219 research outputs found

    Real-time hybrid cutting with dynamic fluid visualization for virtual surgery

    Get PDF
    It is widely accepted that a reform in medical teaching must be made to meet today's high volume training requirements. Virtual simulation offers a potential method of providing such trainings and some current medical training simulations integrate haptic and visual feedback to enhance procedure learning. The purpose of this project is to explore the capability of Virtual Reality (VR) technology to develop a training simulator for surgical cutting and bleeding in a general surgery

    Grasp-sensitive surfaces

    Get PDF
    Grasping objects with our hands allows us to skillfully move and manipulate them. Hand-held tools further extend our capabilities by adapting precision, power, and shape of our hands to the task at hand. Some of these tools, such as mobile phones or computer mice, already incorporate information processing capabilities. Many other tools may be augmented with small, energy-efficient digital sensors and processors. This allows for graspable objects to learn about the user grasping them - and supporting the user's goals. For example, the way we grasp a mobile phone might indicate whether we want to take a photo or call a friend with it - and thus serve as a shortcut to that action. A power drill might sense whether the user is grasping it firmly enough and refuse to turn on if this is not the case. And a computer mouse could distinguish between intentional and unintentional movement and ignore the latter. This dissertation gives an overview of grasp sensing for human-computer interaction, focusing on technologies for building grasp-sensitive surfaces and challenges in designing grasp-sensitive user interfaces. It comprises three major contributions: a comprehensive review of existing research on human grasping and grasp sensing, a detailed description of three novel prototyping tools for grasp-sensitive surfaces, and a framework for analyzing and designing grasp interaction: For nearly a century, scientists have analyzed human grasping. My literature review gives an overview of definitions, classifications, and models of human grasping. A small number of studies have investigated grasping in everyday situations. They found a much greater diversity of grasps than described by existing taxonomies. This diversity makes it difficult to directly associate certain grasps with users' goals. In order to structure related work and own research, I formalize a generic workflow for grasp sensing. It comprises *capturing* of sensor values, *identifying* the associated grasp, and *interpreting* the meaning of the grasp. A comprehensive overview of related work shows that implementation of grasp-sensitive surfaces is still hard, researchers often are not aware of related work from other disciplines, and intuitive grasp interaction has not yet received much attention. In order to address the first issue, I developed three novel sensor technologies designed for grasp-sensitive surfaces. These mitigate one or more limitations of traditional sensing techniques: **HandSense** uses four strategically positioned capacitive sensors for detecting and classifying grasp patterns on mobile phones. The use of custom-built high-resolution sensors allows detecting proximity and avoids the need to cover the whole device surface with sensors. User tests showed a recognition rate of 81%, comparable to that of a system with 72 binary sensors. **FlyEye** uses optical fiber bundles connected to a camera for detecting touch and proximity on arbitrarily shaped surfaces. It allows rapid prototyping of touch- and grasp-sensitive objects and