340 research outputs found

    Mobile Ad hoc Networking: Imperatives and Challenges

    Get PDF
    Mobile ad hoc networks (MANETs) represent complex distributed systems that comprise wireless mobile nodes that can freely and dynamically self-organize into arbitrary and temporary, "ad-hoc" network topologies, allowing people and devices to seamlessly internetwork in areas with no pre-existing communication infrastructure, e.g., disaster recovery environments. Ad hoc networking concept is not a new one, having been around in various forms for over 20 years. Traditionally, tactical networks have been the only communication networking application that followed the ad hoc paradigm. Recently, the introduction of new technologies such as the Bluetooth, IEEE 802.11 and Hyperlan are helping enable eventual commercial MANET deployments outside the military domain. These recent evolutions have been generating a renewed and growing interest in the research and development of MANET. This paper attempts to provide a comprehensive overview of this dynamic field. It first explains the important role that mobile ad hoc networks play in the evolution of future wireless technologies. Then, it reviews the latest research activities in these areas, including a summary of MANET\u27s characteristics, capabilities, applications, and design constraints. The paper concludes by presenting a set of challenges and problems requiring further research in the future

    Dynamic load balancing based on live migration of virtual machines: Security threats and effects

    Get PDF
    Live migration of virtual machines (VMs) is the process of transitioning a VM from one virtual machine monitor (VMM) to another without halting the guest operating system, often between distinct physical machines, has opened new opportunities in computing. It allows a clean separation between hardware and software, and facilitates fault management, load balancing, and low-level system maintenance. Implemented by several existing virtualization products, live migration also aids in aspects such as high availability services, transparent mobility and consolidated management. While virtualization and live migration enable important new functionality, the combination introduces novel security challenges. A virtual machine monitor that incorporates a vulnerable implementation of live migration functionality may expose both the guest and host operating system to attack and result in a compromise of integrity. Given the large and increasing market for virtualization technology, a comprehensive understanding of virtual machine migration security is essential. So the main idea behind this thesis is to create a test environment that is suitable for experimenting and analyzing the security implications in case of exploitation of Live Migration of Virtual Machines. Using Live VM migration for dynamic load balancing or scheduling, this study determines workload hotspots in physical environment and through use of effective Live Migration process; tries to carry out resource profiling. By carrying out effective profiling, this thesis research is able to determine how much of each resource needs to be allocated to a VM. To understand exactly why process migration would not work in such scenarios and better understand Live VM Migration, this thesis tries to provide requisite incites as to which model is most appropriate for automatic load balancing for virtual machine infrastructure based on resource consumption. The security implications of exploiting the process of migration may end in unexpected results or results that are not noticeable. The scope of this thesis research is identifying these results and the causes for them

    Forwarding anomalies in Bloom filter-based multicast

    Get PDF
    Abstract-Several recently proposed multicast protocols use inpacket Bloom filters to encode multicast trees. These mechanisms are in principle highly scalable because no per-flow state is required in the routers and because routing decisions can be made efficiently by simply checking for the presence of outbound links in the filter. Yet, the viability of previous approaches is limited by the possibility of forwarding anomalies caused by false positives inherent in Bloom filters. This paper explores such anomalies, namely (1) packets storms, (2) forwarding loops and (3) flow duplication. We propose stateless solutions that increase the robustness and the scalability of Bloom filter-based multicast protocols. In particular, we show that the parameters of the filter need to be varied to guarantee the stability of the packet forwarding, and we present a bit permutation technique that effectively prevents both accidental and maliciously created anomalies. We evaluate our solutions in the context of BloomCast, a source-specific inter-domain multicast protocol, using analytical methods and simulations

