic flow. These types of methodologies would 

aid in reducing the dependency on the optimization algorithms while simultaneously simplifying 

the traditional two-stage traffic signal control problem into a one-stage solution. 
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Data Preparation 

Two distinct corridors in Orlando, Florida were selected: one of the corridors operates adaptive 

signal control (Corridor A) and the other corridor operates actuated signal control (Corridor B). 

As shown in Figure 33, Corridor A has 7 intersections and B has 10 intersections. All the 17 

intersections are equipped with Automated Traffic Signal Performance Measures (ATSPM), 

which store high-resolution detector data of each intersection along with the signal timing 

parameters like cycle length, green time, red time, etc. Data from August to December 2019 

were used in the study. 

Figure 33 Study Area 

For Corridor A, there are a total of seven intersections. Each is identified by the intersection ID 

as shown in Figure 33. The major movement is in the east-west direction. Intersections 2065, 

2090, and 2075 are four-leg intersections that have protected left-turn movements for all 
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approaches. Intersections 2085 and 2080 are also similar. However, they have an overlap phase 

as well, which circulates the major left turn movements twice per cycle. Intersection 2070 does 

not have protected left turns for the minor movement and 2095 is a T-intersection one leg of 

which merges into the ramp of a freeway, I-4. Since upstream and downstream count and 

occupancy were also used in the study, two more intersections 2100 and 2060 were added to the 

two ends of the corridor. On the other hand, Corridor B has 10 intersections, out of which two 

have all protected movements for all phases (1295 and 1130). Intersections 1270 and 1280 do not 

have protected left turns for the minor road but instead uses dummy phases to balance the ring. 

Intersection 1270 also has an overlap phase that circles the major through movement twice per 

cycle. Four intersections do not have protected left turns (1285, 1290, 1300, 1305) for the minor 

road. Intersections 1265 and 1270 are both T-intersections. Intersection 1265 merges into a ramp 

on the I-4 freeway. Similarly, as Corridor A, two more intersections 1260 and 1310 were added 

to the two ends of the corridor to calculate the upstream and downstream traffic parameters of 

1265 and 1130, respectively.  

Table 17 and Table 18 show the phases that are related to each intersection ID, as well as the 

direction each phase is tied to, as defined in the ATSPM signal controller database. Table 19 

shows the ring diagram that is generally followed for each of the intersections. It should be noted 

that slightly different ring diagrams are also implemented within the same barrier depending on 

the demand at each approach. The overlap phases are special phases that circle the previous 

phases due to high demand during peak hours. For example, the overlap phases (OL 1 and OL 2 

in Table 18) of intersection 1270 circle the major through movements (EB-T and WB-T) during 

weekday morning peak hours. OL 3 and OL 4 are special cases of concurrent pedestrian phase 

for intersection 2065. 
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Table 17 Phases for the Signals in Corridor A 

ID 2095 2090 2085 2080 2075 2070 2065 

WB-T 6 2 6 6 6 6 6 

EB-T 2 6 2 2 2 2 2 

WB-L - 5 1 1 1 1 1 

EB-L - 1 5 5 5 5 5 

SB-T - 8 4 4 4 4 4 

NB-T - 4 8 8 8 8 8 

SB-L - 3 7 7 7 - 7 

NB-L 3 7 3 3 3 - 3 

OL 1 - - 9 9 - - - 

OL 2 - - 13 13 - - - 

OL 3 - - - - - - 11 

OL 4 - - - - - - 16 

Type 5 2 1 1 2 4 3 

EB = Eastbound, WB = Westbound, NB= Northbound, OL = Overlap, SB = Southbound, T = Through, L = Left, 

OL = Overlap 

 

Table 18 Phases for the Signals in Corridor B 

ID 1265 1270 1275 1280 1285 1290 1295 1300 1305 1130 

WB-T 6 6 2 2 6 2 6 6 6 6 

EB-T 2 2 6 6 2 6 2 2 2 2 

WB-L - 1 - 5 1 5 1 1 1 1 

EB-L 5 5 1 1 5 1 5 5 5 5 

SB-T - 4 8 8 4 8 4 4 4 4 

NB-T 8 8 - 4 8 4 8 8 8 8 

SB-L - 7 - 3 - - 7 - - 7 

NB-L - 3 - 7 - - 3 - - 3 

OL 1 - 10 - - - - - - - - 

OL 2 - 14 - - - - - - - - 

Type 5 2 4 2 3 3 1 3 3 1 

EB = Eastbound, WB = Westbound, NB= Northbound, SB = Southbound, T = Through, L = Left, OL = Overlap 



 

 

 

97 

 

Table 19 Ring Diagram of all Intersections in Study Area 

ID Ring Diagram Notes 

1265 Ring 1  2 8 

Ring 2 5 6  
 

T-intersection 

 

 
1270 

Ring 1 1 2 3 10 4 

Ring 2 6 5 8 14 7 
 

phases 10, 14 are 

repetition of phases 2, 6 

 
1275 

Ring 1 1 2 8 

Ring 2 6   
 

T-intersection 

 

 
1280 Ring 1 1 2 3 4 

Ring 2 5 6 8 7 
 

 

 

 1285 
Ring 1 1 2 3 8 7 4 

Ring 2 5 6   
 

 

 

 1290 Ring 1 1 2 3 8 7 4 

Ring 2 6 5   
 

 

 

 1295 
Ring 1 1 2 4 3 

Ring 2 6 5 7 8 
 

 

 

 1300 
Ring 1 1 2 4 

Ring 2 5 6 8 
 

No protected left for 

minor road 

 
1305 Ring 1 1 2 4 

Ring 2 5 6 8 
 

No protected left for 

minor road 

 
1130 

Ring 1 1 2 3 4 

Ring 2 6 5 7 8 
 

 

