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Abstract: This paper investigates adaptive flocking of multi-agent systems (MASs) with a virtual leader. All agents and the
virtual leader share the same intrinsic nonlinear dynamics, which satisfies a locally Lipschitz condition and depends on both
position and velocity information of the agent itself. Under the assumption that the initial network is connected, an approach to
preserving the connectivity of the network is proposed. Based on the Lyapunov stability theory, an adaptive flocking control law
is derived to make the MASs track the virtual leader without collision. Finally, a numerical example is presented to illustrate the
effectiveness of the theoretical results.
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1 Introduction

Recently, a greater emphasis has been placed on the study

of multi-agent systems in a range of fields, such as physics,

biology, computer science and control engineering [1, 2].

Flocking phenomenon is that a group of agents move to a

coordinated state with only limited information of environ-

ment, and in nature, it exists in many forms like flocking of

birds, swarming of insects, and schooling of fish [3, 4]. The

research on flocking problems of multi-agent systems has

essential realistic significance because there are many such

systems in nature and the characteristics of these systems

can be utilized in cooperative control of cyber-physical sys-

tems, such as unmanned air vehicles (UAVs), multi-robots

and satellites [5–14].

There are a large number of previous works concentrat-

ing on the flocking or consensus problem of systems con-

sisting of agents governed by double-integrator dynamics.

However, more and more works turn to study the flocking

of multiple agents governed by nonlinear dynamics, because

this situation is more realistic. In [15], a flocking algorithm

for multi-agent systems with fixed topologies and nonlinear

dynamics based on pseudo-leader mechanism is proposed.

In a recent paper [16], a flocking problem of multiple agents

governed by nonlinear dynamics with a virtual leader is in-

vestigated, and an adaptive flocking algorithm is proposed.

Under the assumption that the initial network is connected,

all the agents in the multi-agent system can asymptotically

synchronize with the virtual leader. In some existing works,

such as [15, 16], the second-order systems with nonlinear in-

trinsic dynamics only depending on velocity information of

the agent are investigated. In [15–17], a globally Lipschitz-
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like condition is used to explore the flocking problem, while

in the second-order consensus problem [18, 19], such condi-

tion is also used.

However, the nonlinear intrinsic dynamics of a system de-

pending on both position and velocity information is more

rational in reality. For the generality of systems, in this pa-

per, a system consisting of agents whose dynamics depends

on both position and velocity information is taken into con-

sideration. Moreover, many nonlinear systems cannot satisfy

the globally Lipschitz-like condition, and they are only lo-

cally Lipschitz, such as the Lorenz system and Chen system.

In our work, a locally Lipschitz condition is presented for

multi-agent systems with locally Lipschitz nonlinearity. And

then, an adaptive flocking algorithm is proposed to achieve

the control objective without any information of the agents

dynamics.

The organization of the remainder of this paper is as fol-

lows. Section 2 describes some preliminaries and a second-

order flocking problem with locally Lipschitz condition to

be solved in this paper. Section 3 states the main results on

the problem. Section 4 presents a numerical example on the

performance of the proposed flocking algorithms. Section 5

draws conclusions to the paper.

2 Preliminaries and problem statement

Consider a multi-agent system with N agents, labeled as

1, · · · , N . The dynamics of each agent is characterized by

q̇i = pi
ṗi = f(pi, qi) + ui, i = 1, · · · , N (1)

where qi ∈ �n, pi ∈ �n are the position vector and the

velocity vector of the ith agent, respectively, f(qi, pi) =
(f1(qi, pi), f2(qi, pi), ..., fn(qi, pi))

T ∈ �n is the ith agents

intrinsic nonlinear dynamics, and ui ∈ �n is the control in-

put.

A virtual leader has been taken into consideration in our
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approach, and its dynamics is characterized by

q̇r = pr,
ṗr = f(qr, pr),

(2)

where qr, pr ∈ �n are respectively the leader’s position and

velocity vector. An assumption has been made in this paper

that the virtual leader and the agents have the same intrinsic

dynamics.

Remark 1 It should be noted that we choose the dynamics

in the form of f(qi, pi) instead of f(pi) selected in some ex-

isting papers, and obviously, it is more general and rational.

In this flocking problem of multi-agent systems, the aims

of designing the control law are stated as follows:

i) lim
t→∞ ‖pi(t)− pr(t)‖ = 0 for any i = 1, 2, ..., N ,

ii) The distance between any two agents is stabilized

asymptotically,

iii) There is no collision among the systems.