    BloomCasting for publish/subscribe networks

    Get PDF
    Publish/subscribe has been proposed as a way of addressing information as the primary named entity in the network. In this thesis, we develop and explore a network architecture based on publish/subscribe primitives, based on our work on PSIRP project. Our work is divided into two areas: rendezvous and Bloomcasting, i.e. fast Bloom filter-based forwarding architecture for source-specific multicast. Taken together these are combined as a publish/subscribe architecture, where publisher and subscriber matching is done by the rendezvous and Bloom filter-based forwarding fabric is used for multicasting the published content. Our work on the inter-domain rendezvous shows that a combination of policy routing at edges and an overlay based on hierarchical distributed hash tables can overcome problems related to incremental deployment while keeping the stretch of queries small and that it can solve some policy related problems that arise from using distributed hash tables in inter-domain setting. Bloom filters can cause false positives. We show that false positives can cause network anomalies, when Bloom filters are used for packet forwarding. We found three such anomalies: packet storms, packet loops, and flow duplication. They can severely disrupt the network infrastructure and be used for denial-of-service attacks against the network or target services. These security and reliability problems can be solved by using the combination of three techniques. Cryptographically computed edge pair-labels ensure that an attacker cannot construct Bloom filter-based path identifiers for chosen path. Varying the Bloom filter parameters locally at each router prevents packet storms and using bit permutations on the Bloom filter locally at each router prevent accidental and malicious loops and flow duplications.Yksi Internetin puutteista on se, ettei ole mitään kaikille sovelluksille yhteistä tapaa nimetä informaatiota. Julkaisija/tilaaja-malli on yksi ehdotus, jolla Internet-arkkitehtuuria voisi muuttaa tämän puutteen korvaamiseksi. Väitöskirjassani kehitän julkaisija/tilaaja-malliin pohjautuvan verkkoarkkitehtuurin, joka pohjautuu työlleni PSRIP-projektissa. Arkkitehtuuri koostuu kohtaamisjärjestelmästä, joka yhdistää julkaisijat ja tilaajat, ja Bloom-suodattimiin pohjautuvasta monen vastaanottajan viestintäkanavasta, jolla julkaistu sisältö toimitetaan tilaajille. Internetin kattavalla kohtaamisjärjestelmällä on korkeat vaatimukset. Tutkin kahta erilaista menetelmää: paikallisiin reitityspolitiikoihin pohjautuvaa järjestelmää ja toinen hajautettuihin hajautustauluihin pohjautuvaa järjestelmää. Ensimmäisen haasteena on skaalautuvuus erityisesti silloin, kun kaikki Internetin verkot eivät osallistu järjestelmän ylläpitoon. Jälkimmäinen on ongelmallinen, sillä siihen pohjautuvat järjestelmät eivät voi taata, mitä reittiä julkaisu ja tilaus -viestit kulkevat järjestelmässä. Näin viesti saattaa kulkea myös julkaisijan tai tilaajan kilpailijan verkon kautta. Ehdotan väitöskirjassani menetelmää, joka yhdistää reunoilla politiikkaan pohjautuvan julkaisu/tilaaja reitityksen ja verkon keskellä yhdistää nämä erilliset saarekkeet hierarkista hajautettua hajautustaulua hyödyntäen. Julkaisujen toimittamiseen tilaajille käytän Bloom-suodattimiin pohjautuvaa järjestelmää. Osoitan väitöskirjassani, että Bloom-suodattimien käyttö pakettien reitittämiseen voi aiheuttaa verkossa merkittäviä vikatilanteita, esimerkiksi pakettiräjähdyksen, silmukan, tai samaan vuohon kuuluvien pakettien moninkertaistumisen. Nämä ongelmat aiheuttavat verkolle turvallisuus- ja luotettavuusongelmia, jotka voidaan ratkaista kolmen tekniikan yhdistelmällä. Ensinnäkin, Bloom-suodattimiin laitettavat polun osia merkitsevät nimet lasketaan kryptografiaa hyödyntäen, ettei hyökkääjä kykene laskemaan Bloom-suodatinta haluamalleen polulle ilman verkon apua. Toisekseen, reitittimet määrittävät Bloom suodatinparametrit paikallisesti siten, ettei pakkettiräjähdyksiä tapahdu. Kolmannekseen, kukin reititin uudelleen järjestelee Bloom-suodattimen bitit varmistaen, ettei suodatin ole enää sama, jos paketti kulkee esimerkiksi silmukan läpi ja palaa samalle takaisin samalle reitittimelle.