 

 2095 Ring 1 2 3 

Ring 2 6  
 

T-intersection 

 

 

2090 
Ring 1 1 2 4 3 

Ring 2 6 5 7 8 
 

 

 

 

2085 
Ring 1 1 2 9 4 3 

Ring 2 6 5 13 7 8 
 

phases 9, 13 are repetition 

of phases 1, 5 

 

2080 Ring 1 1 2 9 3 4 

Ring 2 5 6 13 7 8 
 

Phases 9, 13 are repetition 

of phases 1, 5 

 

2075 
Ring 1 1 2 3 4 

Ring 2 6 5 7 8 
 

 

 

 

2070 Ring 1 1 2 4 

Ring 2 6 5 8 
 

No protected left for 

minor road 

 

2065 
Ring 1 1 2 3 4 11 

Ring 2 5 6 8 7 16 
 

Phase 11 is 1 and 16 is a 

concurrent pedestrian 

phase 
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Figure 34 Data Processing 

 

The overall data preparation and preprocessing steps have been illustrated in Figure 34. Each 

intersection and its respective upstream and downstream were taken. After sorting, the data was 

passed through two separate channels; one channel processed the data to obtain counts and 

occupancy while the other channel was responsible to calculate signal timing parameters such as 

cycle length and phase length. The data was also cleaned to remove any missing detector 

information. The phase duration and cycle lengths were also matched for consistency. Finally, 

four immediate processed databases were obtained which were merged based on cycle start and 

end time. This database was then split into three sub-databases based on same-day data, 
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previous-day data, and previous-week data. This was so done because travel demands across 

these time frames are largely similar. The details regarding calculating cycle volume, occupancy, 

cycle lengths, and phase durations are elaborated on in the subsections. 

Cycle Volume Calculation 

Cycle volume is calculated from the ATSPM data based on the detector ON and OFF events. All 

of the selected intersections have loop detectors for vehicle detection. The detectors stay on so 

long as it is occupied. It can also be used to calculate occupancy as will be shown later. The loop 

detectors can be divided into two types based on their location: stop bar detectors (SBD) are 

placed near the stop line and advanced count detectors (ACD) are placed at various lengths from 

the stop line. The selected 17 intersections have two sets of ACDs at each lane (for the major 

roads): the first set is placed at a distance of 75/150 feet from the stop line and the other is placed 

at 150/300/330 feet from the stop line. ACDs can be directly used to calculate the number of 

vehicles during the green time. During the red time, it can also indicate counts till a queue forms 

and reaches the ACD. SBDs are usually 30 feet in length and ACDs are 6 feet. The width of all 

detectors is almost equal to the lane width. 

A typical setup with the different types of detectors at ATSPM controlled intersections is shown 

in Figure 35. For the study area, major roads are in the east-west direction and minor roads are in 

the north-south direction. The major through movements only has the ACDs whereas the left 

turn movements have only SBDs. All the minor movements have only SBDs. It should also be 

mentioned here that not all 17 intersections follow the detector configuration exactly as shown in 

Figure 35. The placement of detectors is often modified due to geometric and/or budget 

constraints. Therefore, in our study, we have separated the detectors based on the types per 

phase, and vehicle counts were aggregated per cycle per detector type per phase. For the cases, 
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where there are multiple count detectors on the same lane (the EB-T, WB-T lanes in Figure 35), 

the detectors farthest away from the intersection were used to aggregate the count values. 

In addition, the cycle volume at the upstream and downstream intersection of the target 

intersections was also calculated and added as a feature. As an example, the volume of 

intersections 1265 and 1275 was also added to the feature values when preparing the data for 

1270. 

 

Figure 35 Detector configuration at intersections 

 

 

Cycle Occupancy Calculation 

In addition to cycle volume, occupancy was also calculated for each of the detector types. The 

time difference between consecutive ON and OFF state of a detector was used to calculate 

occupancy. The stop bar detectors report the best occupancy when the light is red, and 
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occupancy directly equals to how long a vehicle is stopped, and count detectors report occupancy 

if the end of queue reaches the detector. Similarly, occupancy values of the upstream and 

downstream intersections were also used as features. 

Signal Timing Parameters Calculation 

The ATSPM controllers report the active green, yellow and red times of all the phases for an 

intersection. Usually, the yellow time, red time, and red clearance time for an intersection is 

fixed and depends on the geometric characteristics of the intersection. Therefore, it is enough to 

calculate the total phase length. The ATSPM database reports two parameters called eventCode 

and eventParam to indicate the phase and the associated state change, respectively. The phase 

number is indicated by the eventParam while the action associated with that phase is represented 

by the eventCode. Table 20 shows an example of the phases within a cycle at a morning peak. 

Based on this table, a ring diagram can be generated as shown in Figure 36 that can be used to 

calculate phase lengths. In this figure, phases 1, 2, 5, and 6 are the major movements while 4 and 

8 are the minor movements. For example, the eventCode 0 represents when a phase turns ON and 

12 when it turns OFF. Therefore, from the Table IV, phase 2 turns ON at 09:34:21 and turns 

OFF at 09:35:30. 

The cycle length can also be calculated by dividing the phases in two different groups. Usually, 

the major movements belong to phase group 1 (phases 2, 6, 1, 5) and the minor movement to 

phase group 2 (phases 4, 8, 3, 7). Cycle length is calculated as the time difference between the 

start of phase group 1 and the end of phase group 2. 

After calculation of the cycle lengths and phase lengths, it was seen that there were some 

duplicate or missing phases within a cycle. The raw ATSPM data comes with several limitations 

which could contribute to the errors generated. Thus, a series of logical checks were performed 
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with the data to confirm that each of the cycles and phases were calculated properly. For 

example, the ring lengths were checked to see if they would match the total cycle length, 

duplicate phases were removed, etc.  Moreover, since the models were trained based on previous 

samples of data (as shown in Table 21), it is important that the data samples be continuous. 

