221 research outputs found

    Static analysis of energy consumption for LLVM IR programs

    Get PDF
    Energy models can be constructed by characterizing the energy consumed by executing each instruction in a processor's instruction set. This can be used to determine how much energy is required to execute a sequence of assembly instructions, without the need to instrument or measure hardware. However, statically analyzing low-level program structures is hard, and the gap between the high-level program structure and the low-level energy models needs to be bridged. We have developed techniques for performing a static analysis on the intermediate compiler representations of a program. Specifically, we target LLVM IR, a representation used by modern compilers, including Clang. Using these techniques we can automatically infer an estimate of the energy consumed when running a function under different platforms, using different compilers. One of the challenges in doing so is that of determining an energy cost of executing LLVM IR program segments, for which we have developed two different approaches. When this information is used in conjunction with our analysis, we are able to infer energy formulae that characterize the energy consumption for a particular program. This approach can be applied to any languages targeting the LLVM toolchain, including C and XC or architectures such as ARM Cortex-M or XMOS xCORE, with a focus towards embedded platforms. Our techniques are validated on these platforms by comparing the static analysis results to the physical measurements taken from the hardware. Static energy consumption estimation enables energy-aware software development, without requiring hardware knowledge

    Energy Transparency for Deeply Embedded Programs

    Get PDF
    Energy transparency is a concept that makes a program's energy consumption visible, from hardware up to software, through the different system layers. Such transparency can enable energy optimizations at each layer and between layers, and help both programmers and operating systems make energy-aware decisions. In this paper, we focus on deeply embedded devices, typically used for Internet of Things (IoT) applications, and demonstrate how to enable energy transparency through existing Static Resource Analysis (SRA) techniques and a new target-agnostic profiling technique, without hardware energy measurements. Our novel mapping technique enables software energy consumption estimations at a higher level than the Instruction Set Architecture (ISA), namely the LLVM Intermediate Representation (IR) level, and therefore introduces energy transparency directly to the LLVM optimizer. We apply our energy estimation techniques to a comprehensive set of benchmarks, including single- and also multi-threaded embedded programs from two commonly used concurrency patterns, task farms and pipelines. Using SRA, our LLVM IR results demonstrate a high accuracy with a deviation in the range of 1% from the ISA SRA. Our profiling technique captures the actual energy consumption at the LLVM IR level with an average error of 3%.Comment: 33 pages, 7 figures. arXiv admin note: substantial text overlap with arXiv:1510.0709

    Improving WCET Evaluation using Linear Relation Analysis

    Get PDF
    International audienceThe precision of a worst case execution time (WCET) evaluation tool on a given program is highly dependent on how the tool is able to detect and discard semantically infeasible executions of the program. In this paper, we propose to use the classical abstract interpretation-based method of linear relation analysis to discover and exploit relations between execution paths. For this purpose, we add auxiliary variables (counters) to the program to trace its execution paths. The results are easily incorporated in the classical workflow of a WCET evaluator, when the evaluator is based on the popular implicit path enumeration technique. We use existing tools-a WCET evaluator and a linear relation analyzer-to build and experiment a prototype implementation of this idea. * This work is supported by the French research fundation (ANR) as part of the W-SEPT project (ANR-12-INSE-0001

    WCET-aware prefetching of unlocked instruction caches: a technique for reconciling real-time guarantees and energy efficiency