Assumption 1 The nonlinear function f in system (1) is

locally Lipschitz, that is, for any compact set S ∈ �Nn,

there exist a positive constant matrix B(S,N(0)) whose el-

ements depend on the space and the initial network N(0),
and a constant δ(S) > 0 whose value depend on the space

S, such that

ỹT f̃(x, y) ≤ ỹT (B(S,N(0))⊗ In)x̃+ δ(S)‖ỹ‖2,
∀x̃ = x− xr, ỹ = y − yr ∈ S, (3)

where f̃(x, y) = f(x, y) − f(xr, yr) and B(S,N(0)) is a

N ×N matrix whose element bij satisfies that when i �= j,

bij < 0 if there is an edge between agent i and agent j in the

initial network, while bij = 0 otherwise. bii = −
N∑

j=1,j �=i

bij .

Remark 2 The local Lipschitz condition is weaker than

that global Lipschitz condition. However, for some specific

systems, the global Lipschitz condition may not hold. It is

clear that if the Jacobian matrix of f(x, y) is continuous for

any x ∈ �Nn, y ∈ �Nn, f(x, y) is at least locally Lipschitz.

Accordingly, the local Lipschitz condition is more reason-

able.

Assumption 2 The virtual leader’s signal (qr, pr) is

bounded, that is, there exists a compact set S = S(qr(0),
pr(0)) ⊂ �n × �n, such that the trajectory of system (2)

starting from (qr(0), pr(0)) is always in the set S.

In this paper, it is supposed that only a small fraction of the

agents can receive information from the virtual leader, ow-

ing to which, certain network connectivity-preserving rules

are required to guarantee the convergence of the coordinated

motion. Assume that the connectivity of the network can

be always maintained and all agents have the same sensing

radius R > 0. Let ε ∈ (0, R] be a given constant. Let

G(t) = (V,E(t)) denote an undirected dynamic graph con-

sisting of a set of vertices V = {1, 2, ..., N} whose elements

represent agents in the group, and a time-varying set of edges

E(t) = {(i, j) : i, j ∈ V }, containing unordered pairs of

vertices that represent neighboring relations among agents.

The connectivity-

preserving rules of the network is described as follows [20]:

i) Initial edges are generated by

E(0) = {(i, j) : ‖qi(0)− qj(0)‖ < r, i, j ∈ V };

ii) ϕ(i, j)(t) represents whether there is an edge between

agent i and j, and

ϕ(i, j)(t) =⎧⎪⎪⎨
⎪⎪⎩

0,

{
if((ϕ(i, j)(t−) = 0 ∩ ‖qi(t)− qj(t)‖) ≥ R− ε)
∪ ((ϕ(i, j)(t−) = 1 ∩ ‖qi(t)− qj(t)‖) ≥ R),

1,

{
if((ϕ(i, j)(t−) = 1 ∩ ‖qi(t)− qj(t)‖) < R)
∪ ((ϕ(i, j)(t−) = 0 ∩ ‖qi(t)− qj(t)‖) < R− ε);

iii) r < R.

In this paper, we choose ε = R. The definition of adja-

cency matrix of system (1) on graph G(t) is

A(t) = (aij(t)),

where aij(t) =

{
1, if (i, j) ∈ E(t),
0, otherwise.

Then the corresponding Laplacian matrix is

L(t) = D(A(t)) − A(t), where D(A(t)) =
diag(d1(t), d2(t), ..., dN (t)) is the degree matrix with

di(t) =
∑N

j=1,j �=i aij(t). The eigenvalues of L(t) are

depicted by λ1(L(t)), λ2(L(t)), · · · ,
λN (L(t)), satisfying λ1(L(t)) ≤ λ2(L(t)) ≤ · · · ≤
λN (L(t)). H = diag(h1, h2, ..., hN ) is the matrix which

describes the connectivity of every agent and the virtual

leader, where hi > 0 if the ith agent can get the information

of virtual leader and hi = 0 otherwise.

Lemma 1[21] If L is the symmetric Laplacian matrix

of a connected undirected graph G, and the matrix E =
diag(e1, e2, ..., en) with ei ≥ 0 for i = 1, 2, ..., n, and at

least one element in E is positive, then L+ E > 0 .

