9,855 research outputs found

    A flexible model for dynamic linking in Java and C#

    Get PDF
    Dynamic linking supports flexible code deployment, allowing partially linked code to link further code on the fly, as needed. Thus, end-users enjoy the advantage of automatically receiving any updates, without any need for any explicit actions on their side, such as re-compilation, or re-linking. On the down side, two executions of a program may link in different versions of code, which in some cases causes subtle errors, and may mystify end-users. Dynamic linking in Java and C# are similar: the same linking phases are involved, soundness is based on similar ideas, and executions which do not throw linking errors give the same result. They are, however, not identical: the linking phases are combined differently, and take place in different order. Consequently, linking errors may be detected at different times by Java and C# runtime systems. We develop a non-deterministic model, which describes the behaviour of both Java and C# program executions. The nondeterminism allows us to describe the design space, to distill the similarities between the two languages, and to use one proof of soundness for both. We also prove that all execution strategies are equivalent with respect to terminating executions that do not throw link errors: they give the same results

    What Java Developers Know About Compatibility, And Why This Matters

    Full text link
    Real-world programs are neither monolithic nor static -- they are constructed using platform and third party libraries, and both programs and libraries continuously evolve in response to change pressure. In case of the Java language, rules defined in the Java Language and Java Virtual Machine Specifications define when library evolution is safe. These rules distinguish between three types of compatibility - binary, source and behavioural. We claim that some of these rules are counter intuitive and not well-understood by many developers. We present the results of a survey where we quizzed developers about their understanding of the various types of compatibility. 414 developers responded to our survey. We find that while most programmers are familiar with the rules of source compatibility, they generally lack knowledge about the rules of binary and behavioural compatibility. This can be problematic when organisations switch from integration builds to technologies that require dynamic linking, such as OSGi. We have assessed the gravity of the problem by studying how often linkage-related problems are referenced in issue tracking systems, and find that they are common

    Proceedings of International Workshop "Global Computing: Programming Environments, Languages, Security and Analysis of Systems"

    Get PDF
    According to the IST/ FET proactive initiative on GLOBAL COMPUTING, the goal is to obtain techniques (models, frameworks, methods, algorithms) for constructing systems that are flexible, dependable, secure, robust and efficient. The dominant concerns are not those of representing and manipulating data efficiently but rather those of handling the co-ordination and interaction, security, reliability, robustness, failure modes, and control of risk of the entities in the system and the overall design, description and performance of the system itself. Completely different paradigms of computer science may have to be developed to tackle these issues effectively. The research should concentrate on systems having the following characteristics: ā€¢ The systems are composed of autonomous computational entities where activity is not centrally controlled, either because global control is impossible or impractical, or because the entities are created or controlled by different owners. ā€¢ The computational entities are mobile, due to the movement of the physical platforms or by movement of the entity from one platform to another. ā€¢ The configuration varies over time. For instance, the system is open to the introduction of new computational entities and likewise their deletion. The behaviour of the entities may vary over time. ā€¢ The systems operate with incomplete information about the environment. For instance, information becomes rapidly out of date and mobility requires information about the environment to be discovered. The ultimate goal of the research action is to provide a solid scientific foundation for the design of such systems, and to lay the groundwork for achieving effective principles for building and analysing such systems. This workshop covers the aspects related to languages and programming environments as well as analysis of systems and resources involving 9 projects (AGILE , DART, DEGAS , MIKADO, MRG, MYTHS, PEPITO, PROFUNDIS, SECURE) out of the 13 founded under the initiative. After an year from the start of the projects, the goal of the workshop is to fix the state of the art on the topics covered by the two clusters related to programming environments and analysis of systems as well as to devise strategies and new ideas to profitably continue the research effort towards the overall objective of the initiative. We acknowledge the Dipartimento di Informatica and Tlc of the University of Trento, the Comune di Rovereto, the project DEGAS for partially funding the event and the Events and Meetings Office of the University of Trento for the valuable collaboration

    Acute: high-level programming language design for distributed computation

    No full text
    Existing languages provide good support for typeful programming of standalone programs. In a distributed system, however, there may be interaction between multiple instances of many distinct programs, sharing some (but not necessarily all) of their module structure, and with some instances rebuilt with new versions of certain modules as time goes on. In this paper we discuss programming language support for such systems, focussing on their typing and naming issues. We describe an experimental language, Acute, which extends an ML core to support distributed development, deployment, and execution, allowing type-safe interaction between separately-built programs. The main features are: (1) type-safe marshalling of arbitrary values; (2) type names that are generated (freshly and by hashing) to ensure that type equality tests suffice to protect the invariants of abstract types, across the entire distributed system; (3) expression-level names generated to ensure that name equality tests suffice for type-safety of associated values, e.g. values carried on named channels; (4) controlled dynamic rebinding of marshalled values to local resources; and (5) thunkification of threads and mutexes to support computation mobility. These features are a large part of what is needed for typeful distributed programming. They are a relatively lightweight extension of ML, should be efficiently implementable, and are expressive enough to enable a wide variety of distributed infrastructure layers to be written as simple library code above the byte-string network and persistent store APIs. This disentangles the language runtime from communication intricacies. This paper highlights the main design choices in Acute. It is supported by a full language definition (of typing, compilation, and operational semantics), by a prototype implementation, and by example distribution libraries

    Scala Server Faces

    Get PDF
    Progress in the Java language has been slow over the last few years. Scala is emerging as one of the probable successors for Java with features such as type inference, higher order functions, closure support and sequence comprehensions. This allows object-oriented yet concise code to be written using Scala. While Java based MVC frameworks are still prevalent, Scala based frameworks along with Ruby on Rails, Django and PHP are emerging as competitors. Scala has a web framework called Lift which has made an attempt to borrow the advantages of other frameworks while keeping code concise. Since Sunā€™s MVC framework, Java Server Faces 2.0 and its future versions seem to be heading in a reasonably progressive direction; I have developed a framework which attempts to overcome its limitations. I call such a framework ā€•Scala Server Facesā€–. This framework provides a way of writing Java EE applications in Scala yet borrow from the concept of ā€•convention over configurationā€– followed by rival web frameworks. Again, an Eclipse tool is provided to make the programmer\u27s task of writing code on the popular Eclipse platform. Scala Server Faces, the framework and the tool allows the programmer to write enterprise web applications in Scala by providing features such as templating support, CRUD screen generation for database model objects, an Ant script to help deployment and integration with the Glassfish Application Server

    Revisiting Actor Programming in C++

    Full text link
    The actor model of computation has gained significant popularity over the last decade. Its high level of abstraction makes it appealing for concurrent applications in parallel and distributed systems. However, designing a real-world actor framework that subsumes full scalability, strong reliability, and high resource efficiency requires many conceptual and algorithmic additives to the original model. In this paper, we report on designing and building CAF, the "C++ Actor Framework". CAF targets at providing a concurrent and distributed native environment for scaling up to very large, high-performance applications, and equally well down to small constrained systems. We present the key specifications and design concepts---in particular a message-transparent architecture, type-safe message interfaces, and pattern matching facilities---that make native actors a viable approach for many robust, elastic, and highly distributed developments. We demonstrate the feasibility of CAF in three scenarios: first for elastic, upscaling environments, second for including heterogeneous hardware like GPGPUs, and third for distributed runtime systems. Extensive performance evaluations indicate ideal runtime behaviour for up to 64 cores at very low memory footprint, or in the presence of GPUs. In these tests, CAF continuously outperforms the competing actor environments Erlang, Charm++, SalsaLite, Scala, ActorFoundry, and even the OpenMPI.Comment: 33 page
    • ā€¦
    corecore