requires only very limited electronics knowledge. For FlyEye I developed a *relative calibration* algorithm that allows determining the locations of groups of sensors whose arrangement is not known. **TDRtouch** extends Time Domain Reflectometry (TDR), a technique traditionally used for inspecting cable faults, for touch and grasp sensing. TDRtouch is able to locate touches along a wire, allowing designers to rapidly prototype and implement modular, extremely thin, and flexible grasp-sensitive surfaces. I summarize how these technologies cater to different requirements and significantly expand the design space for grasp-sensitive objects. Furthermore, I discuss challenges for making sense of raw grasp information and categorize interactions. Traditional application scenarios for grasp sensing use only the grasp sensor's data, and only for mode-switching. I argue that data from grasp sensors is part of the general usage context and should be only used in combination with other context information. For analyzing and discussing the possible meanings of grasp types, I created the GRASP model. It describes five categories of influencing factors that determine how we grasp an object: *Goal* -- what we want to do with the object, *Relationship* -- what we know and feel about the object we want to grasp, *Anatomy* -- hand shape and learned movement patterns, *Setting* -- surrounding and environmental conditions, and *Properties* -- texture, shape, weight, and other intrinsics of the object I conclude the dissertation with a discussion of upcoming challenges in grasp sensing and grasp interaction, and provide suggestions for implementing robust and usable grasp interaction.Die FĂ€higkeit, GegenstĂ€nde mit unseren HĂ€nden zu greifen, erlaubt uns, diese vielfĂ€ltig zu manipulieren. Werkzeuge erweitern unsere FĂ€higkeiten noch, indem sie Genauigkeit, Kraft und Form unserer HĂ€nde an die Aufgabe anpassen. Digitale Werkzeuge, beispielsweise Mobiltelefone oder ComputermĂ€use, erlauben uns auch, die FĂ€higkeiten unseres Gehirns und unserer Sinnesorgane zu erweitern. Diese GerĂ€te verfĂŒgen bereits ĂŒber Sensoren und Recheneinheiten. Aber auch viele andere Werkzeuge und Objekte lassen sich mit winzigen, effizienten Sensoren und Recheneinheiten erweitern. Dies erlaubt greifbaren Objekten, mehr ĂŒber den Benutzer zu erfahren, der sie greift - und ermöglicht es, ihn bei der Erreichung seines Ziels zu unterstĂŒtzen. Zum Beispiel könnte die Art und Weise, in der wir ein Mobiltelefon halten, verraten, ob wir ein Foto aufnehmen oder einen Freund anrufen wollen - und damit als Shortcut fĂŒr diese Aktionen dienen. Eine Bohrmaschine könnte erkennen, ob der Benutzer sie auch wirklich sicher hĂ€lt und den Dienst verweigern, falls dem nicht so ist. Und eine Computermaus könnte zwischen absichtlichen und unabsichtlichen Mausbewegungen unterscheiden und letztere ignorieren. Diese Dissertation gibt einen Überblick ĂŒber Grifferkennung (*grasp sensing*) fĂŒr die Mensch-Maschine-Interaktion, mit einem Fokus auf Technologien zur Implementierung griffempfindlicher OberflĂ€chen und auf Herausforderungen beim Design griffempfindlicher Benutzerschnittstellen. Sie umfasst drei primĂ€re BeitrĂ€ge zum wissenschaftlichen Forschungsstand: einen umfassenden Überblick ĂŒber die bisherige Forschung zu menschlichem Greifen und Grifferkennung, eine detaillierte Beschreibung dreier neuer Prototyping-Werkzeuge fĂŒr griffempfindliche OberflĂ€chen und ein Framework fĂŒr Analyse und Design von griff-basierter Interaktion (*grasp interaction*). Seit nahezu einem Jahrhundert erforschen Wissenschaftler menschliches Greifen. Mein Überblick ĂŒber den Forschungsstand beschreibt Definitionen, Klassifikationen