5,619 research outputs found

    Micro-manufacturing : research, technology outcomes and development issues

    Get PDF
    Besides continuing effort in developing MEMS-based manufacturing techniques, latest effort in Micro-manufacturing is also in Non-MEMS-based manufacturing. Research and technological development (RTD) in this field is encouraged by the increased demand on micro-components as well as promised development in the scaling down of the traditional macro-manufacturing processes for micro-length-scale manufacturing. This paper highlights some EU funded research activities in micro/nano-manufacturing, and gives examples of the latest development in micro-manufacturing methods/techniques, process chains, hybrid-processes, manufacturing equipment and supporting technologies/device, etc., which is followed by a summary of the achievements of the EU MASMICRO project. Finally, concluding remarks are given, which raise several issues concerning further development in micro-manufacturing

    Workshop on "Control issues in the micro / nano - world".

    No full text
    International audienceDuring the last decade, the need of systems with micro/nanometers accuracy and fast dynamics has been growing rapidly. Such systems occur in applications including 1) micromanipulation of biological cells, 2) micrassembly of MEMS/MOEMS, 3) micro/nanosensors for environmental monitoring, 4) nanometer resolution imaging and metrology (AFM and SEM). The scale and requirement of such systems present a number of challenges to the control system design that will be addressed in this workshop. Working in the micro/nano-world involves displacements from nanometers to tens of microns. Because of this precision requirement, environmental conditions such as temperature, humidity, vibration, could generate noise and disturbance that are in the same range as the displacements of interest. The so-called smart materials, e.g., piezoceramics, magnetostrictive, shape memory, electroactive polymer, have been used for actuation or sensing in the micro/nano-world. They allow high resolution positioning as compared to hinges based systems. However, these materials exhibit hysteresis nonlinearity, and in the case of piezoelectric materials, drifts (called creep) in response to constant inputs In the case of oscillating micro/nano-structures (cantilever, tube), these nonlinearities and vibrations strongly decrease their performances. Many MEMS and NEMS applications involve gripping, feeding, or sorting, operations, where sensor feedback is necessary for their execution. Sensors that are readily available, e.g., interferometer, triangulation laser, and machine vision, are bulky and expensive. Sensors that are compact in size and convenient for packaging, e.g., strain gage, piezoceramic charge sensor, etc., have limited performance or robustness. To account for these difficulties, new control oriented techniques are emerging, such as[d the combination of two or more ‘packageable' sensors , the use of feedforward control technique which does not require sensors, and the use of robust controllers which account the sensor characteristics. The aim of this workshop is to provide a forum for specialists to present and overview the different approaches of control system design for the micro/nano-world and to initiate collaborations and joint projects

    Temperature compensated tactile sensing using MOSFET with P(VDF-TrFE)/BaTiO3 capacitor as extended gate

    Get PDF
    This work presents Poly(vinylidene fluoride – trifluoroethylene))/Barium Titanate (P(VDF-TrFE)-BT) nanocomposite based touch sensors tightly coupled with MOSFET devices in extended gate configuration. The P(VDF-TrFE)-BT nanocomposite exploits the distinct piezo and pyroelectric properties of P(VDF-TrFE) polymer matrix and BT fillers to suppress the temperature response when force and temperature are varied simultaneously. The reasons for this unique feature have been established through structural and electrical characterization of nanocomposite. The proposed touch sensor was tested over a wide range of force/pressure (0-4N)/(0-364 Pa) and temperature (26-70°C) with almost linear response. The sensitivity towards force/pressure and temperature sensor are 670 mV/N/7.36 mV/Pa and 15.34 mV/°C respectively. With this modified touch sensing capability, the proposed sensors will open new direction for tactile sensing in robotic applications

    A Room-Temperature High-Conductivity Metal Printing Paradigm with Visible-Light Projection Lithography

