4 research outputs found

    Algebraic Cryptanalysis of Deterministic Symmetric Encryption

    Get PDF
    Deterministic symmetric encryption is widely used in many cryptographic applications. The security of deterministic block and stream ciphers is evaluated using cryptanalysis. Cryptanalysis is divided into two main categories: statistical cryptanalysis and algebraic cryptanalysis. Statistical cryptanalysis is a powerful tool for evaluating the security but it often requires a large number of plaintext/ciphertext pairs which is not always available in real life scenario. Algebraic cryptanalysis requires a smaller number of plaintext/ciphertext pairs but the attacks are often underestimated compared to statistical methods. In algebraic cryptanalysis, we consider a polynomial system representing the cipher and a solution of this system reveals the secret key used in the encryption. The contribution of this thesis is twofold. Firstly, we evaluate the performance of existing algebraic techniques with respect to number of plaintext/ciphertext pairs and their selection. We introduce a new strategy for selection of samples. We build this strategy based on cube attacks, which is a well-known technique in algebraic cryptanalysis. We use cube attacks as a fast heuristic to determine sets of plaintexts for which standard algebraic methods, such as Groebner basis techniques or SAT solvers, are more efficient. Secondly, we develop a~new technique for algebraic cryptanalysis which allows us to speed-up existing Groebner basis techniques. This is achieved by efficient finding special polynomials called mutants. Using these mutants in Groebner basis computations and SAT solvers reduces the computational cost to solve the system. Hence, both our methods are designed as tools for building polynomial system representing a cipher. Both tools can be combined and they lead to a significant speedup, even for very simple algebraic solvers

    LIPIcs, Volume 261, ICALP 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 261, ICALP 2023, Complete Volum

    High-Luminosity Large Hadron Collider (HL-LHC): Technical Design Report

    Get PDF
    The Large Hadron Collider (LHC) is one of the largest scientific instruments ever built. Since opening up a new energy frontier for exploration in 2010, it has gathered a global user community of about 9000 scientists working in fundamental particle physics and the physics of hadronic matter at extreme temperature and density. To sustain and extend its discovery potential, the LHC will need a major upgrade in the 2020s. This will increase its instantaneous luminosity (rate of collisions) by a factor of five beyond the original design value and the integrated luminosity (total number of collisions) by a factor ten. The LHC is already a highly complex and exquisitely optimised machine so this upgrade must be carefully conceived and will require new infrastructures (underground and on surface) and over a decade to implement. The new configuration, known as High Luminosity LHC (HL-LHC), relies on a number of key innovations that push accelerator technology beyond its present limits. Among these are cutting-edge 11–12 Tesla superconducting magnets, compact superconducting cavities for beam rotation with ultra-precise phase control, new technology and physical processes for beam collimation and 100 metre-long high-power superconducting links with negligible energy dissipation, all of which required several years of dedicated R&D effort on a global international level. The present document describes the technologies and components that will be used to realise the project and is intended to serve as the basis for the detailed engineering design of the HL-LHC
    corecore