    Evaluation of on-demand routing in mobile ad hoc networks and proposal for a secure routing protocol

    Get PDF
    Secure routing Mobile Ad hoc Networks (MANETs) has emerged as an important MANET research area. Initial work in MANET focused mainly on the problem of providing efficient mechanisms for finding paths in very dynamic networks, without considering the security of the routing process. Because of this, a number of attacks exploit these routing vulnerabilities to manipulate MANETs. In this thesis, we performed an in-depth evaluation and performance analysis of existing MANET Routing protocols, identifying Dynamic Source Routing (DSR) as the most robust (based on throughput, latency and routing overhead) which can be secured with negligible routing efficiency trade-off. We describe security threats, specifically showing their effects on DSR. We proposed a new routing protocol, named Authenticated Source Routing for Ad hoc Networks (ASRAN) which is an out-of-band certification-based, authenticated source routing protocol with modifications to the route acquisition process of DSR to defeat all identified attacks. Simulation studies confirm that ASRAN has a good trade-off balance in reference to the addition of security and routing efficiency

    A multifold approach to address the security issues of stateful forwarding mechanisms in Information-Centric Networks.

    Get PDF
    Today's Internet dominant usage trends motivate research on more content-oriented future network architectures. Among the emerging future Internet proposals, the promising Information-Centric Networking (ICN) research paradigm aims to redesign the Internet's core protocols to promote a shift in focus from hosts to contents. Among the ICN architectures, the Named-Data Networking (NDN) envisions users' named content requests to be forwarded and recorded by their names in routers along the path from one consumer to 1-or-many sources. The Pending Interest Table (PIT) is the NDN's data-plane component which temporarily records forwarded content requests in routers. On one hand, the PIT stateful mechanism enables properties like requests aggregation, multicast responses delivery and native hop-by-hop control flow. On the other hand, the PIT stateful forwarding behavior can be easily abused by malicious users to mount disruptive distributed denial of service attacks (DDoS), named Interest Flooding Attacks (IFAs). In IFAs, loosely coordinated botnets flood the network with a large amount of hard to satisfy requests with the aim to overload both the network infrastructure and the content producers. Countermeasures against IFA have been proposed since the early attack discovery. However, a fair understanding of the defense mechanisms' real efficacy is missing since those have been tested under simplistic assumptions about the evaluation scenarios. Thus, overall, the IFA security threat still appears easy to launch but hard to mitigate. This dissertation work shapes a better understanding of both the implications of IFAs and the possibilities of improving the state-of-the-art defense mechanisms against these attacks. The contributions of this work include the definition of a more complete and realistic attacker model for IFAs, the design of novel stealthy IFAs built upon the proposed attacker model, a re-assessment of the most-efficient state-of-the-art IFA countermeasures against the novel proposed attacks, the theorization and one concrete design of a novel class of IFA countermeasures to efficiently address the novel stealthy IFAs. Finally, this work also seminally proposes to leverage the latest programmable data-plane technologies to design and test alternative forwarding mechanisms for the NDN which could be less vulnerable to the IFA threat

    Study of BGP Convergence Time

    Get PDF
    Border Gateway Protocol (BGP), a path vector routing protocol, is a widespread exterior gateway protocol (EGP) in the internet. Extensive deployment of the new technologies in internet, protocols need to have continuous improvements in its behavior and operations. New routing technologies conserve a top level of service availability. Hence, due to topological changes, BGP needs to achieve a fast network convergence. Now a days size of the network growing very rapidly. To maintain the high scalability in the network BGP needs to avoid instability. The instability and failures may cause the network into an unstable state, which significantly increases the network convergence time. This paper summarizes the various approaches like BGP policies, instability, and fault detection etc. to improve the convergence time of BGP

