642 research outputs found

    Partial Discharge Location Technique for Covered-Conductor Overhead Distribution Lines

    Get PDF
    In Finland, covered-conductor (CC) overhead lines are commonly used in medium voltage (MV) networks because the loads are widely distributed in the forested terrain. Such parts of the network are exposed to leaning trees which produce partial discharges (PDs) in CC lines. This thesis presents a technique to locate the PD source on CC overhead distribution line networks. The algorithm is developed and tested using a simulated study and experimental measurements. The Electromagnetic Transient Program-Alternative Transient Program (EMTP-ATP) is used to simulate and analyze a three-phase PD monitoring system, while MATLAB is used for post-processing of the high frequency signals which were measured. A Rogowski coil is used as the measuring sensor. A multi-end correlation-based technique for PD location is implemented using the theory of maximum correlation factor in order to find the time difference of arrival (TDOA) between signal arrivals at three synchronized measuring points. The three stages of signal analysis used are: 1) denoising  by applying discrete wavelet transform (DWT); 2) extracting the PD features using the absolute or windowed standard deviation (STD) and; 3) locating the PD point. The advantage of this technique is the ability to locate the PD source without the need to know the first arrival time and the propagation velocity of the signals. In addition, the faulty section of the CC line between three measuring points can also be identified based on the degrees of correlation. An experimental analysis is performed to evaluate the PD measurement system performance for PD location on CC overhead lines. The measuring set-up is arranged in a high voltage (HV) laboratory. A multi-end measuring method is chosen as a technique to locate the PD source point on the line. A power transformer 110/20 kV was used to energize the AC voltage up to 11.5 kV/phase (20 kV system). The tests were designed to cover different conditions such as offline and online measurements. The thesis evaluates the possibility of using a Rogowski coil for locating faults in MV distribution lines and a test bench of a 20 kV distribution network is developed. Different fault scenarios are simulated including earth and phase faults, arcing faults and faults caused by leaning trees. Results favourably show the possibility of using a Rogowski coil for locating faults in distribution networks.  

    Synchrophasor Assisted Efficient Fault Location Techniques In An Active Distribution Network

    Get PDF
    Reliability of an electrical system can be improved by an efficient fault location identification for the fast repair and remedial actions. This scenario changes when there are large penetrations of distributed generation (DG) which makes the distribution system an active distribution system. An efficient use of synchrophasors in the distribution network is studied with bidirectional power flow, harmonics and low angle difference consideration which are not prevalent in a transmission network. A synchrophasor estimation algorithm for the P class PMU is developed and applied to identify efficient fault location. A fault location technique using two ended synchronized measurement is derived from the principle of transmission line settings to work in a distribution network which is independent of line parameters. The distribution systems have less line length, harmonics and different sized line conductors, which affects the sensitivity of the synchronized measurements, Total Vector Error (TVE) and threshold for angular separation between different points in the network. A new signal processing method based on Discrete Fourier Transform (DFT) is utilized to work in a distribution network as specified in IEEE C37.118 (2011) standard for synchrophasor. A specific P and M classes of synchrophasor measurements are defined in the standard. A tradeoff between fast acting P class and detailed measurement M class is sought to work specifically in the distribution system settings which is subjected to large amount of penetrations from the renewable energy

    Fault Location in Grid Connected Ungrounded PV Systems Using Wavelets

    Get PDF
    Solar photovoltaic (PV) power has become one of the major sources of renewable energy worldwide. This thesis develops a wavelet-based fault location method for ungrounded PV farms based on pattern recognition of the high frequency transients due to switching frequencies in the system and which does not need any separate devices for fault location. The solar PV farm used for the simulation studies consists of a large number of PV modules connected to grid-connected inverters through ungrounded DC cables. Manufacturers report that about 1% of installed PV panels fail annually. Detecting phase to ground faults in ungrounded underground DC cables is also difficult and time consuming. Therefore, identifying ground faults is a significant problem in ungrounded PV systems because such earth faults do not provide sufficient fault currents for their detection and location during system operation. If such ground faults are not cleared quickly, a subsequent ground fault on the healthy phase will create a complete short-circuit in the system, which will cause a fire hazard and arc-flashing. Locating such faults with commonly used fault locators requires costly external high frequency signal generators, transducers, relays, and communication devices as well as generally longer lead times to find the fault. This thesis work proposes a novel fault location scheme that overcomes the shortcomings of the currently available methods. In this research, high frequency noise patterns are used to identify the fault location in an ungrounded PV farm. This high frequency noise is generated due to the switching transients of converters combined with parasitic capacitance of PV panels and cables. The pattern recognition approach, using discrete wavelet transform (DWT) multi-resolution analysis (MRA) and artificial neural networks (ANN), is utilized to investigate the proposed method for ungrounded grid integrated PV systems. Detailed time domain electromagnetic simulations of PV systems are done in a real-time environment and the results are analyzed to verify the performance of the fault locator. The fault locator uses a wavelet transform-based digital signal processing technique, which uses the high frequency patterns of the mid-point voltage signal of the converters to analyze the ground fault location. The Daubechies 10 (db10) wavelet and scale 11 are chosen as the appropriate mother wavelet function and decomposition level according to the characteristics of the noise waveform to give the proposed method better performance. In this study, norm values of the measured waveform at different frequency bands give unique features at different fault locations and are used as the feature vectors for pattern recognition. Then, the three-layer feed-forward ANN classifier, which can automatically classify the fault locations according to the extracted features, is investigated. The neural network is trained with the Levenberg-Marquardt back-propagation learning algorithm. The proposed fault locating scheme is tested and verified for different types of faults, such as ground and line-line faults at PV modules and cables of the ungrounded PV system. These faults are simulated in a real-time environment with a digital simulator and the data is then analyzed with wavelets in MATLAB. The test results show that the proposed method achieves 99.177% and 97.851% of fault location accuracy for different faults in DC cables and PV modules, respectively. Finally, the effectiveness and feasibility of the designed fault locator in real field applications is tested under varying fault impedance, power outputs, temperature, PV parasitic elements, and switching frequencies of the converters. The results demonstrate the proposed approach has very accurate and robust performance even with noisy measurements and changes in operating conditions

