33 research outputs found

    Data hiding in multimedia - theory and applications

    Get PDF
    Multimedia data hiding or steganography is a means of communication using subliminal channels. The resource for the subliminal communication scheme is the distortion of the original content that can be tolerated. This thesis addresses two main issues of steganographic communication schemes: 1. How does one maximize the distortion introduced without affecting fidelity of the content? 2. How does one efficiently utilize the resource (the distortion introduced) for communicating as many bits of information as possible? In other words, what is a good signaling strategy for the subliminal communication scheme? Close to optimal solutions for both issues are analyzed. Many techniques for the issue for maximizing the resource, viz, the distortion introduced imperceptibly in images and video frames, are proposed. Different signaling strategies for steganographic communication are explored, and a novel signaling technique employing a floating signal constellation is proposed. Algorithms for optimal choices of the parameters of the signaling technique are presented. Other application specific issues like the type of robustness needed are taken into consideration along with the established theoretical background to design optimal data hiding schemes. In particular, two very important applications of data hiding are addressed - data hiding for multimedia content delivery, and data hiding for watermarking (for proving ownership). A robust watermarking protocol for unambiguous resolution of ownership is proposed

    Optimization techniques for computationally expensive rendering algorithms

    Get PDF
    Realistic rendering in computer graphics simulates the interactions of light and surfaces. While many accurate models for surface reflection and lighting, including solid surfaces and participating media have been described; most of them rely on intensive computation. Common practices such as adding constraints and assumptions can increase performance. However, they may compromise the quality of the resulting images or the variety of phenomena that can be accurately represented. In this thesis, we will focus on rendering methods that require high amounts of computational resources. Our intention is to consider several conceptually different approaches capable of reducing these requirements with only limited implications in the quality of the results. The first part of this work will study rendering of time-­¿varying participating media. Examples of this type of matter are smoke, optically thick gases and any material that, unlike the vacuum, scatters and absorbs the light that travels through it. We will focus on a subset of algorithms that approximate realistic illumination using images of real world scenes. Starting from the traditional ray marching algorithm, we will suggest and implement different optimizations that will allow performing the computation at interactive frame rates. This thesis will also analyze two different aspects of the generation of anti-­¿aliased images. One targeted to the rendering of screen-­¿space anti-­¿aliased images and the reduction of the artifacts generated in rasterized lines and edges. We expect to describe an implementation that, working as a post process, it is efficient enough to be added to existing rendering pipelines with reduced performance impact. A third method will take advantage of the limitations of the human visual system (HVS) to reduce the resources required to render temporally antialiased images. While film and digital cameras naturally produce motion blur, rendering pipelines need to explicitly simulate it. This process is known to be one of the most important burdens for every rendering pipeline. Motivated by this, we plan to run a series of psychophysical experiments targeted at identifying groups of motion-­¿blurred images that are perceptually equivalent. A possible outcome is the proposal of criteria that may lead to reductions of the rendering budgets

    Pertanika Journal of Science & Technology

    Get PDF

    Multimedia Forensics

    Get PDF
    This book is open access. Media forensics has never been more relevant to societal life. Not only media content represents an ever-increasing share of the data traveling on the net and the preferred communications means for most users, it has also become integral part of most innovative applications in the digital information ecosystem that serves various sectors of society, from the entertainment, to journalism, to politics. Undoubtedly, the advances in deep learning and computational imaging contributed significantly to this outcome. The underlying technologies that drive this trend, however, also pose a profound challenge in establishing trust in what we see, hear, and read, and make media content the preferred target of malicious attacks. In this new threat landscape powered by innovative imaging technologies and sophisticated tools, based on autoencoders and generative adversarial networks, this book fills an important gap. It presents a comprehensive review of state-of-the-art forensics capabilities that relate to media attribution, integrity and authenticity verification, and counter forensics. Its content is developed to provide practitioners, researchers, photo and video enthusiasts, and students a holistic view of the field