    Information-centric communication in mobile and wireless networks

    Get PDF
    Information-centric networking (ICN) is a new communication paradigm that has been proposed to cope with drawbacks of host-based communication protocols, namely scalability and security. In this thesis, we base our work on Named Data Networking (NDN), which is a popular ICN architecture, and investigate NDN in the context of wireless and mobile ad hoc networks. In a first part, we focus on NDN efficiency (and potential improvements) in wireless environments by investigating NDN in wireless one-hop communication, i.e., without any routing protocols. A basic requirement to initiate informationcentric communication is the knowledge of existing and available content names. Therefore, we develop three opportunistic content discovery algorithms and evaluate them in diverse scenarios for different node densities and content distributions. After content names are known, requesters can retrieve content opportunistically from any neighbor node that provides the content. However, in case of short contact times to content sources, content retrieval may be disrupted. Therefore, we develop a requester application that keeps meta information of disrupted content retrievals and enables resume operations when a new content source has been found. Besides message efficiency, we also evaluate power consumption of information-centric broadcast and unicast communication. Based on our findings, we develop two mechanisms to increase efficiency of information-centric wireless one-hop communication. The first approach called Dynamic Unicast (DU) avoids broadcast communication whenever possible since broadcast transmissions result in more duplicate Data transmissions, lower data rates and higher energy consumption on mobile nodes, which are not interested in overheard Data, compared to unicast communication. Hence, DU uses broadcast communication only until a content source has been found and then retrieves content directly via unicast from the same source. The second approach called RC-NDN targets efficiency of wireless broadcast communication by reducing the number of duplicate Data transmissions. In particular, RC-NDN is a Data encoding scheme for content sources that increases diversity in wireless broadcast transmissions such that multiple concurrent requesters can profit from each others’ (overheard) message transmissions. If requesters and content sources are not in one-hop distance to each other, requests need to be forwarded via multi-hop routing. Therefore, in a second part of this thesis, we investigate information-centric wireless multi-hop communication. First, we consider multi-hop broadcast communication in the context of rather static community networks. We introduce the concept of preferred forwarders, which relay Interest messages slightly faster than non-preferred forwarders to reduce redundant duplicate message transmissions. While this approach works well in static networks, the performance may degrade in mobile networks if preferred forwarders may regularly move away. Thus, to enable routing in mobile ad hoc networks, we extend DU for multi-hop communication. Compared to one-hop communication, multi-hop DU requires efficient path update mechanisms (since multi-hop paths may expire quickly) and new forwarding strategies to maintain NDN benefits (request aggregation and caching) such that only a few messages need to be transmitted over the entire end-to-end path even in case of multiple concurrent requesters. To perform quick retransmission in case of collisions or other transmission errors, we implement and evaluate retransmission timers from related work and compare them to CCNTimer, which is a new algorithm that enables shorter content retrieval times in information-centric wireless multi-hop communication. Yet, in case of intermittent connectivity between requesters and content sources, multi-hop routing protocols may not work because they require continuous end-to-end paths. Therefore, we present agent-based content retrieval (ACR) for delay-tolerant networks. In ACR, requester nodes can delegate content retrieval to mobile agent nodes, which move closer to content sources, can retrieve content and return it to requesters. Thus, ACR exploits the mobility of agent nodes to retrieve content from remote locations. To enable delay-tolerant communication via agents, retrieved content needs to be stored persistently such that requesters can verify its authenticity via original publisher signatures. To achieve this, we develop a persistent caching concept that maintains received popular content in repositories and deletes unpopular content if free space is required. Since our persistent caching concept can complement regular short-term caching in the content store, it can also be used for network caching to store popular delay-tolerant content at edge routers (to reduce network traffic and improve network performance) while real-time traffic can still be maintained and served from the content store
    corecore