    Get PDF
    Fabricating electronic devices require integrating metallic conductors and polymeric insulators in complex structures. Current metal-patterning methods such as evaporation and laser sintering require vacuum, multistep processes, and high temperature during sintering or postannealing to achieve desirable electrical conductivity, which damages low-temperature polymer substrates. Here reports a facile ecofriendly room-temperature metal printing paradigm using visible-light projection lithography. With a particle-free reactive silver ink, photoinduced redox reaction occurs to form metallic silver within designed illuminated regions through a digital mask on substrate with insignificant temperature change (<4 °C). The patterns exhibit remarkably high conductivity achievable at room temperature (2.4 × 107 S m−1, ≈40% of bulk silver conductivity) after simple room-temperature chemical annealing for 1–2 s. The finest silver trace produced reaches 15 ”m. Neither extra thermal energy input nor physical mask is required for the entire fabrication process. Metal patterns were printed on various substrates, including polyethylene terephthalate, polydimethylsiloxane, polyimide, Scotch tape, print paper, Si wafer, glass coverslip, and polystyrene. By changing inks, this paradigm can be extended to print various metals and metal–polymer hybrid structures. This method greatly simplifies the metal-patterning process and expands printability and substrate materials, showing huge potential in fabricating microelectronics with one system

    System-Engineered Miniaturized Robots: From Structure to Intelligence

    Get PDF
    The development of small machines, once envisioned by Feynman decades ago, has stimulated significant research in materials science, robotics, and computer science. Over the past years, the field of miniaturized robotics has rapidly expanded with many research groups contributing to the numerous challenges inherent to this field. Smart materials have played a particularly important role as they have imparted miniaturized robots with new functionalities and distinct capabilities. However, despite all efforts and many available soft materials and innovative technologies, a fully autonomous system-engineered miniaturized robot (SEMR) of any practical relevance has not been developed yet. In this review, the foundation of SEMRs is discussed and six main areas (structure, motion, sensing, actuation, energy, and intelligence) which require particular efforts to push the frontiers of SEMRs further are identified. During the past decade, miniaturized robotic research has mainly relied on simplicity in design, and fabrication. A careful examination of current SEMRs that are physically, mechanically, and electrically engineered shows that they fall short in many ways concerning miniaturization, full-scale integration, and self-sufficiency. Some of these issues have been identified in this review. Some are inevitably yet to be explored, thus, allowing to set the stage for the next generation of intelligent, and autonomously operating SEMRs

    Die-Level Thinning for Flip-Chip Integration on Flexible Substrates

    Get PDF
    Die-level thinning, handling, and integration of singulated dies from multi-project wafers (MPW) are often used in research, early-stage development, and prototyping of flexible devices. There is a high demand for thin silicon devices for several applications, such as flexible electronics. To address this demand, we study a novel post-processing method on two silicon devices, an electrochemical impedance sensor, and Complementary Metal Oxide Semiconductor (CMOS) die. Both are drawn from an MPW batch, thinned at die-level after dicing and singulation down to 60 µm. The thinned dies were flip-chip bonded to flexible substrates and hermetically sealed by two techniques: thermosonic bonding of Au stud bumps and anisotropic conductive paste (ACP) bonding. The performance of the thinned dies was assessed via functional tests and compared to the original dies. Furthermore, the long-term reliability of the flip-chip bonded thinned sensors was demonstrated to be higher than the conventional wire-bonded sensors

    Light-driven micro-robotics for contemporary biophotonics.

    Get PDF

    Microrobots for wafer scale microfactory: design fabrication integration and control.