und Modelle menschlichen Greifens. In einigen wenigen Studien wurde bisher Greifen in alltĂ€glichen Situationen untersucht. Diese fanden eine deutlich grĂ¶ĂŸere DiversitĂ€t in den Griffmuster als in existierenden Taxonomien beschreibbar. Diese DiversitĂ€t erschwert es, bestimmten Griffmustern eine Absicht des Benutzers zuzuordnen. Um verwandte Arbeiten und eigene Forschungsergebnisse zu strukturieren, formalisiere ich einen allgemeinen Ablauf der Grifferkennung. Dieser besteht aus dem *Erfassen* von Sensorwerten, der *Identifizierung* der damit verknĂŒpften Griffe und der *Interpretation* der Bedeutung des Griffes. In einem umfassenden Überblick ĂŒber verwandte Arbeiten zeige ich, dass die Implementierung von griffempfindlichen OberflĂ€chen immer noch ein herausforderndes Problem ist, dass Forscher regelmĂ€ĂŸig keine Ahnung von verwandten Arbeiten in benachbarten Forschungsfeldern haben, und dass intuitive Griffinteraktion bislang wenig Aufmerksamkeit erhalten hat. Um das erstgenannte Problem zu lösen, habe ich drei neuartige Sensortechniken fĂŒr griffempfindliche OberflĂ€chen entwickelt. Diese mindern jeweils eine oder mehrere SchwĂ€chen traditioneller Sensortechniken: **HandSense** verwendet vier strategisch positionierte kapazitive Sensoren um Griffmuster zu erkennen. Durch die Verwendung von selbst entwickelten, hochauflösenden Sensoren ist es möglich, schon die AnnĂ€herung an das Objekt zu erkennen. Außerdem muss nicht die komplette OberflĂ€che des Objekts mit Sensoren bedeckt werden. Benutzertests ergaben eine Erkennungsrate, die vergleichbar mit einem System mit 72 binĂ€ren Sensoren ist. **FlyEye** verwendet LichtwellenleiterbĂŒndel, die an eine Kamera angeschlossen werden, um AnnĂ€herung und BerĂŒhrung auf beliebig geformten OberflĂ€chen zu erkennen. Es ermöglicht auch Designern mit begrenzter Elektronikerfahrung das Rapid Prototyping von berĂŒhrungs- und griffempfindlichen Objekten. FĂŒr FlyEye entwickelte ich einen *relative-calibration*-Algorithmus, der verwendet werden kann um Gruppen von Sensoren, deren Anordnung unbekannt ist, semi-automatisch anzuordnen. **TDRtouch** erweitert Time Domain Reflectometry (TDR), eine Technik die ĂŒblicherweise zur Analyse von KabelbeschĂ€digungen eingesetzt wird. TDRtouch erlaubt es, BerĂŒhrungen entlang eines Drahtes zu lokalisieren. Dies ermöglicht es, schnell modulare, extrem dĂŒnne und flexible griffempfindliche OberflĂ€chen zu entwickeln. Ich beschreibe, wie diese Techniken verschiedene Anforderungen erfĂŒllen und den *design space* fĂŒr griffempfindliche Objekte deutlich erweitern. Desweiteren bespreche ich die Herausforderungen beim Verstehen von Griffinformationen und stelle eine Einteilung von Interaktionsmöglichkeiten vor. Bisherige Anwendungsbeispiele fĂŒr die Grifferkennung nutzen nur Daten der Griffsensoren und beschrĂ€nken sich auf Moduswechsel. Ich argumentiere, dass diese Sensordaten Teil des allgemeinen Benutzungskontexts sind und nur in Kombination mit anderer Kontextinformation verwendet werden sollten. Um die möglichen Bedeutungen von Griffarten analysieren und diskutieren zu können, entwickelte ich das GRASP-Modell. Dieses beschreibt fĂŒnf Kategorien von Einflussfaktoren, die bestimmen wie wir ein Objekt greifen: *Goal* -- das Ziel, das wir mit dem Griff erreichen wollen, *Relationship* -- das VerhĂ€ltnis zum Objekt, *Anatomy* -- Handform und Bewegungsmuster, *Setting* -- Umgebungsfaktoren und *Properties* -- Eigenschaften des Objekts, wie OberflĂ€chenbeschaffenheit, Form oder Gewicht. Ich schließe mit einer Besprechung neuer Herausforderungen bei der Grifferkennung und Griffinteraktion und mache VorschlĂ€ge zur Entwicklung von zuverlĂ€ssiger und benutzbarer Griffinteraktion

