7 research outputs found

    Adaptive flocking of multi-agent systems with locally Lipschitz nonlinearity

    Get PDF
    This paper investigates adaptive flocking of multi-agent systems (MASs) with a virtual leader. All agents and the virtual leader share the same intrinsic nonlinear dynamics, which satisfies a locally Lipschitz condition and depends on both position and velocity information of the agent itself. Under the assumption that the initial network is connected, an approach to preserving the connectivity of the network is proposed. Based on the Lyapunov stability theory, an adaptive flocking control law is derived to make the MASs track the virtual leader without collision. Finally, a numerical example is presented to illustrate the effectiveness of the theoretical results. © 2012 Chinese Assoc of Automati.published_or_final_versio

    Adaptive rendezvous of multiple mobile agents with nonlinear dynamics and preserved network connectivity

    Get PDF
    This paper investigates rendezvous of multiple nonlinear dynamical mobile agents with a virtual leader in a dynamic proximity network. It is assumed that only a fraction of agents in the group have access to the information on the position and velocity of the virtual leader. To avoid fragmentation, a bounded connectivity-preserving rendezvous algorithm is proposed for the multi-agent systems. Under the assumption that the initial network is connected, local adaptation strategies for the rendezvous algorithm are introduced that enable all agents to synchronize with the virtual leader even when only one agent is informed, without requiring any knowledge of the agent dynamics. Simulation results on an example are given to numerically verify the theoretical results. © 2011 Asian Control Association.published_or_final_versio

    Wireless extension to the existing SystemC design methodology

    Get PDF
    This research uses a SystemC design methodology to model and design complex wireless communication systems, because in the recent years, the complexity of wireless communication systems has increased and the modelling and design of such systems has become inefficient and challenging. The most important aspect of modelling wireless communication systems is that system design choices may affect the communication behaviour and also communication design choices may impact on the system design. Whilst, the SystemC modelling language shows great promise in the modelling of complex hardware/software systems, it still lacks a standard framework that supports modelling of wireless communication systems (particularly the use of wireless communication channels). SystemC lacks elements and components that can be used to express and simulate wireless systems. It does not support noise links natively. To fill this gap, this research proposes to extend the existing SystemC design methodology to include an efficient simulation of wireless systems. It proposes to achieve this by employing a system-level model of a noisy wireless communication channel, along with a small repertoire of standard components (which of course can be replaced on a per application basis). Finally, to validate our developed methodology, a flocking behaviour system is selected as a demonstration (case study). This is a very complex system modelled based on the developed methodology and partitioned along different parameters. By applying our developed methodology to model this system as a case study, we can prove that incorporating and fixing the wireless channel, wireless protocol, noise or all of these elements early in the design methodology is very advantageous. The modelled system is introduced to simulate the behaviour of the particles (mobile units) that form a mobile ad-hoc communication network. Wireless communication between particles is addressed with two scenarios: the first is created using a wireless channel model to link each pair of particles, which means the wireless communication between particles is addressed using a Point-to-Point (P2P) channel; the other scenario is created using a shared channel (broadcast link). Therefore, incorporating wireless features into existing SystemC design methodology, as done in this research, is a very important task, because by developing SystemC as a design tool to support wireless systems, hardware aspects, software parts and communication can be modelled, refined and validated simultaneously on the same platform, and the design space expanded into a two-dimensional design space comprising system and communication

    Development of Path Following and Cooperative Motion Control Algorithms for Autonomous Underwater Vehicles

    Get PDF
    Research on autonomous underwater vehicle (AUV) is motivating and challenging owing to their specific applications such as defence, mine counter measure, pipeline inspections, risky missions e.g. oceanographic observations, bathymetric surveys, ocean floor analysis, military uses, and recovery of lost man-made objects. Motion control of AUVs is concerned with navigation, path following and co-operative motion control problems. A number of control complexities are encountered in AUV motion control such as nonlinearities in mass matrix, hydrodynamic terms and ocean currents. These pose challenges to develop efficient control algorithms such that the accurate path following task and effective group co-ordination can be achieved in face of parametric uncertainties and disturbances and communication constraints in acoustic medium. This thesis first proposes development of a number of path following control laws and new co-operative motion control algorithms for achieving successful motion control objectives. These algorithms are potential function based proportional derivative path following control laws, adaptive trajectory based formation control, formation control of multiple AUVs steering towards a safety region, mathematical potential function based flocking control and fuzzy potential function based flocking control. Development of a path following control algorithm aims at generating appropriate control law, such that an AUV tracks a predefined desired path. In this thesis first path following control laws are developed for an underactuated (the number of inputs are lesser than the degrees of freedom) AUV. A potential function based proportional derivative (PFPD) control law is derived to govern the motion of the AUV in an obstacle-rich environment (environment populated by obstacles). For obstacle avoidance, a mathematical potential function is exploited, which provides a repulsive force between the AUV and the solid obstacles intersecting the desired path. Simulations were carried out considering a special type of AUV i.e. Omni Directional Intelligent Navigator (ODIN) to study the efficacy of the developed PFPD controller. For achieving more accuracy in the path following performance, a new controller (potential function based augmented proportional derivative, PFAPD) has been designed by the mass matrix augmentation with PFPD control law. Simulations were made and the results obtained with PFAPD controller are compared with that of PFPD controlle
    corecore