Lemma 2[16] If G1 is a connected undirected graph and

G2 is a graph generated by adding some edge(s) into the

graph G1, then λ1(L2 + E) ≥ λ1(L1 + E) > 0, where

E = diag(e, 0, · · · , 0) with e > 0, and L1 and L2 are the

symmetric Laplacians of graphs G1 and G2, respectively.

3 Main results

In this paper, the potential function Ψ(‖qi − qj‖) is pro-

posed as a nonnegative function of the distance between

agent i and agent j represented by ‖qi − qj‖ , which is dif-

ferentiable with respect to ‖qi − qj‖ ∈ (0, R), such that

i) Ψ(‖qi − qj‖) → +∞ as ‖qi − qj‖ → 0,

ii) Ψ(‖qi − qj‖) achieves its unique minimum when

‖qi − qj‖ comes to a desired distance,

iii) Ψ(‖qi − qj‖) → +∞ as ‖qi − qj‖ → R.

One example of such a potential function is the following

Ψ(‖qi − qj‖)

=

⎧⎨
⎩

+∞, ‖qi − qj‖ = 0,
R

‖qi−qj‖(R−‖qi−qj‖) , ‖qi − qj‖ ∈ (0, R) ,

+∞, ‖qi − qj‖ = R.

Let

d0 =
1

2

N∑
i=1

N∑
j∈Ni(0)

Ψ(‖qi(0)− qj(0)‖),

d̃0 =
1

2

N∑
i=1

‖pr(0)− pi(0)‖2,

and a space is formed:

S(d0, d̃0, qr, pr)
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=

⎧⎨
⎩q, p ∈ �nN |1

2

N∑
i=1

N∑
j∈Ni(t)

Ψ(‖qi − qj‖)

+
1

2

N∑
i=1

‖qr − qi‖2 ≤ σ1d0 + σ2d̃0

}
,

where q = (qT1 , q
T
2 , ..., q

T
N )T , p = (pT1 , p

T
2 , ..., p

T
N )T ,

and σ1, σ2 are scalars to be chosen later. Then,

the local Lipschitz condition is that there exists con-

stant matrix B(S,G(0)) whose elements depend on

both the space S and the initial network G(0) and

constant δ(S) > 0 depending on the space S, such

that, for any q̃ = qi − qr ∈ S(d0, d̃0, qr, pr), and

p̃ = pi − pr ∈ S(d0, d̃0, qr, pr), p̃
T (f̃(q, p)) ≤

p̃T (B(S,G(0)) ⊗ In)q̃ + δ(S)‖p̃‖2, where

f̃(q, p) = f(q, p) − f(qr, pr), B(S,G(0)) is a

N × N matrix whose element bij satisfies that when

i �= j, bij

{
< 0, if (i, j) ∈ E(0),
= 0, otherwise,

while

bii = −
N∑

j=1,j �=i

bij .

The control law is specified as:

ui = −
∑

j∈Ni(t)

∇qiΨ(‖qi − qj‖)−
∑

j∈Ni(t)

mij(qi − qj)

−
∑

j∈Ni(t)

m̃ij(pi − pj)− hici(qi − qr)

−hic̃i(pi − pr),

ṁij = kij(pi − pj)
T (qi − qj),

˙̃mij = k̃ij(pi − pj)
T (pi − pj),

ċi = wi(pi − pr)
T (qi − qr),

˙̃ci = w̃i(pi − pr)
T (pi − pr), (4)

where Ni(t) is the set of agents that can connect with agent

i at time t, mij > 0, m̃ij > 0 respectively represent the

position and velocity coupling strengths satisfying mij =
mji, m̃ij = m̃ji, and ci, c̃i are the position and velocity

navigation feedback weights respectively. Suppose that there

is only a small fraction of agents can get the information of

the virtual leader, and hi = 1 if the ith agent is informed,

while hi = 0 otherwise.