    Research on real-time physics-based deformation for haptic-enabled medical simulation

    Full text link
    This study developed a multiple effective visuo-haptic surgical engine to handle a variety of surgical manipulations in real-time. Soft tissue models are based on biomechanical experiment and continuum mechanics for greater accuracy. Such models will increase the realism of future training systems and the VR/AR/MR implementations for the operating room

    Soft volume simulation using a deformable surface model

    Get PDF
    The aim of the research is to contribute to the modelling of deformable objects, such as soft tissues in medical simulation. Interactive simulation for medical training is a concept undergoing rapid growth as the underlying technologies support the increasingly more realstic and functional training environments. The prominent issues in the deployment of such environments centre on a fine balance between the accuracy of the deformable model and real-time interactivity. Acknowledging the importance of interacting with non-rigid materials such as the palpation of a breast for breast assessment, this thesis has explored the physics-based modelling techniques for both volume and surface approach. This thesis identified that the surface approach based on the mass spring system (MSS) has the benefits of rapid prototyping, reduced mesh complexity, computational efficiency and the support for large material deformation compared to the continuum approach. However, accuracy relative to real material properties is often over looked in the configuration of the resulting model. This thesis has investigated the potential and the feasibility of surface modelling for simulating soft objects regardless of the design of the mesh topology and the non-existence of internal volume discretisation. The assumptions of the material parameters such as elasticity, homogeneity and incompressibility allow a reduced set of material values to be implemented in order to establish the association with the surface configuration. A framework for a deformable surface model was generated in accordance with the issues of the estimation of properties and volume behaviour corresponding to the material parameters. The novel extension to the surface MSS enables the tensile properties of the material to be integrated into an enhanced configuration despite its lack of volume information. The benefits of the reduced complexity of a surface model are now correlated with the improved accuracy in the estimation of properties and volume behaviour. Despite the irregularity of the underlying mesh topology and the absence of volume, the model reflected the original material values and preserved volume with minimal deviations. Global deformation effect which is essential to emulate the run time behaviour of a real soft material upon interaction, such as the palpation of a generic breast, was also demonstrated, thus indicating the potential of this novel technique in the application of soft tissue simulation

    Remixing physical objects through tangible tools

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2011.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from student submitted PDF version of thesis.Includes bibliographical references (p. 147-164).In this document we present new tools for remixing physical objects. These tools allow users to copy, edit and manipulate the properties of one or more objects to create a new physical object. We already have these capabilities using digital media: we can easily mash up videos, music and text. However, it remains difficult to remix physical objects and we cannot access the advantages of digital media, which are nondestructive, scalable and scriptable. We can bridge this gap by both integrating 2D and 3D scanning technology into design tools and employing aordable rapid prototyping technology to materialize these remixed objects. In so doing, we hope to promote copying as a tool for creation. This document presents two tools, CopyCAD and KidCAD, the first designed for makers and crafters, the second for children. CopyCAD is an augmented Computer Numerically Controlled (CNC) milling machine which allows users to copy arbitrary real world object geometry into 2D CAD designs at scale through the use of a camera-projector system. CopyCAD gathers properties from physical objects, sketches and touch interactions directly on a milling machine, allowing novice users to copy parts of real world objects, modify them and create a new physical part. KidCAD is a sculpting interface built on top of a gel-based realtime 2.5D scanner. It allows children to stamp objects into the block of gel, which are scanned in realtime, as if they were stamped into clay. Children can use everyday objects, their hands and tangible tools to design new toys or objects that will be 3D printed. This work enables novice users to easily approach designing physical objects by copying from other objects and sketching new designs. With increased access to such tools we hope that a wide range of people will be empowered to create their own objects, toys, tools and parts.by Sean Follmer.S.M

    Scalability study for robotic hand platform

    Get PDF
    The goal of this thesis project was to determine the lower limit of scale for the RIT robotic grasping hand. This was accomplished using a combination of computer simulation and experimental studies. A force analysis was conducted to determine the size of air muscles required to achieve appropriate contact forces at a smaller scale. Input variables, such as the actuation force and tendon return force, were determined experimentally. A dynamic computer model of the hand system was then created using Recurdyn. This was used to predict the contact (grasping) force of the fingers at full-scale, half-scale, and quarter-scale. Correlation between the computer model and physical testing was achieved for both a life-size and half-scale finger assembly. To further demonstrate the scalability of the hand design, both half and quarter-scale robotic hand rapid prototype assemblies were built using 3D printing techniques. This thesis work identified the point where further miniaturization would require a change in the manufacturing process to micro-fabrication. Several techniques were compared as potential methods for making a production intent quarter-scale robotic hand. Investment casting, Swiss machining, and Selective Laser Sintering were the manufacturing techniques considered. A quarter-scale robotic hand tested the limits of each technology. Below this scale, micro-machining would be required. The break point for the current actuation method, air muscles, was also explored. Below the quarter-scale, an alternative actuation method would also be required. Electroactive Polymers were discussed as an option for the micro-scale. In summary, a dynamic model of the RIT robotic grasping hand was created and validated as scalable at full and half-scales. The model was then used to predict finger contact forces at the quarter-scale. The quarter-scale was identified as the break point in terms of the current RIT robotic grasping hand based on both manufacturing and actuation. A novel, prototype quarter-scale robotic hand assembly was successfully built by an additive manufacturing process, a high resolution 3D printer. However, further miniaturization would require alternate manufacturing techniques and actuation mechanisms