    Get PDF
    Future assembly technologies will involve higher automation levels, in order to satisfy increased micro scale or nano scale precision requirements. Traditionally, assembly using a top-down robotic approach has been well-studied and applied to micro-electronics and MEMS industries, but less so in nanotechnology. With the bloom of nanotechnology ever since the 1990s, newly designed products with new materials, coatings and nanoparticles are gradually entering everyone’s life, while the industry has grown into a billion-dollar volume worldwide. Traditionally, nanotechnology products are assembled using bottom-up methods, such as self-assembly, rather than with top-down robotic assembly. This is due to considerations of volume handling of large quantities of components, and the high cost associated to top-down manipulation with the required precision. However, the bottom-up manufacturing methods have certain limitations, such as components need to have pre-define shapes and surface coatings, and the number of assembly components is limited to very few. For example, in the case of self-assembly of nano-cubes with origami design, post-assembly manipulation of cubes in large quantities and cost-efficiency is still challenging. In this thesis, we envision a new paradigm for nano scale assembly, realized with the help of a wafer-scale microfactory containing large numbers of MEMS microrobots. These robots will work together to enhance the throughput of the factory, while their cost will be reduced when compared to conventional nano positioners. To fulfill the microfactory vision, numerous challenges related to design, power, control and nanoscale task completion by these microrobots must be overcome. In this work, we study three types of microrobots for the microfactory: a world’s first laser-driven micrometer-size locomotor called ChevBota stationary millimeter-size robotic arm, called Solid Articulated Four Axes Microrobot (sAFAM), and a light-powered centimeter-size crawler microrobot called SolarPede. The ChevBot can perform autonomous navigation and positioning on a dry surface with the guidance of a laser beam. The sAFAM has been designed to perform nano positioning in four degrees of freedom, and nanoscale tasks such as indentation, and manipulation. And the SolarPede serves as a mobile workspace or transporter in the microfactory environment

    Surface micromachined mechanisms and micromotors

    Get PDF
    Electric micromotors are sub-millimeter sized actuators capable of unrestrained motion in at least one degree of freedom. Polysilicon surface micromachining using heavily phosphorus-doped LPCVD polysilicon for the structural material, LPCVD silicon nitride for the electrical isolation and deposited silicon dioxide for the sacrificial material has formed the fabrication technology base for the development of these micromotors. Two polysilicon surface micromachining processes, referred to here as the center-pin and flange, have been demonstrated for the fabrication of passive mechanisms and micromotors. Passive mechanisms such as gear trains, cranks and manipulators have been implemented on silicon. Reported operational micromotors have been of the rotary variable-capacitance salient-pole and harmonic (or wobble) side-drive designs. These micromotors are capable of motive torques in the 10 pN m order of magnitude range. Preliminary progress has been made in studying the operational, friction and wear characteristics of these micromechanical devices. Typical operational voltages have been as low as 37 V and 26 V across 1.5 mu m air gap salient-pole and harmonic micromotors. These excitations correspond to electric field intensities above 10(8) Vm-1 in the micromotor air gaps. Salient-pole and wobble micromotors have been reported to operate at speeds as high as 15000 rpm and 700 rpm, respectively. Micromotor lifetimes of at least many millions of cycles over a period of several days have been reported

    Implementation of Soft Lithography for the Fabrication of Stacked Dielectric Elastomer Actuators for Soft Robotics

    Get PDF
    Advancements in software engineering have enabled the robotics industry to transition from the use of giant industrial robots to more friendly humanoid robots. Soft robotics is one of the key elements needed to advance the transition process by providing a safer way for robots to interact with the environment. Electroactive polymers (EAPs) are one of the best candidate materials for the next generation of soft robotic actuators and artificial muscles. Lightweight dielectric elastomer actuators (DEAs) provide optimal properties such as high elasticity, rapid response rates, mechanical robustness and compliance. However, for DEAs to become widely used as artificial muscles or soft actuators, there are current limitations, such as high actuation voltage requirements, control of actuation direction, and scaling, that need to be addressed. This study presents a novel approach inspired by the natural skeletal muscles to overcome the drawbacks of conventional DEAs. Instead of fabricating a large DEA device, smaller sub-units can be fabricated and bundled together to form larger actuators, similar to the way myofibrils form myocytes in skeletal muscles. Soft lithography and other microfabrication techniques were utilized to allow fabrication of silicone based multilayer stacked DEA structures, composed of hundreds of micro-sized DEA units with mechanically compliant electrodes. Experiments show that free-standing multilayer DEA structures can be fabricated using existing microfabrication tools. Three fabrication approaches, using spin coating, film casting and injection molding were evaluated to improve the repeatability of the fabrication process. Multi-layer DEA fibers can be actuated in sub-kV range while maintaining actuation ratio above 5%
    • 

    corecore