1,766 research outputs found

    Adaptive Nonlinear RF Cancellation for Improved Isolation in Simultaneous Transmit-Receive Systems

    Get PDF
    This paper proposes an active radio frequency (RF) cancellation solution to suppress the transmitter (TX) passband leakage signal in radio transceivers supporting simultaneous transmission and reception. The proposed technique is based on creating an opposite-phase baseband equivalent replica of the TX leakage signal in the transceiver digital front-end through adaptive nonlinear filtering of the known transmit data, to facilitate highly accurate cancellation under a nonlinear TX power amplifier (PA). The active RF cancellation is then accomplished by employing an auxiliary transmitter chain, to generate the actual RF cancellation signal, and combining it with the received signal at the receiver (RX) low noise amplifier (LNA) input. A closed-loop parameter learning approach, based on the decorrelation principle, is also developed to efficiently estimate the coefficients of the nonlinear cancellation filter in the presence of a nonlinear TX PA with memory, finite passive isolation, and a nonlinear RX LNA. The performance of the proposed cancellation technique is evaluated through comprehensive RF measurements adopting commercial LTE-Advanced transceiver hardware components. The results show that the proposed technique can provide an additional suppression of up to 54 dB for the TX passband leakage signal at the RX LNA input, even at considerably high transmit power levels and with wide transmission bandwidths. Such novel cancellation solution can therefore substantially improve the TX-RX isolation, hence reducing the requirements on passive isolation and RF component linearity, as well as increasing the efficiency and flexibility of the RF spectrum use in the emerging 5G radio networks.Comment: accepted to IEE

    Efficient use of paired spectrum bands through TDD small cell deployments

    Get PDF
    ©2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Traditionally, wireless cellular systems have been designed to operate in frequency division duplexing (FDD) paired bands that allocate the same amount of spectrum for both downlink (DL) and uplink (UL) communications. Such design is very convenient under symmetric DL/UL traffic conditions, as it used to be the case when voice transmission was predominant. However, due to the overwhelming advent of data services, which involves large asymmetries between DL and UL, the conventional FDD solution becomes inefficient. In this regard, flexible duplexing concepts aim to derive procedures to improve spectrum utilization by adjusting resources to actual traffic demand. In this work, we review these concepts and propose the introduction of time division duplexing (TDD) small eNBs (SeNB) to operate in the unused resources of an FDD-based system. This proposal alleviates the saturated DL/UL transmission commonly found in FDD-based systems through user offloading towards a TDD system based on SeNBs. In this context, the flexible duplexing concept is analyzed from three points of view: a) regulation, b) long term evolution (LTE) standardization, and c) technical solutions.Peer ReviewedPostprint (published version

    Extremely low frequency based communication link

    Get PDF
    The paper discusses the literature review and the possibility of using the ground itself as transmission medium for various users’ transceivers and an administrator transceiver using Multi-Carrier-Direct Sequence-Code Division Multiple Access (MC-DS-CDMA), Orthogonal Frequency Division Multiplexing (OFDM),16-Quadrature Amplitude Modulation (16-QAM), Frequency Division Duplex (FDD) and Extremely Low Frequency (ELF) band for the applications of Oil Well Telemetry, remote control of power substations or any system that its responding time is not critical
    • 

    corecore