    Biometrics & [and] Security:Combining Fingerprints, Smart Cards and Cryptography

    Get PDF
    Since the beginning of this brand new century, and especially since the 2001 Sept 11 events in the U.S, several biometric technologies are considered mature enough to be a new tool for security. Generally associated to a personal device for privacy protection, biometric references are stored in secured electronic devices such as smart cards, and systems are using cryptographic tools to communicate with the smart card and securely exchange biometric data. After a general introduction about biometrics, smart cards and cryptography, a second part will introduce our work with fake finger attacks on fingerprint sensors and tests done with different materials. The third part will present our approach for a lightweight fingerprint recognition algorithm for smart cards. The fourth part will detail security protocols used in different applications such as Personal Identity Verification cards. We will discuss our implementation such as the one we developed for the NIST to be used in PIV smart cards. Finally, a fifth part will address Cryptography-Biometrics interaction. We will highlight the antagonism between Cryptography – determinism, stable data – and Biometrics – statistical, error-prone –. Then we will present our application of challenge-response protocol to biometric data for easing the fingerprint recognition process

    Multimedia Forensics

    Get PDF
    This book is open access. Media forensics has never been more relevant to societal life. Not only media content represents an ever-increasing share of the data traveling on the net and the preferred communications means for most users, it has also become integral part of most innovative applications in the digital information ecosystem that serves various sectors of society, from the entertainment, to journalism, to politics. Undoubtedly, the advances in deep learning and computational imaging contributed significantly to this outcome. The underlying technologies that drive this trend, however, also pose a profound challenge in establishing trust in what we see, hear, and read, and make media content the preferred target of malicious attacks. In this new threat landscape powered by innovative imaging technologies and sophisticated tools, based on autoencoders and generative adversarial networks, this book fills an important gap. It presents a comprehensive review of state-of-the-art forensics capabilities that relate to media attribution, integrity and authenticity verification, and counter forensics. Its content is developed to provide practitioners, researchers, photo and video enthusiasts, and students a holistic view of the field

    Interference suppression and diversity for CDMA systems

    Get PDF
    In code-division multiple-access (CDMA) systems, due to non-orthogonality of the spreading codes and multipath channels, the desired signal suffers interference from other users. Signal fading due to multipath propagation is another source of impairment in wireless CDMA systems, often severely impacting performance. In this dissertation, reduced-rank minimum mean square error (MMSE) receiver and reduced-rank minimum variance receiver are investigated to suppress interference; transmit diversity is applied to multicarrier CDMA (MC-CDMA) systems to combat fading; packet combing is studied to provide both interference suppression and diversity for CDMA random access systems. The reduced-rank MMSE receiver that uses a reduced-rank estimated covariance matrix is studied to improve the performance of MMSE receiver in CDMA systems. It is shown that the reduced-rank MMSE receiver has much better performance than the full-rank MMSE receiver when the covariance matrix is estimated by using a finite number of data samples and the desired signal is in a low dimensional subspace. It is also demonstrated that the reduced-rank minimum variance receiver outperforms the full-rank minimum variance receiver. The probability density function of the output SNR of the full-rank and reduced-rank linear MMSE estimators is derived for a general linear signal model under the assumption that the signals and noise are Gaussian distributed. Space-time coding that is originally proposed for narrow band systems is applied to an MC-CDMA system in order to get transmit diversity for such a wideband system. Some techniques to jointly decode the space-time code and suppress interference are developed. The channel estimation using either pilot channels or pilot symbols is studied for MC-CDMA systems with space-time coding. Performance of CDMA random access systems with packet combining in fading channels is analyzed. By combining the current retransmitted packet with all its previous transmitted copies, the receiver obtains a diversity gain plus an increased interference and noise suppression gain. Therefore, the bit error rate dramatically decreases with the number of transmissions increasing, which in turn improves the system throughput and reduces the average delay

    Selected Papers from the First International Symposium on Future ICT (Future-ICT 2019) in Conjunction with 4th International Symposium on Mobile Internet Security (MobiSec 2019)

    Get PDF
    The International Symposium on Future ICT (Future-ICT 2019) in conjunction with the 4th International Symposium on Mobile Internet Security (MobiSec 2019) was held on 17–19 October 2019 in Taichung, Taiwan. The symposium provided academic and industry professionals an opportunity to discuss the latest issues and progress in advancing smart applications based on future ICT and its relative security. The symposium aimed to publish high-quality papers strictly related to the various theories and practical applications concerning advanced smart applications, future ICT, and related communications and networks. It was expected that the symposium and its publications would be a trigger for further related research and technology improvements in this field
    corecore