    Haptics Rendering and Applications

    Get PDF
    There has been significant progress in haptic technologies but the incorporation of haptics into virtual environments is still in its infancy. A wide range of the new society's human activities including communication, education, art, entertainment, commerce and science would forever change if we learned how to capture, manipulate and reproduce haptic sensory stimuli that are nearly indistinguishable from reality. For the field to move forward, many commercial and technological barriers need to be overcome. By rendering how objects feel through haptic technology, we communicate information that might reflect a desire to speak a physically- based language that has never been explored before. Due to constant improvement in haptics technology and increasing levels of research into and development of haptics-related algorithms, protocols and devices, there is a belief that haptics technology has a promising future

    Virtual Reality Games for Motor Rehabilitation

    Get PDF
    This paper presents a fuzzy logic based method to track user satisfaction without the need for devices to monitor users physiological conditions. User satisfaction is the key to any product’s acceptance; computer applications and video games provide a unique opportunity to provide a tailored environment for each user to better suit their needs. We have implemented a non-adaptive fuzzy logic model of emotion, based on the emotional component of the Fuzzy Logic Adaptive Model of Emotion (FLAME) proposed by El-Nasr, to estimate player emotion in UnrealTournament 2004. In this paper we describe the implementation of this system and present the results of one of several play tests. Our research contradicts the current literature that suggests physiological measurements are needed. We show that it is possible to use a software only method to estimate user emotion

    Modeling and rendering for development of a virtual bone surgery system

    Get PDF
    A virtual bone surgery system is developed to provide the potential of a realistic, safe, and controllable environment for surgical education. It can be used for training in orthopedic surgery, as well as for planning and rehearsal of bone surgery procedures...Using the developed system, the user can perform virtual bone surgery by simultaneously seeing bone material removal through a graphic display device, feeling the force via a haptic deice, and hearing the sound of tool-bone interaction --Abstract, page iii

    Meshless Mechanics and Point-Based Visualization Methods for Surgical Simulations

    Get PDF
    Computer-based modeling and simulation practices have become an integral part of the medical education field. For surgical simulation applications, realistic constitutive modeling of soft tissue is considered to be one of the most challenging aspects of the problem, because biomechanical soft-tissue models need to reflect the correct elastic response, have to be efficient in order to run at interactive simulation rates, and be able to support operations such as cuts and sutures. Mesh-based solutions, where the connections between the individual degrees of freedom (DoF) are defined explicitly, have been the traditional choice to approach these problems. However, when the problem under investigation contains a discontinuity that disrupts the connectivity between the DoFs, the underlying mesh structure has to be reconfigured in order to handle the newly introduced discontinuity correctly. This reconfiguration for mesh-based techniques is typically called dynamic remeshing, and most of the time it causes the performance bottleneck in the simulation. In this dissertation, the efficiency of point-based meshless methods is investigated for both constitutive modeling of elastic soft tissues and visualization of simulation objects, where arbitrary discontinuities/cuts are applied to the objects in the context of surgical simulation. The point-based deformable object modeling problem is examined in three functional aspects: modeling continuous elastic deformations with, handling discontinuities in, and visualizing a point-based object. Algorithmic and implementation details of the presented techniques are discussed in the dissertation. The presented point-based techniques are implemented as separate components and integrated into the open-source software framework SOFA. The presented meshless continuum mechanics model of elastic tissue were verified by comparing it to the Hertzian non-adhesive frictionless contact theory. Virtual experiments were setup with a point-based deformable block and a rigid indenter, and force-displacement curves obtained from the virtual experiments were compared to the theoretical solutions. The meshless mechanics model of soft tissue and the integrated novel discontinuity treatment technique discussed in this dissertation allows handling cuts of arbitrary shape. The implemented enrichment technique not only modifies the internal mechanics of the soft tissue model, but also updates the point-based visual representation in an efficient way preventing the use of costly dynamic remeshing operations
    • 

    corecore