    Get PDF
    Tese (doutorado) - Universidade Federal de Santa Catarina, Centro Tecnológico, Programa de Pós-Graduação em Engenharia de Automação e Sistemas, Florianópolis, 2015.A computação embarcada requer crescente vazão sob baixa potência. Ela requer um aumento de eficiência energética quando se executam programas de crescente complexidade. Muitos sistemas embarcados são também sistemas de tempo real, cuja correção temporal precisa ser garantida através de análise de escalonabilidade, a qual costuma assumir que o WCET de uma tarefa é conhecido em tempo de projeto. Como resultado da crescente complexidade do software, uma quantidade significativa de energia é gasta ao se prover instruções através da hierarquia de memória. Como a cache de instruções consome cerca de 40% da energia gasta em um processador embarcado e afeta a energia consumida em memória principal, ela se torna um relevante alvo para otimização. Entretanto, como ela afeta substancialmente o WCET, o comportamento da cache precisa ser restrito via  cache locking ou previsto via análise de WCET. Para obter eficiência energética sob restrições de tempo real, é preciso estender a consciência que o compilador tem da plataforma de hardware. Entretanto, compiladores para tempo real ignoram a energia, embora determinem rapidamente limites superiores para o WCET, enquanto compiladores para sistemas embarcados estimem com precisão a energia, mas gastem muito tempo em  profiling . Por isso, esta tese propõe um método unificado para estimar a energia gasta em memória, o qual é baseado em Interpretação Abstrata, exatamente o mesmo substrato matemático usado para a análise de WCET em caches. As estimativas mostram derivadas que são tão precisas quanto as obtidas via  profiling , mas são computadas 1000 vezes mais rápido, sendo apropriadas para induzir otimização de código através de melhoria iterativa. Como  cache locking troca eficiência energética por previsibilidade, esta tese propõe uma nova otimização de código, baseada em pré-carga por software, a qual reduz a taxa de faltas de caches de instruções e, provadamente, não aumenta o WCET. A otimização proposta é comparada com o estado-da-arte em  cache locking parcial para 37 programas do  Malardalen WCET benchmark para 36 configurações de cache e duas tecnologias distintas (2664 casos de uso). Em média, para obter uma melhoria de 68% no WCET,  cache locking parcial requer 8% mais energia. Por outro lado, a pré-carga por software diminui o consumo de energia em 11% enquanto melhora em 15% o WCET, reconciliando assim eficiência energética e garantias de tempo real.Abstract : Embedded computing requires increasing throughput at low power budgets. It asks for growing energy efficiency when executing programs of rising complexity. Many embedded systems are also real-time systems, whose temporal correctness is asserted through schedulability analysis, which often assumes that the WCET of each task is known at design-time. As a result of the growing software complexity, a significant amount of energy is spent in supplying instructions through the memory hierarchy. Since an instruction cache consumes around 40% of an embedded processor s energy and affects the energy spent in main memory, it becomes a relevant optimization target. However, since it largely impacts the WCET, cache behavior must be either constrained via cache locking or predicted by WCET analysis. To achieve energy efficiency under real-time constraints, a compiler must have extended awareness of the hardware platform. However, real-time compilers ignore energy, although they quickly determine bounds for WCET, whereas embedded compilers accurately estimate energy but require time-consuming profiling. That is why this thesis proposes a unifying method to estimate memory energy consumption that is based on Abstract Interpretation, the very same mathematical framework employed for the WCET analysis of caches. The estimates exhibit derivatives that are as accurate as those obtained by profiling, but are computed 1000 times faster, being suitable for driving code optimization through iterative improvement. Since cache locking gives up energy efficiency for predictability, this thesis proposes a novel code optimization, based on software prefetching, which reduces miss rate of unlocked instruction caches and, provenly, does not increase the WCET. The proposed optimization is compared with a state-of-the-art partial cache locking technique for the 37 programs of the Malardalen WCET benchmarks under 36 cache configurations and two distinct target technologies (2664 use cases). On average, to achieve an improvement of 68% in the WCET, partial cache locking required 8% more energy. On the other hand, software prefetching decreased the energy consumption by 11% while leading to an improvement of 15% in the WCET, thereby reconciling energy efficiency and real-time guarantees

    Analysing Switch-Case Code with Abstract Execution

    Get PDF
    Constructing the control-flow graph (CFG) of machine code is made difficult by dynamic transfers of control (DTC), where the address of the next instruction is computed at run-time. Switchcase statements make compilers generate a large variety of machine-code forms with DTC. Two analysis approaches are commonly used: pattern-matching methods identify predefined instruction patterns to extract the target addresses, while analytical methods try to compute the set of target addresses using a general value-analysis. We tested the abstract execution method of the SWEET tool as a value analysis for switch-case code. SWEET is here used as a plugin to the Bound-T tool: thus our work can also be seen as an experiment in modular tool design, where a general value-analysis tool is used to aid the CFG construction in a WCET analysis tool. We find that the abstract-execution analysis works at least as well as the switch-case analyses in Bound-T itself, which are mostly based on pattern-matching. However, there are still some weaknesses: the abstract domains available in SWEET are not well suited to representing sets of DTC target addresses, which are small but sparse and irregular. Also, in some cases the abstract-execution analysis fails because the used domain is not relational, that is, does not model arithmetic relationships between the values of different variables. Future work will be directed towards the design of abstract domains eliminating these weaknesses