Therefore, the processed data samples were matched by comparing the end of a cycle to the start 

of the next cycle. 

Table 20 Phase Duration Calculation from Raw Data 

timeStamp eventCode eventParam Notes 

2019-10-01 09:34:21 0 2 Phase 2 turns ON 

2019-10-01 09:34:21 0 6 Phase 6 turns ON 

2019-10-01 09:35:30 0 1 Phase 1 turns ON 

2019-10-01 09:35:30 12 2 Phase 2 turns OFF 

2019-10-01 09:35:48 0 2 Phase 2 turns ON 

2019-10-01 09:35:48 12 1 Phase 1 turns OFF 

2019-10-01 09:37:28 0 5 Phase 5 turns ON 

2019-10-01 09:37:28 12 6 Phase 6 turns OFF 

2019-10-01 09:37:43 0 6 Phase 6 turns ON 

2019-10-01 09:37:43 12 5 Phase 5 turns OFF 

2019-10-01 09:39:08 0 8 Phase 8 turns ON 

2019-10-01 09:39:08 0 4 Phase 4 turns ON 

2019-10-01 09:39:08 12 2 Phase 2 turns OFF 

2019-10-01 09:39:08 12 6 Phase 6 turns OFF 

2019-10-01 09:39:25 12 4 Phase 4 turns OFF 

2019-10-01 09:39:25 12 8 Phase 8 turns OFF 
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Figure 36 Ring Diagram for Table 

 

Data Preprocessing 

The data is then sliced into window sizes of various lengths and fed into deep learning 

algorithms which can predict the cycle lengths and phase lengths of future cycles. Input and 

output windows of sizes 1 to 6 were experimented with. Usually, signal timings are optimized 

based on not only the short-term traffic flow but also taking into account the long-term average 

traffic flow parameters. Therefore, instead of just taking the past cycles, the same cycles from the 

past day and past week were also taken into account. For example, if the cycle lengths and phase 

lengths of the next four cycles are to be predicted on a Thursday (October 17), the immediate 

few cycles of the same time are taken, as well as the same cycles during the previous day, 

October 16 and that of the same day of the previous week, October 10. This is illustrated in 

Table 21. Here 𝑖 indicates the current cycle. It should be noted that Cyclei-1 on each day will not 

occur at the same time and therefore, we calculated Cyclei-1 of the previous day/week by 

averaging 2 or 3 cycles that are in close proximity to the current Cyclei-1. 
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Table 21 Illustration of feature selection for input and output window 

Thursday 
October 10 2019 

 Wednesday 
October 16 2019 

Thursday 
October 17 2019 

Cyclei-6 ... Cyclei-6 Cyclei-6 
In

p
u
t F

e
a
tu

re
s
 

Cyclei-5 ... Cyclei-5 Cyclei-5 

Cyclei-4 ... Cyclei-4 Cyclei-4 

Cyclei-3 ... Cyclei-3 Cyclei-3 

Cyclei-2 ... Cyclei-2 Cyclei-2 

Cyclei-1 ... Cyclei-1 Cyclei-1 

 Cyclei 

O
u
tp

u
t 

P
re

d
ic

tio
n

 

Cyclei+1 

Cyclei+2 

Cyclei+3 

 

 

Methodologies 

In this section, details about the CNN-LSTM structure proposed in the chapter are discussed. 

Long short term memory (LSTM) networks (Hochreiter, 1997 #2337) belong to the recurrent 

neural network (RNN) family and are adept to overcome the shortcoming of conventional RNN: 

the vanishing gradient problem. RNNs are able to remember only recent information due to this 

limitation. LSTM can make use of both the short-term and long-term information to make a 

prediction. This is especially important in the prediction of signal timing because generally 

optimizations are done by considering both the short-term turbulent traffic flow and the long-

term mean traffic parameters. LSTMs have an input layer, a hidden layer, and an output layer. 

While the input and output layers are traditional neurons, the hidden layers are specialized 

memory cells that can store information.  
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For the proposed model, a convolutional neural network (CNN) was also added on the top of the 

stacked LSTM structure. The input to the CNN layer is the processed data consisting of the cycle 

length, detector values, and other temporal parameters. The output of the CNN layer is flattened 

and fed into the stacked LSTM layer. If  𝑥1, 𝑥2, … , 𝑥𝑛 is the input vector, the output from the 

CNN layer can be represented by (1) where 𝑦𝑖𝑗
1  is the output from the convolutional layer, 𝜎 

represents the activation function, 𝑚 is the index value, 𝜔 is the weight of the filter, 𝑥𝑖𝑗
1  is the 

input layer and 𝑏𝑗
1 is the bias for the 𝑗𝑡ℎ feature. 

 𝑦𝑖𝑗
1 =  𝜎(𝑏𝑗

1 + ∑𝑚=1
𝑀 𝜔𝑚,𝑗

1 𝑥𝑖+𝑚−1,𝑗
0 ) (1) 

The output from the CNN layer is passed on to the stacked LSTM layers. Each cell of the LSTM 

layers consists of memory cells that have three multiplicative units: input, output and, forget 

gates. These memory cells aid in understanding the temporal relationships in a sequence. LSTM 

layers are also suitable because it addresses the vanishing gradient problem with traditional 

RNNs. The forget gate 𝑓 controls when the previous memory will be forgotten, the input gate 

𝑖 controls the update of each unit and the output 𝑜 gate decides the next hidden layer. The 

operation of each memory cell can be represented with (2), (3), and (4). 