An energy function V (t) is proposed to demonstrate the

flocking results:

V (q, p, qr, pr,m, m̃, c, c̃)

=
1

2

N∑
i=1

∑
j∈Ni(t)

Ψ(‖qi − qj‖) + 1

2

N∑
i=1

(pi − pr)
T
(pi − pr)

+
1

2

N∑
i=1

∑
j∈Ni(t)

(mij − θij)
2

2kij
+

1

2

N∑
i=1

∑
j∈Ni(t)

(m̃ij − θ̃)
2

2k̃ij

+
1

2

N∑
i=1

hi

(
ci −

∑
j∈Ni(t)

θij

)2

ki
+

1

2

N∑
i=1

hi
(c̃i − θ̃)

2

k̃i
, (5)

where, θij is the element of N ×N matrix Θ,which satisfies

that when i �= j, θij = θji

{
> 0, if (i, j) ∈ E(0),
= 0, otherwise,

and θii = 0, L(Θ) = D(Θ) − Θ, where D(Θ) =
diag(D1, D2,

..., DN ) with Di =
N∑

j=1,j �=i

θij , and L(Θ) + HD(Θ) =

B(S,G(0)).
Theorem 1
Consider a system of N agents with dynamics (1) and a

virtual leader with dynamics (2), and the controller (4) is

applied. Suppose that Assumption 1 and 2 hold, and the

initial network G(0) is connected.

i) G(t) will not change for all t ≥ 0;

ii) For all t ∈ [0,+∞), the combined trajectories of the

agents and the control parameters (q, p,m, m̃, c, c̃) in

(1), (2) and (4) belong to a compact hyper-ellipsoid

Ω(σ1d0, σ2d̃0, θ, θ̃, pr, qr) =

{(q, p,m, m̃, c, c̃) ∈ �Nn ×�Nn ×�NN ×�NN

×�N ×�N |V < σ1d0 + σ2d̃0}, (6)

where σ1 and σ2 are scalars satisfying σ1 > 1, σ2 > 1, if the

initial value is selected from

Ω0(σ1d0, σ2d̃0, θ, θ̃, pr, qr) =

{(q, p,m, m̃, c, c̃) ∈ �Nn ×�Nn ×�NN ×�NN

×�N ×�N |V (0) < σ1d0 + σ2d̃0}. (7)

Proof
Let qir = qi−qr, pir = pi−pr, qij = qi−qj = qir−qjr,

pij = pi − pj = pir − pjr. Then (4) can be rewritten as

ui = −
∑

j∈Ni(t)

∇qirΨ(‖qij‖)−
∑

j∈Ni(t)

mij(qir − qjr)

−
∑

j∈Ni(t)

m̃ij(pir − pjr)− hiciqir − hic̃ipir,

ṁij = kij(pir − pjr)
T (qir − qjr),

˙̃mij = k̃ij(pir − pjr)
T (pir − pjr),

ċi = wipir
T qir,

˙̃ci = w̃ipir
T pir. (8)

Then, the energy function (5) can be rewritten as

V (q, p, qr, pr,m, m̃, c, c̃)

=
1

2

N∑
i=1

∑
j∈Ni(t)

Ψ(‖qij‖) + 1

2

N∑
i=1

pTirpir

+
1

2

N∑
i=1

∑
j∈Ni(t)

(mij − θij)
2

2kij
+

1

2

N∑
i=1

∑
j∈Ni(t)

(m̃ij − θ̃)
2

2k̃ij

+
1

2

N∑
i=1

hi

(
ci −

∑
j∈Ni(t)

θij

)2

wi
+

1

2

N∑
i=1

hi
(c̃i − θ̃)

2

w̃i
. (9)

Suppose that the graph G(t) switches at time tk(k =
1, 2, . . .) which means that G(t) is a fixed graph in each
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time-interval [tk−1, tk). Note that V (0) is finite and time

derivative of V (t) in [t0, t1) is shown as follows

V̇ =
N∑
i=1

pTir
∑

j∈N(t)

∇qirΨ(‖qij‖)

+
N∑
i=1

pTir(f(qi, pj)− f(qr, pr))

−
N∑
i=1

pTir
∑

j∈Ni(t)

∇qirΨ(‖qij‖)

−
N∑
i=1

pTir
∑

j∈Ni(t)

mij(qir − qjr)

−
N∑
i=1

pTir
∑

j∈Ni(t)

m̃ij(pir − pjr)

−
N∑
i=1

pTirhiciqir −
N∑
i=1

pTirhic̃ipir

+
1

2

N∑
i=1

∑
j∈Ni(t)

(mij − θij)(pir − pjr)
T (qir − qjr)

+
1

2

N∑
i=1

∑
j∈Ni(t)

(m̃ij − θ̃)(pir − pjr)
T (pir − pjr)

+

N∑
i=1

hi(ci −
∑

j∈Ni(t)

θij)p
T
irqir +

N∑
i=1

hi(c̃i − θ̃)pTirpir

=

N∑
i=1

pTir(f(qi, pj)− f(qr, pr))