    WCET-aware Software Based Cache Partitioning for Multi-Task Real-Time Systems

    Get PDF
    Caches are a source of unpredictability since it is very difficult to predict if a memory access results in a cache hit or miss. In systems running multiple tasks steered by a preempting scheduler, it is even impossible to determine the cache behavior since interrupt-driven schedulers lead to unknown points of time for context switches. Partitioned caches are already used in multi-task environments to increase the cache hit ratio by avoiding mutual eviction of tasks from the cache. For real-time systems, the upper bound of the execution time is one of the most important metrics, called the Worst-Case Execution Time (WCET). In this paper, we use partitioning of instruction caches as a technique to achieve tighter WCET estimations since tasks can not be evicted from their partition by other tasks. We propose a novel WCET-aware cache partitioning algorithm, which determines the optimal partition size for each task with focus on decreasing the system\u27s WCET for a given set of possible partition sizes. Employing this algorithm, we are able to decrease the WCET depending on the number of tasks in a set by up to 34%. On average, reductions between 12% and 19% can be achieved

    The WCET Tool Challenge 2011

    Get PDF
    Following the successful WCET Tool Challenges in 2006 and 2008, the third event in this series was organized in 2011, again with support from the ARTIST DESIGN Network of Excellence. Following the practice established in the previous Challenges, the WCET Tool Challenge 2011 (WCC'11) defined two kinds of problems to be solved by the Challenge participants with their tools, WCET problems, which ask for bounds on the execution time, and flow-analysis problems, which ask for bounds on the number of times certain parts of the code can be executed. The benchmarks to be used in WCC'11 were debie1, PapaBench, and an industrial-strength application from the automotive domain provided by Daimler AG. Two default execution platforms were suggested to the participants, the ARM7 as "simple target'' and the MPC5553/5554 as a "complex target,'' but participants were free to use other platforms as well. Ten tools participated in WCC'11: aiT, Astr\'ee, Bound-T, FORTAS, METAMOC, OTAWA, SWEET, TimeWeaver, TuBound and WCA

    WCET-Directed Dynamic Scratchpad Memory Allocation of Data

    Full text link
    Many embedded systems feature processors coupled with a small and fast scratchpad memory. To the difference with caches, allocation of data to scratchpad memory must be handled by software. The major gain is to enhance the pre-dictability of memory accesses latencies. A compile-time dy-namic allocation approach enables eviction and placement of data to the scratchpad memory at runtime. Previous dynamic scratchpad memory allocation ap-proaches aimed to reduce average-case program execution time or the energy consumption due to memory accesses. For real-time systems, worst-case execution time is the main metric to optimize. In this paper, we propose a WCET-directed algorithm to dynamically allocate static data and stack data of a pro-gram to scratchpad memory. The granularity of placement of memory transfers (e.g. on function, basic block bound-aries) is discussed from the perspective of its computation complexity and the quality of allocation. 1

    Automatic Safe Data Reuse Detection for the WCET Analysis of Systems With Data Caches

    Get PDF
    Worst-case execution time (WCET) analysis of systems with data caches is one of the key challenges in real-time systems. Caches exploit the inherent reuse properties of programs, temporarily storing certain memory contents near the processor, in order that further accesses to such contents do not require costly memory transfers. Current worst-case data cache analysis methods focus on specific cache organizations (LRU, locked, ACDC, etc.). In this article, we analyze data reuse (in the worst case) as a property of the program, and thus independent of the data cache. Our analysis method uses Abstract Interpretation on the compiled program to extract, for each static load/store instruction, a linear expression for the address pattern of its data accesses, according to the Loop Nest Data Reuse Theory. Each data access expression is compared to that of prior (dominant) memory instructions to verify whether it presents a guaranteed reuse. Our proposal manages references to scalars, arrays, and non-linear accesses, provides both temporal and spatial reuse information, and does not require the exploration of explicit data access sequences. As a proof of concept we analyze the TACLeBench benchmark suite, showing that most loads/stores present data reuse, and how compiler optimizations affect it. Using a simple hit/miss estimation on our reuse results, the time devoted to data accesses in the worst case is reduced to 27% compared to an always-miss system, equivalent to a data hit ratio of 81%. With compiler optimization, such time is reduced to 6.5%
    • …
    corecore