𝑖𝑡 =  𝜎 (𝑊𝑝𝑖 • 𝑦𝑡 + 𝑊ℎ𝑖ℎ𝑡−1 + 𝑊𝑐𝑖 • 𝑐𝑡−1 + 𝑏𝑖) (2) 

𝑓𝑡 =  𝜎 (𝑊𝑝𝑓 • 𝑦𝑡 + 𝑊ℎ𝑓ℎ𝑡−1 + 𝑊𝑐𝑓 • 𝑐𝑡−1 + 𝑏𝑓) (3) 

𝑜𝑡 =  𝜎 (𝑊𝑝𝑜 • 𝑦𝑡 + 𝑊ℎ𝑜ℎ𝑡−1 + 𝑊𝑐𝑜 • 𝑐𝑡−1 + 𝑏𝑜) (4) 

Here 𝑊 is the weight matrix, 𝑦𝑡 is the flattened output from the CNN layer, 𝑏 is the bias vector, 

• is used to indicate elementwise operation. The cell states 𝑐𝑡 and hidden states ℎ𝑡 are calculated 

using (5) and (6). 
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𝑐𝑡 =   𝑓𝑡 • 𝑐𝑡−1 + 𝑖𝑡.𝜎(𝑊𝑝𝑐𝑝𝑡 + 𝑊ℎ𝑐 • ℎ𝑡−1 + 𝑏𝑐) (5) 

 ℎ𝑡 =  𝑜𝑡 . 𝜎(𝑐𝑡) (6) 

The final layer of the model consists of fully connected layer. Mathematically it can be 

represented by (7) where 𝜔 represents the weight of the 𝑖𝑡ℎ and 𝑗𝑡ℎ node for the layer  𝑙 − 1 and 𝑙 

respectively. 

 𝑑𝑖
𝑙 = ∑𝑗  𝜔𝑗𝑖

𝑙−1(𝜎(ℎ𝑖
𝑙−1) +  𝑏𝑖

𝑙−1) (7) 

Network Architecture 

The overall network architecture is presented in Figure 37. The feature windows are 

concatenated to produce a 3D input structure similar to an RGB image which is then passed into 

the CNN layer. The 4x4 filters in this layer produce a 2D output which is flattened to input into 

the stacked LSTM layers. Three LSTM layers are used with each layer containing 150 cells. A 

similar architecture is followed for the phase duration prediction. It was important to separate the 

predictions of cycle length and phase duration since the mean and standard deviation between the 

two were significantly different and therefore the results involving MAEs would lead to 

incomplete conclusions. The output of the two branches of prediction gives the final signal 

timing prediction. 

It is also important to show that once the model predictions are obtained, it is straightforward to 

reconstruct a signal timing diagram. For example, let us take the ring diagram of Intersection 

2075. If 𝑐 is the cycle length predictions and, 𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5, 𝑝6, 𝑝7, 𝑝8 are the phase 

predictions for this intersection, then based on the ring diagram we can obtain (8) and (9). 
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 𝑝2 + 𝑝1 = 𝑘𝑐, 𝑝5 + 𝑝6 = 𝑘𝑐 (8) 

 𝑝4 + 𝑝5 = (1 − 𝑘)𝑐, 𝑝7 + 𝑝8 = (1 − 𝑘)𝑐 (9) 

 

Here 𝑘 indicates the fraction of time phase group 1 is active within a ring. Based on the 

predictions from the proposed method, (8) can be solved for k and phases 𝑝1 and 𝑝2 can be 

placed on Ring 1 (any order of the phases can be applied) and, 𝑝5 and 𝑝6 can be placed on Ring 

2. Similarly, the ring diagram can be completed with (9). Therefore, given the predicted outputs 

from the proposed model in Figure 37 signal timing diagram can be generated accordingly. 

 

Figure 37 Model Architecture 
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Results 

Performance metrics were evaluated for individual intersection models as well as combined 

intersection models. Based on the results, it seemed reasonable to group intersection based on 

different types to obtain better accuracy metrics. MAE and RMSE were taken as the metrics and 

were calculated with (10) and (11) where 𝑦𝑖 is the predicted values and 𝑥𝑖 is the actual values. 

 
𝑀𝐴𝐸 =

∑ |𝑦𝑖 − 𝑥𝑖|
𝑛
𝑖=1

𝑛
  

(10) 

 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖 − 𝑥𝑖)2𝑛

𝑖=1

𝑛
  

(11) 

The effect of window size will also be discussed along with the important features. The CNN-

LSTM model was also compared with state-of-the-art time series forecasting models to show 

that it outperforms other methods in terms of performance. The data was divided into 70-30 ratio 

for training and testing. The trained model was also implemented at another intersection in a 

different corridor and impressive results were obtained. 

Combined Model vs Model Based on Types of Intersection 

Initially, the models were trained per corridor since it would be able to capture more variations 

within intersections and as such be an alternate to signal retiming with similar types of 

intersections. We also found that this combined method performs worse for some predictions 

since the model would average out the performance across different types of intersections. Due 

to this reason, it is worthy to separate the intersections into different types based on the phases as 

shown in Table 17 and Table 18. For example, the 7 intersections in Corridor A can be divided 

into five types. Intersections 2085 and 2080 have similar phase sequences and therefore can fall 

into the same type. Intersections 2090 and 2075 have eight phases each thereby belonging to the 
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same type. The remaining three intersections are classified into individual types since 2095 is a 

T-intersection that merges into a freeway, 2070 does not have protected minor movements and 

2065 has a concurrent pedestrian phase. The intersections in Corridor B can also be divided into 

5 types. 