    Architectures for the Future Networks and the Next Generation Internet: A Survey

    Get PDF
    Networking research funding agencies in the USA, Europe, Japan, and other countries are encouraging research on revolutionary networking architectures that may or may not be bound by the restrictions of the current TCP/IP based Internet. We present a comprehensive survey of such research projects and activities. The topics covered include various testbeds for experimentations for new architectures, new security mechanisms, content delivery mechanisms, management and control frameworks, service architectures, and routing mechanisms. Delay/Disruption tolerant networks, which allow communications even when complete end-to-end path is not available, are also discussed

    Ubicación de fallas en líneas de transmisión en sistemas de potencia desbalanceados mediante la transformada de wavelet

    Get PDF
    En este trabajo se presenta la ubicación de fallas en líneas de transmisión en sistemas de potencia desbalanceados mediante la transformada de wavelet. El método propuesto está orientado a la localización del punto donde se originó la falla para garantizar una inmediata restauración del sistema. El análisis se lo realiza en un sistema IEEE de 9 barras en el software ATP, este software ayuda en la simulación de distintos tipos de fallas y además nos permite generar un sistema desbalanceado al agregar cargas en las barras 5, 6 y 8. Con la obtención de este sistema desbalanceado a través de las PMU se obtienen las variables deseadas tanto de voltaje como de corriente, estas simulaciones se lo realizan en estados de pre-falla y de falla en nuestro sistema para luego estos datos trasladarlos hacia el Matlab donde se procede a la aplicación de la transformada de wavelet.The present research shows a methodology for fault location in transmission lines in unbalanced electrical power systems through the wavelet transform. The methodology was tested in 9 buses IEEE test system, it used the ATPDraw software for generate the faults and acquired the data for analyze in Matlab, the data was measuring by PMU, and the PMU optimal location was deployment through GAMS. It was proposed some studies cases consider unbalanced loads, monophasic, biphasic and triphasic faults in different distances. The model used de voltage and current phasors in each phase in pre-fault and fault states, with this information the wavelet transform analyze the changes and reveals which element is in fault and the distance where it was occurs whit low error compared with original distance

    Time domain analysis of switching transient fields in high voltage substations

    Get PDF
    Switching operations of circuit breakers and disconnect switches generate transient currents propagating along the substation busbars. At the moment of switching, the busbars temporarily acts as antennae radiating transient electromagnetic fields within the substations. The radiated fields may interfere and disrupt normal operations of electronic equipment used within the substation for measurement, control and communication purposes. Hence there is the need to fully characterise the substation electromagnetic environment as early as the design stage of substation planning and operation to ensure safe operations of the electronic equipment. This paper deals with the computation of transient electromagnetic fields due to switching within a high voltage air-insulated substation (AIS) using the finite difference time domain (FDTD) metho

    Permanent Fault Location in Distribution System Using Phasor Measurement Units (PMU) in Phase Domain

    Get PDF
    This paper proposes a new method for locating high impedance fault in distribution systems using phasor measurement units (PMUs) installed at certain locations of the system. To implement this algorithm, at first a new method is suggested for the placement of PMUs. Taking information from the units, voltage and current of the entire distribution system are calculated. Then, the two buses in which the fault has been occurred is determined, and location and type of the fault are identified. The main characteristics of the proposed method are: the use of distributed parameter line model in phase domain, considering the presence of literals, and high precision in calculating the high impedance fault location. The results obtained from simulations in EMTP-RV and MATLAB software indicate high accuracy and independence of the proposed method from the fault type, fault location and fault resistance compared to previous methods, so that the maximum observed error was less than 0.15

    Line outage detection using phasor angle measurement

    Get PDF
    A continuous power supply is a pre-requisite to maintenance of successful economic activities and modern lifestyles. Supply interruptions lead to adverse commercial and social effects which worsen as the duration of the power outage increases. A system that can monitor the location of the outage will greatly help in the response time needed to restore power. The current project suggests such a solution. The primary aim of the project was to develop an algorithm that could detect where and when line outage exists based on “phasor angle measurement” technique. From a central position, the system is able to detect the location of a fault and show the lines affected by outage. The information will then be sent to a team on the ground to respond immediately to restore the power. The literature review conducted describes similar existing systems focusing on their operation and limitations. The project then suggests a solution to counter shortcomings of previous systems. A detailed description of the design and operation of the proposed system is provided. The report concludes that the proposed design is low cost, more reliable and more user-friendly than pre-existing systems
    corecore