355 research outputs found

    Flaws in Differential Cryptanalysis of Reduced Round PRESENT

    Get PDF
    In this paper, we have presented flaws in differential cryptanalysis of reduced round variant of PRESENT given by M.Wang in [3] [4] for 80 bits key length and we have shown that it is not possible to recover 32 subkey bits by differential cryptanalysis of 16-round PRESENT as claimed in [3] [4].We have also shown that at the most 30 subkey bits can be recovered by the attack given in [4] after some modifications in the algorithm presented in [3][4]

    Survey and Benchmark of Block Ciphers for Wireless Sensor Networks

    Get PDF
    Cryptographic algorithms play an important role in the security architecture of wireless sensor networks (WSNs). Choosing the most storage- and energy-efficient block cipher is essential, due to the facts that these networks are meant to operate without human intervention for a long period of time with little energy supply, and that available storage is scarce on these sensor nodes. However, to our knowledge, no systematic work has been done in this area so far.We construct an evaluation framework in which we first identify the candidates of block ciphers suitable for WSNs, based on existing literature and authoritative recommendations. For evaluating and assessing these candidates, we not only consider the security properties but also the storage- and energy-efficiency of the candidates. Finally, based on the evaluation results, we select the most suitable ciphers for WSNs, namely Skipjack, MISTY1, and Rijndael, depending on the combination of available memory and required security (energy efficiency being implicit). In terms of operation mode, we recommend Output Feedback Mode for pairwise links but Cipher Block Chaining for group communications

    Energy Efficient Security Framework for Wireless Local Area Networks

    Get PDF
    Wireless networks are susceptible to network attacks due to their inherentvulnerabilities. The radio signal used in wireless transmission canarbitrarily propagate through walls and windows; thus a wireless networkperimeter is not exactly known. This leads them to be more vulnerable toattacks such as eavesdropping, message interception and modifications comparedto wired-line networks. Security services have been used as countermeasures toprevent such attacks, but they are used at the expense of resources that arescarce especially, where wireless devices have a very limited power budget.Hence, there is a need to provide security services that are energy efficient.In this dissertation, we propose an energy efficient security framework. Theframework aims at providing security services that take into account energyconsumption. We suggest three approaches to reduce the energy consumption ofsecurity protocols: replacement of standard security protocol primitives thatconsume high energy while maintaining the same security level, modification ofstandard security protocols appropriately, and a totally new design ofsecurity protocol where energy efficiency is the main focus. From ourobservation and study, we hypothesize that a higher level of energy savings isachievable if security services are provided in an adjustable manner. Wepropose an example tunable security or TuneSec system, which allows areasonably fine-grained security tuning to provide security services at thewireless link level in an adjustable manner.We apply the framework to several standard security protocols in wirelesslocal area networks and also evaluate their energy consumption performance.The first and second methods show improvements of up to 70% and 57% inenergy consumption compared to plain standard security protocols,respectively. The standard protocols can only offer fixed-level securityservices, and the methods applied do not change the security level. The thirdmethod shows further improvement compared to fixed-level security by reducing(about 6% to 40%) the energy consumed. This amount of energy saving can bevaried depending on the configuration and security requirements

    Lightweight Cryptography for Passive RFID Tags

    Get PDF

    MOIM: a novel design of cryptographic hash function

    Get PDF
    A hash function usually has two main components: a compression function or permutation function and mode of operation. In this paper, we propose a new concrete novel design of a permutation based hash functions called MOIM. MOIM is based on concatenating two parallel fast wide pipe constructions as a mode of operation designed by Nandi and Paul, and presented at Indocrypt 2010 where the size of the internal state is significantly larger than the size of the output. And the permutations functions used in MOIM are inspired from the SHA-3 finalist Grøstl hash function which is originally inspired from Rijndael design (AES). As a consequence there is a very strong confusion and diffusion in MOIM. Also, we show that MOIM resists all the generic attacks and Joux attack in two defense security levels
    corecore