Table 22 Combined MAE vs Type-Based MAE 

C
o
rr

id
o
r 

A
 

 Type 1 2 3 4 5 Combined 

C
y
cl

e 

le
n

g
th

 MAE Train 12.69 8.78 6.06 133.62 10.36 18.08 

MAE Test 16.39 9.74 6.34 153.27 10.73 19.46 

P
h
as

e 

le
n
g
th

 MAE Train 6.84 4.86 2.73 52.36 52.74 6.74 

MAE Test 7.01 5.04 2.79 52.74 31.84 6.76 

C
o
rr

id
o
r 

B
 

C
y
cl

e 

le
n
g
th

 MAE Train 10.06 16.54 19.10 62.94 17.42 19.29 

MAE Test 11.18 18.06 22.18 163.18 18.20 22.91 

P
h
as

e 

le
n
g
th

 MAE Train 5.46 6.83 25.49 36.41 10.24 5.24 

MAE Test 5.55 6.86 25.75 37.37 10.58 5.28 

 

As shown in Table 22, the combined model usually performs worse for all the intersection types 

except for type 4 in Corridor B. The reason being that type 4 is a T-intersection with very little 

demand on the minor roads. This essentially means that the intersection more or less runs in a 

free mode where demand is met whenever there is a vehicle on the minor road. This results in a 

large variation in raw cycle length values and therefore the prediction accuracy is also 

unsatisfactory. Furthermore, this also provides the insight that for such intersections (which have 



 

 

 

110 

larger major road demand and lower minor road demand), traffic flow prediction from cycle to 

cycle is a difficult task. 

The timing diagram of one such intersection is shown in Figure 38. Two cycles are shown here 

with the first cycle being considerably smaller than the second cycle.  

Figure 38 Phase Diagram along with Occupancy 

 

The major roads have phases 1,2,5 and 6. Phases 4 and 8 are the minor road movements. Each of 

the scatter plots in the figure shows the occupancy and the corresponding time when the vehicle 

left the detector. As discussed before, the major through movements has predictable occupancy 

but the minor roads have vehicles intermittently passing. If we take phase 8, we see that one 

vehicle leaves the detector at 15.46 and the other vehicle at 15.54 and therefore one of the cycles 
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is considerably longer than the other. For phase 4, we see that some vehicles leave the detectors 

during red. This indicates that those vehicles did not wait long enough to trigger the minor road 

phases. Understandably, those vehicles made a right turn movement. 

 

 

Figure 39 Actual vs Predicted Cycle Length for CNN-LSTM 

 Figure 39 shows the actual and predicted cycle lengths for one entire day for a type 1 

intersection in Corridor B. The predicted cycle length closely follows the actual values for the 

test dataset. 

Model Comparison 

Predicting signal phasing and timing can be classified as a time series forecasting problem and 

therefore, the CNN-LSTM model has been compared with other popular models in this field. 

Initially, Gradient Boosting (GB) , Bagging Regressor (BR), Random Forest (RF), XGBoost 

(XGB), XGBoost-Random Forest (XGBRF) were tried among the tree-based ensemble models. 

Three deep learning models such as artificial neural network (ANN), long short-term memory 

(LSTM), and gated recurrent units (GRU) were also investigated. Of all the nine models, CNN-
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LSTM had the least mean absolute error and therefore two more variants of the LSTM were also 

tried: CNN-LSTM and EMD-LSTM. CNN-LSTM performed better than the base LSTM model 

while EMD-LSTM performed worse and therefore not mentioned in the results. Table 24 and 

Table 23 show all the RMSE and MAE values for the individual models along with the window 

size. It is also seen that LSTM performs better than CNN-LSTM when the prediction horizon is 

smaller. For example, for the first row in Table 24(a) where input and output windows are 5 and 

1 cycles respectively, LSTM has a better MAE and RMSE. As the output window size is 

increased, the performance of CNN-LSTM improves. Again, the RMSE values of CNN-LSTM 

are almost always lower than LSTM thereby making it the best model in this scenario. 

Table 24 also compares all the models across all the different window sizes for the case of cycle 

length prediction. The window sizes are shown in the first column with the notation 𝑎, 𝑏 where 𝑎 

is the number of past cycles used to train the model and 𝑏 is the number of cycles in the 

prediction horizon. Table 24 (a) and (b) represents the two different corridors. The MAE values, 

as well as the RMSE values, are presented for comparison. It can be seen that the MAE values 

for Corridor A are lower than that of Corridor B. The reasoning can be attributed to the fact that 

A is adaptive signal controlled and therefore the signal timing patterns are coordinated with the 

traffic flow to some extent. Across the two tables, CNN-LSTM has the least MAE value: 19 

seconds for Corridor A and 23.3 seconds for Corridor B which is better than the next best model 

RF by 2 seconds. GRU, XGB, and XGBRF report almost similar values of MAE. CNN-LSTM is 

also the model that reports the least RMSE. If RMSE is considered, the lowest value is 63.0 

seconds for Corridor A and 62 seconds for Corridor B.  Concerning the appropriate window size, 

it was noted that the MAE and RMSE values showed slight improvements when the window size 

was maximum at 6, 6. A larger window size gave the models a better idea about the past traffic 
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pattern and helped to identify suitable signal timing for the next few cycles. But regardless the 

MAE values were not starkly different between different window sizes. Therefore, appropriate 

window size would depend upon the requirements of specific applications. 
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Table 23 MAE and RMSE for Cycle Length Prediction 

Window 

Size 

BR GB GRU LSTM CNN-LSTM MLP RF XGB XGBRF 

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE 

5,1 24.8 89.4 23.8 80 26.4 89.7 20.8 87.9 22.2 89.4 50.5 106 22.2 79.3 22.9 80.3 23.8 81 

5,2 24.1 76.2 24.1 76.7 25.4 84.8 21.1 81 20.9 78.3 52.1 106 22.4 76.7 22.8 76.6 23.6 77.3 

5,3 24.2 76.8 23.5 73.4 25.1 80.3 20.5 77.8 20.6 73.5 50.5 99 22 72.3 22.7 73.6 23.4 73.7 