−
N∑
i=1

pTir
∑

j∈Ni(t)

θij(qir − qjr)

−
N∑
i=1

pTir
∑

j∈Ni(t)

θ̃(pir − pjr)

−
N∑
i=1

hi

∑
j∈Ni(t)

θijp
T
irqir −

N∑
i=1

hiθ̃p
T
irpir

≤ −p̃T ((L(Θ) +HD(Θ)−B(S,G(0)))⊗ In)q̃

−p̃T ((θ̃(L(t) +H)− δ(S)IN )⊗ In)p̃

= −p̃T ((θ̃(L(t) +H)− δ(S)IN )⊗ In)p̃.

By Lemma 1, we can see that L(0)+H > 0, and with the

condition θ̃ ≥ δ(S)
λmin(L(0)+H) , one has V̇ (t) ≤ 0, therefore,

the energy function V (t) is non-increasing on [t0, t1), which

implies that V (t) ≤ V (0) < ∞ for t ∈ [t0, t1).
From the definition of the potential function, we have

lim
‖qi−qj‖→R

Ψ(‖qi − qj‖) = +∞. Therefore, no distance of

existing edges will tend to R for t ∈ [t0, t1), which also

implies that no existing edges will be lost before time t1.

According to the network connectivity-preserving rules and

the definition of potential function, since we choose ε = R,

if ϕ(i, j)(t−) = 0, new edge is impossible to add between

agent i and j, so no new edge will add to the network, and

then the associated potentials remain finite. Thus, V (t1) is

finite.

Similar to the above analysis, the time derivative of V (t)
in every [tk−1, tk) is

V (t) ≤ −p̃T ((θ̃(L(t) +H)− δ(S)IN )⊗ In)p̃.

By Lemma 2, it follows from θ̃ ≥ δ(S)
λmin(L(0)+H) that

θ̃ ≥ δ(S)

λmin(L(0) +H)
≥ δ(S)

λmin(L(tk−1) +H)
.

Then, it can be obtained that

V (t) ≤ Vk−1 < ∞ for t ∈ [tk−1, tk),

k = 1, 2, . . .

Thus, no distance of existing edges will tend to R for t ∈
[tk−1, tk) and no edges will be lost before tk and V (tk) is

finite.

Since G(0) is connected, while no edge in E(0) will lost

and no new edge can add to E(0), G(t) will not change for

all t ≥ 0, then G(t) = G(0), L(t) = L(0).
Since V (t) ≤ V (0) < ∞, we can draw the conclusion

that if the initial value is selected form Ω0(σ1d0, σ2d̃0, θ, θ̃,
pr, qr), the combined trajectories of the agents and the con-

trol parameters (q, p,m, m̃, c, c̃) in (1), (2) and (4) belong to

a compact hyper-ellipsoid Ω(σ1d0, σ2d̃0, θ, θ̃, pr, qr).
To ensure the set Ω0(σ1d0, σ2d̃0, θ, θ̃, pr, qr) is well de-

fined, we choose σ1 > 1 and σ2 > 1.

Theorem 2 Consider a system of N agents with dynamics

(1) and a virtual leader with dynamics (2). Suppose that the

initial network G(0) is connected, Assumption 1 and 2 hold,

and the initial value defined in (7). Then, when the controller

(4) is applied, the following statements hold:

i) All agents asymptotically move with the same velocity;

ii) Almost every final configuration locally minimizes

each agent’s global potential;

iii) Collisions among agents are avoided.

Proof
All the lengths of edges are not longer than Ψ−1(V (0)).

Therefore, the set

Ω
′
= {(q, p,m, m̃, c, c̃) ∈ Ω(σ1d0, σ2d̃0, θ, θ̃, pr, qr)|V ≤ V (0)}

is positively invariant.

Since G(t) is connected and unchanged for all t ≥ 0, it is

clear that ‖qir − qjr‖ < (N − 1)R for all i and j. Because

V (t) ≤ V (0), one has pTirpir ≤ 2V (0), ‖pir‖ ≤ √
2V (0).

Therefore, the set Ω is closed and bounded, hence compact.