5,4 24 73.3 23.2 68.1 24.4 74.6 19.9 71.2 20.0 70.3 51.4 94.4 21.5 67 22 68 22.8 68 

5,5 24 72.6 23.3 70.6 28.4 76.8 20 72.3 20.1 73.5 29.1 73.9 21.7 69.5 22.3 70.6 23 70.5 

6,1 24 75.5 23.7 80.3 41.8 93.8 21.3 90 22.4 87.8 50.6 108.1 22.3 81.2 22.9 81.4 23.7 81.6 

6,2 24.1 78.7 23.5 75.4 24.9 82 20.4 77.6 19.8 72.7 50.2 99.6 22.2 74.4 22.7 75.6 23.4 75.5 

6,3 23.8 75.4 23.1 69.7 23.6 75.7 19.6 71.2 19.0 63 49.8 94.6 21.5 68.2 22 69.2 22.7 69.2 

6,4 24 74.2 23.2 71.6 24.9 77.3 19.9 72.5 19.3 67.4 50 97.1 21.7 70.3 22.3 71.3 23 71.4 

6,5 24 70.7 23.2 68.4 25.2 75.4 20 72.3 19.5 67.3 49.3 92.9 21.3 67 21.9 68.1 22.6 68.3 

6,6 23.9 68.1 22.7 66.9 24 72.6 19.5 70.7 19.7 69.6 49 91.3 21 65.8 21.7 66.9 22.5 67.5 

(a) Corridor A 
Window 

Size 

BR GB GRU LSTM CNN-LSTM MLP RF XGB XGBRF 

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE 

5,1 24.8 89.4 28.6 64.4 29.2 68.3 24.2 69 24.5 67.9 41.4 68.4 28.8 65 28.3 65 29.6 65.9 

5,2 24.1 76.2 28.9 64.5 31.3 72 24.4 67.6 24.7 66.9 102.6 124.7 29.1 64.9 28.7 64.4 29.8 65.5 

5,3 24.2 76.8 28.9 64.4 29.6 69 24 67 24.4 66.9 43.3 73.9 28.9 64.7 28.5 64.4 29.7 65.5 

5,4 24 73.3 28.5 63.3 28.4 66.6 23.7 65.6 24.1 65.2 53.2 76.9 28.6 63.6 28.2 63.1 29.4 64.2 

5,5 24 72.6 28.6 61.9 28.3 66.5 23.8 64.4 24.2 64.1 41.8 76 28.7 62.3 28.4 62 29.6 63.1 

6,1 24 75.5 29 66.1 32.4 70.1 25.1 71.7 24.9 69.5 41 76.7 29.2 66.7 28.8 66 30.1 67.3 

6,2 24.1 78.7 28.8 65.4 29.5 70.4 24.3 67.5 24.2 67 40.9 75.8 29 65.7 28.5 65.5 29.7 66.6 

6,3 23.8 75.4 28.4 63.7 30.3 70.1 23.7 65.2 23.9 64.9 40.5 74.9 28.7 64.2 28.2 63.6 29.4 64.7 

6,4 24 74.2 28.7 62.8 28.5 66.9 23.9 65.4 24.1 64.6 42.2 74.2 28.8 63.2 28.3 62.7 29.5 63.7 

6,5 24 70.7 28.4 63.4 28.2 66.8 23.6 65.6 23.8 65.1 44 76.4 28.5 63.5 28.2 63.3 29.5 64.3 

6,6 23.9 68.1 28.2 63.4 27.8 63.3 23.2 62.4 23.3 62 44.1 72.7 28.2 60.4 28 60.1 29.2 61.2 

(b) Corridor B 
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Table 24 MAE and RMSE for Phase Duration Prediction 

Window 

Size 

BR GB GRU LSTM CNN-LSTM MLP RF XGB XGBRF 

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE 

5,1 6.7 18.5 5.8 17.0 7.4 20.1 5.3 18.1 5.3 18.0 31.3 41.7 5.7 17.2 5.6 17.0 5.8 17.2 

5,2 6.6 18.0 5.8 16.5 7.7 20.0 5.5 17.8 5.5 17.8 39.0 47.1 5.8 16.7 5.6 16.5 5.9 16.8 

5,3 6.6 17.1 5.8 16.0 8.4 20.0 5.5 17.0 5.4 16.9 46.3 58.6 5.7 16.0 5.7 16.0 5.9 16.2 

5,4 6.5 16.2 5.7 15.1 9.3 20.4 5.5 16.2 5.4 16.1 16.3 26.7 5.7 15.2 5.6 15.1 5.8 15.2 

5,5 6.6 16.7 5.8 15.6 9.0 20.2 5.6 16.8 5.4 16.8 22.4 34.0 5.8 15.7 5.7 15.6 5.9 15.7 

6,1 6.7 18.8 5.8 17.1 7.7 20.5 5.4 18.5 5.5 18.4 47.0 56.0 5.3 5.6 5.6 17.1 5.8 17.4 

6,2 6.6 17.5 5.8 16.4 7.5 19.3 5.4 17.2 5.4 17.2 42.9 53.1 5.4 5.7 5.6 16.4 5.9 16.5 

6,3 6.5 16.4 5.7 15.3 8.0 18.9 5.4 16.4 5.4 16.2 28.7 39.1 5.5 5.6 5.7 15.3 5.8 15.4 

6,4 6.6 16.8 5.8 15.7 8.6 20.3 5.5 16.9 5.4 16.6 17.7 28.8 5.6 5.7 5.6 15.7 5.9 15.9 

6,5 6.6 16.2 5.8 15.2 9.0 19.9 5.5 16.4 5.4 16.4 27.9 39.0 5.6 5.7 5.6 15.3 5.9 15.3 

6,6 6.5 16.0 5.8 15.0 9.5 20.4 5.5 16.1 5.4 16.1 39.1 50.4 5.6 5.7 5.6 15.0 5.9 15.2 

(a) Corridor A 
Window 

Size 

BR GB GRU LSTM CNN-LSTM MLP RF XGB XGBRF 

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE 

5,1 9.0 18.6 7.4 16.8 9.3 20.6 6.8 17.9 6.7 17.6 64.5 70.0 7.9 17.4 7.4 16.8 7.8 17.4 

5,2 9.0 18.5 7.7 16.8 10.1 21.4 7.1 17.8 7.0 17.8 29.3 40.0 7.9 17.1 7.6 16.8 7.9 17.2 

5,3 9.0 18.6 7.7 17.0 10.3 21.4 7.0 18.1 7.0 18.0 15.1 25.9 7.9 17.3 7.6 17.0 7.9 17.4 

5,4 9.0 18.4 7.7 16.8 10.5 21.4 7.0 17.9 7.0 17.9 15.2 24.7 7.9 17.1 7.6 16.8 7.9 17.1 

5,5 9.0 18.0 7.7 16.4 11.4 22.1 7.1 17.5 7.0 17.5 15.0 24.5 8.0 16.8 7.7 16.4 8.0 16.8 

6,1 9.1 18.9 7.6 17.0 9.8 20.9 6.9 18.0 6.8 17.9 47.9 55.2 7.9 17.6 7.4 17.0 7.9 17.5 

6,2 9.0 18.9 7.6 17.2 9.8 21.2 7.0 18.3 7.0 18.2 53.4 61.7 7.9 17.5 7.5 17.1 7.9 17.6 

6,3 8.9 18.4 7.6 16.8 10.2 21.2 7.0 17.8 7.0 17.8 15.0 24.7 7.9 17.1 7.5 16.8 7.8 17.2 

6,4 9.0 18.2 7.7 16.6 10.9 21.8 7.1 17.7 7.0 17.6 44.4 57.5 8.0 17.0 7.6 16.6 7.9 16.9 

6,5 9.0 18.4 7.7 16.9 11.2 22.2 7.1 18.0 7.0 17.9 23.1 46.2 7.9 17.2 7.6 16.9 7.9 17.2 

6,6 8.9 17.7 7.7 16.2 11.1 21.4 7.0 17.3 7.0 17.2 22.3 31.1 7.9 16.5 7.6 16.2 7.9 16.5 

(b) Corridor B 
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Transferability Analysis 

To understand whether such models trained on several intersections would be able to predict 

signal timings correctly for other intersections, we have used the trained model on a separate 

intersection 2540. The intersection is shown in Figure 40. The raw data for this intersection was 

processed similarly to the other intersections. Type 1 intersection from Corridor B was used to 

train the model. The cycle length prediction result reported an MAE of 12.75 seconds which is 

close to the reported test MAE of 10.06 seconds (from Table 22). Therefore, we can conclude 

that the model can be successfully extended to other intersections.  

 

Figure 40 Validation Dataset 

Validation Dataset 

Intersection 
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Intersection 2540 also serves as a validation set for the proposed model. Using a validation set to 

confirm the results of a machine learning model has been emphasized in several previous studies  

(Bleeker et al., 2003; Guyon, 1997; Larsen et al., 1996). 

To summarize, we present the three-stage evaluation in Figure 41 that helped to refine the final 

proposed model. At Stage 1, eight different models were tried along with a combination of 11 

different window sizes. This stage took the combined data of each corridor. The results from 

Stage 1 clearly showed that LSTM was the best model in terms of MAE. Therefore, at Stage 2, 

only LSTM was experimented with. Intersection type-based data was used in this stage. Stages 1 

and 2 also helped to narrow down the window size to three values. Therefore, at Stage 3, only 

these three window sizes were tried along with modification of the LSTM model from Stage 2: 

CNN-LSTM and EMD-LSTM. CNN-LSTM showed lower MAE values. 

 

Figure 41 Summary 

Summary 

The research work presented in this paper identifies a common problem in the signal timing 

practice: retiming, and proposes a solution based on deep learning architecture. Based on high 

resolution detector data the proposed architecture is able to predict signal timing sequences for 

the next few cycles. A comprehensive study was carried out comparing both adaptive and 
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actuated signal control corridors. A total of 17 intersections were studied to show the feasibility 

of the application of the proposed method. Cycle length prediction reported MAE as low as 6.06 

seconds and phase duration prediction showed MAE as low as 2.73 seconds. The proposed 

model also was validated on another intersection from a different corridor with good accuracy 

metrics. 

There are many potential applications of predicting the SPaT timing of the upcoming cycles. It 

can make route planning and trajectory estimation (Islam and Abdel-Aty, 2021a) more efficient 

in a connected environment since future states of the signals can be predicted. This would aid in 

relevant studies where vehicle velocity is optimized to traverse intersections at green times and 

thereby reducing the carbon footprint (Asadi and Vahidi, 2010) or to find optimal velocity 

(Koukoumidis et al., 2011). The predicted signal timings can also be used to aid vehicles in the 

dilemma zone if the predictions can be transferred to the vehicles using on-board units. Most 

prominently, the signal retiming effort can be reduced to a great extent. Recent studies related to 

safety that try to predict pedestrian and vehicle conflicts also use signal timing information 

(Zhang et al., 2020a; Zhang et al., 2020b) can also benefit from having an extended SPaT 

information up to 6 cycles in the future. 
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CHAPTER 7: CONCLUSION 

This dissertation focuses on the use of sensor-based data to improve safety and mobility in the 

field of transportation. All technologies worldwide are generating a lot of data with embedded 

sensors. The roadway networks have different types of sensors: intrusive sensors like loop 

detectors, pneumatic tube sensor, etc. and non-intrusive sensors like camera, radar, etc. Each new 

vehicle on the road is also generating data from on-board units, camera, GPS, etc. and storing 

data to cloud. Huge volume of data is being generated by all these sensors. It is becoming 

increasingly challenging to use this data for the betterment of human lives both from operations 

and safety point of view. Machine learning models can aid in this regard to help achieve critical 

objectives with sensor data. 