According to the fact that system (1) with control input (4)

is an autonomous system for all t ≥ 0, the LaSalle Invari-

ance Principle [22] can be applied, so the corresponding tra-

jectories will converge to the largest invariant set inside the

region:

Ωf = {(q, p,m, m̃, c, c̃) ∈ Ω(σ1d0, σ2d̃0, θ, θ̃, pr, qr)|V̇ = 0}

From Lemma 1 and the fact that V̇ (t) ≤ 0, V̇ = 0 if

and only if p̃ = 0nN , that is, p1 = p2 = · · · = pN = pr,

so lim
t→∞ ‖pi(t)− pr(t)‖ = 0, all the agents asymptotically

move with the same velocity.
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Hence, one has

ṗir = −
∑

j∈Ni(t)

∇qirΨ(‖qij‖)−
∑

j∈Ni(t)

mij(qir − qjr)

−hiciqir

= −
∑

j∈Ni(t)

∂Ψ(‖qij‖)
∂ ‖qij‖

1

‖qij‖ (qi − qj)

−
∑

j∈Ni(t)

mij(qir − qjr)− hiciqir

= 0

Generally, unless the initial configuration of the agents is

close enough to the global minimum, almost every final con-

figuration locally minimizes each agent’s global potential.

From the definition of potential function, it is obvious that

lim
‖qij(t)‖→0

Ψ(‖qij‖) = +∞. Although V (t) ≤ V (0) for all

t ≥ 0, collisions among agents are avoided.

4 Numerical example

In this section, a numerical example is given to illus-

trate the effectiveness of our theoretical results. We take a

group of 10 agents which move in a 3-dimensional space in

this example. Consider the intrinsic nonlinear dynamic term

f(q, p) given as

f(q, p) =

⎛
⎝ ξ1(py − px)− qx

ξ2px − pxpz − py − qy
pxpy − ξ3pz − qz

⎞
⎠ ,

where the parameter q, p are respectively defined as q =
[qx, qy, qz]

T , p = [px, py, pz]
T . In particular, the parameters

are chosen as ξ1 = 10, ξ2 = 28 and ξ3 = 8
3 .

The initial positions and initial velocities of the 10 agents

are generated from cubes [0, 5] × [0, 5] × [0, 5] and [0, 3] ×
[0, 3]× [0, 3], respectively. The initial position of the virtual

leader is chosen as qr(0) = [6, 7, 8]T , while its initial veloc-

ity is pr(0) = [1, 2, 3]T . The initial edges are generated by

E(0) = {(i, j) : ‖qi(0)− qj(0)‖ < r, i, j ∈ V }, where r
is chosen as r = 5. Let ε = R = 10. The potential function

is chosen as

Ψ(‖qij‖) =
⎧⎨
⎩

+∞, ‖qij‖ = 0,
R

‖qij‖(R−‖qij‖) , ‖qij‖ ∈ (0, R) ,

+∞, ‖qij‖ = R.

The initial value of position coupling strengths is cho-

sen as mij(0) = 0, with kij = 0.1 for all i and j, while

the initial value of velocity coupling strengths is selected

as m̃ij(0) = 0, with k̃ij = 0.1 for all i and j. The ini-

tial weights on the position and velocity navigational feed-

backs are chosen as ci(0) = 0, c̃i(0) = 0, respectively, with

wi = 0.1, w̃i = 0.1 for all i. Suppose that there is only one

agent can get the information of the virtual leader, and with-

out loss of generality, we assume that the first agent is in-

formed, that is, h1 = 1, and hi = 0 for i = 2, 3, ..., 10. The

initial network is connected. Fig. 1 shows the initial states

of the 10 agents and the virtual leader. Fig. 2 depicts the

final state of the network after 50 seconds with the control

law (4). Fig. 3 describes the velocity differences between

every agent and the virtual leader on the x-axis, y-axis, z-

axis. From Fig. 3, it is illustrated that each agent finally
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moves with the same velocity as the virtual leader. Fig. 4

and Fig. 5 show the weights of navigational feedbacks and

coupling strengths of position and velocity, respectively, and

all converge to constants.

5 Conclusions

In this paper, the adaptive flocking problem of multi-agent

systems with local Lipschitz nonlinearity has been investi-

gated. Different from most existing works, we consider the

situation where all the agents and the virtual leader share

the same intrinsic nonlinear dynamics, which depends on

both position and velocity information and is assumed to be

only locally Lipschitz. A connectivity-preserving adaptive

flocking control law has been proposed to synchronize each

agent’s velocity with the virtual leader’s velocity, without re-

quirement on any information of the agents dynamics.
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