In Chapter 3, we have used data generated from smartphone sensors to classify lane change and 

predict trajectories at intersections. Smartphone data contains several sensor information like 

accelerometer, magnetometer, gyroscope, etc. which can be further fused to obtain azimuth pitch 

and roll. Data cleaning was done using low-pass filter system which can be used to accurately 

identify lane changes. Different machine learning models were investigated like AdaBoost, Extra 

Tree, Gradient Boosting, Support Vector Classification, etc. Using this information, the 

trajectory of the vehicle was estimated using Chebychev polynomial. The main contributions of 

the chapter were in identifying new feature data like azimuth that can be used to detect lane 

changes. The turning movement prediction at intersections by using GPS can also be highlighted 

since most previous studies only estimate trajectory for road segments and not intersections. It 

also shows how traditional polynomial fitting algorithms can be used with machine learning 

methods. These types of systems can be especially useful for intersections in which there are a 

large volume of turning vehicles as well as pedestrians. Safety parameters like TTC, PET can be 
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calculated using the trajectories. This work also shows how smartphones can be used as OBUs 

for the vehicles that have no connectivity. Since the road to full connectivity and automation is 

quite some time away, a large number of vehicles can benefit from OBU emulators, such as 

smartphones. The market penetration rate will also be very high. Building on this study, future 

work can concentrate on including safety performance measure with trajectory prediction. 

In Chapter 4, transportation mode recognition was carried out. While this has been studied 

extensively recently, we have used variational autoencoder which has not been studied before to 

the best of the knowledge of the author. Variational autoencoder has been used as a data 

generation tool to upsample the minority class in the dataset since there can be a certain class(es) 

that are underrepresented in the dataset. SHL dataset has been used in this study which contains 

transportation mode data collected from smartphones. The data generated from variational 

autoencoder was compared to the real data. The statistical tests showed that the synthetic data 

was statistically similar to the real data. It was also trained on different learning algorithms to 

understand the performance on accuracy of classification. Hybrid data models were also 

experimented with and improvement in accuracy as high as 20% were obtained. The main 

contributions of this work could be attributed to the data generation of undersampled class using 

variational autoencoder. Usually, data generation schemes are of interest in the computer vision 

field, but this study shows that it can be used to replicate accelerometer and magnetometer data 

as well. 

Chapter 5 also uses variational autoencoder (VAE) for data augmentation purposes. Crash data 

was collected from MVDS sensors which are radar sensors on freeway. Usually, the ratio of 

crash to non-crash events is highly imbalanced as such it is not possible to train machine learning 

models with such data. The approach most research take is that they reduce the non-crash 
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samples to match the crash samples. Some studies use synthetic minority oversampling 

techniques as well. But in both cases, the entire non-crash sample is not used. Using variational 

autoencoder, we generate synthetic data from a handful of crash samples to match the non-crash 

samples. In this way, the entire real dataset is used to train the models. The mean, standard 

deviation, of the generated and real data were compared to show similarity between the two. The 

data distribution was also compared. The dataset was then evaluated on three crash prediction 

models such as logistic regression, support vector machine and artificial neural network. 

Specificity, sensitivity and AUC were measured. It was also compared to state- of-the-art 

minority sampling techniques like SMOTE and ADASYN and the results of the VAE model 

showed improvements in terms of the accuracy metrics. It was also compared do DCGAN and 

improved metrics were obtained. The insights obtained from the confusion matrix was also 

highlighted. VAEs can be used to generate samples from the latent space that represent 

conditions that the situation is favorable for a crash. Future studies can focus on using the 

synthetic dataset on complex and non-linear models. VAEs can be used in the pipeline that will 

aid in training more non-linear models. 

In Chapter 6, signal states were predicted based on detector data. Seventeen intersections from 

two corridors were used in this study. One of the corridors run adaptive signal control and the 

other run actuated signal control. The intersections were equipped with loop detectors and video 

cameras that reported sensor on and off states. These were processed to obtain volume, 

occupancy, etc. The signal timing data from controller was also collected. Cycle lengths and 

phase durations were calculated. Detector data can be used to predict the signal states up to six 

cycles in the future. Several learning algorithms like ensemble trees and deep reinforcement 

learning methods were investigated. CNN-LSTM showed the best results in terms of mean 
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absolute and root mean square error. Cycle length can be predicted with MAE as low as 6.06 

seconds and phase length can be predicted with MAE as low as 2.73 seconds. Signal phasing and 

timing prediction can be used for route planning and trajectory prediction. It would also solve the 

traditional signal retiming efforts at every intersection. A newly built signal or intersection can 

benefit from the signal timing prediction from another intersection with similar detector 

configuration. Knowing signal states of six cycles in the future would also aid in optimal velocity 

calculation and thereby reducing the carbon footprint. The predicted signal states can also aid in 

reducing the dilemma zone if it can be transferred to vehicles using OBUs or OBU-emulators. 

Pedestrian safety studies can also use predicted signal states to calculate potential conflicts. 

In conclusion, the efforts in this dissertation show the use of various learning algorithms in 

traffic engineering safety and mobility applications. Starting with trajectory prediction with 

smartphone OBU-emulator, data augmentation of smartphone data and crash data, and ending 

with signal states prediction display the use of trained algorithms in urban transportation 

systems. 
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