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Abstract

Wireless networks are susceptible to network attacks due to their inherent vulnerabilities.

The radio signal used in wireless transmission can arbitrarily propagate through walls and

windows; thus a wireless network perimeter is not exactly known. This leads them to be

more vulnerable to attacks such as eavesdropping, message interception and modifications

compared to wired-line networks. Security services have been used as countermeasures to

prevent such attacks, but they are used at the expense of resources that are scarce especially,

where wireless devices have a very limited power budget. Hence, there is a need to provide

security services that are energy efficient.

In this dissertation, we propose an energy efficient security framework. The framework

aims at providing security services that take into account energy consumption. We suggest

three approaches to reduce the energy consumption of security protocols: replacement of

standard security protocol primitives that consume high energy while maintaining the same

security level, modification of standard security protocols appropriately, and a totally new

design of security protocol where energy efficiency is the main focus. From our observation

and study, we hypothesize that a higher level of energy savings is achievable if security

services are provided in an adjustable manner. We propose an example tunable security or

TuneSec system, which allows a reasonably fine-grained security tuning to provide security

services at the wireless link level in an adjustable manner.

We apply the framework to several standard security protocols in wireless local area
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networks and also evaluate their energy consumption performance. The first and second

methods show improvements of up to 70% and 57% in energy consumption compared to

plain standard security protocols, respectively. The standard protocols can only offer fixed-

level security services, and the methods applied do not change the security level. The third

method shows further improvement compared to fixed-level security by reducing (about 6%

to 40%) the energy consumed. This amount of energy saving can be varied depending on

the configuration and security requirements.

Keywords: Network Security, Wireless Networks, Energy Efficiency, Security Strength,

Tunable Security.
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Mossé for lending me his instrument for my experiments and also guiding me in the research

related to energy efficiency.

My dissertation research is supported mainly by Dr. Prashant Krishnamurthy’s research

funding, including National Institute of Standards and Technology (NIST) Critical Infras-

tructure Protection (CIP) grant No. 60NANB1D0120 and National Science Foundation

(NSF) Federal Cyber Service - Scholarship for Service grant. I would also like to thank Dr.

Lewis for his partial financial support during my Ph.D. years. Finally, I would like to thank

the Royal Thai Government for giving me a 6-year scholarship that initiates the possibility

of having my Ph.D. in the United States.

Five years in Pittsburgh would have not been wonderful without friends, Tanapat, Wasan,

Gwyn, Peerapon, Chatree, Wiklom, Kamol, Saowanee, Tavida, Wirun, other Thai students,

and volleyball folks in Pittsburgh. They gave me warm feeling like my second home is in

Pittsburgh. I would like to thank them for their friendship and supports. I would also like

to thank my colleagues in Computer Science Department, Matt Craven and Cosmin Rusu,

for their time and help in power measurement. I would like to give my special thank to my

xvi



beloved Pornpen for her immutable love and care, which gave me strength in the last two

years.

Finally, I would like to thank my parents, Chairat and Prinda, my sisters, Laddawan,

Tippawan, and Tanyarat, as well as my only brother, Pradya, for their invaluable love. I feel

so grateful having them all in my life.

xvii



I. INTRODUCTION

In the last two decades many wireless networking projects have been started as initiatives

towards a network of a future world without wires. Wireless networks have been rapidly

adopted and widely deployed around the world. The most successful wireless network is

the cellular phone network which started as a very low speed link with minimum features.

Nowadays, it can provide up to 2 Mbps, and it has become the largest and most rapidly grown

network with millions of subscribers. Currently, wireless networks have expanded to include

a variety of devices such as laptops, personal digital assistants (PDAs), pagers, sensors and

wearable computers. Wireless networks are rapidly expanding due to their ability to provide

communications with ubiquity and mobility. Without wires, users with wireless devices can

move freely and are able to access wireless services anywhere any time. More and more

people now rely on small wireless devices to fulfill their tasks. Hence, both the devices and

the underlying communications need to be robust to provide reliable services and need to be

secure to protect the information they carry.

A. NETWORK SECURITY

Generally, network security is divided into four main categories: confidentiality, authenti-

cation, integrity, and non-repudiation [110]. Confidentiality services ensure that exchanged

information is accessible only to authorized parties by using encryption. It is used to protect

against eavesdropping from attackers who overhear transmissions over a wireless channel.

Authentication services verify the validity of identity of an intended party, and protect

against masquerading or identity spoofing which are attacks to gain unauthorized access to
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a network. Integrity services are used to confirm that the information has not been mod-

ified, duplicated, or re-ordered during a transfer. We can provide information integrity by

adding additional information, called keyed message digests or keyed hashes, that are cryp-

tographically related to the transferred information. The keyed message digests also provide

message authentication, where a receiver is able to verify the authenticity of the message

origin or generator. The keyed message digest is sometimes called Message Authentication

Code (MAC). Non-repudiation services ensure that a receiver can verify the unique origin

of a message and its creator, or a sender can guarantee to any party that the message has

originated from himself, and it has not been modified during transmission. Non-repudiation

services are also a combination of message authentication and integrity services.

B. SECURITY IN WIRELESS NETWORKS

Security in wireless networks is of paramount importance. Due to the broadcast nature

of the wireless radio signals, wireless networks are implicitly vulnerable to several network

attacks. Anyone within the wireless transmission range of a device (including malicious users

or attackers) is able to passively listen to or eavesdrop on the signals and could potentially

access information from the signals. It is also possible to actively transmit signals that can

attack the network. Wireless networks are therefore extremely vulnerable to many kinds of

security threats and they essentially need strong countermeasures to overcome those threats.

In the past few years, wireless data networks have been exponentially growing. Many

business and information technology applications have relied on wireless data networks such

as IEEE 802.11 Wireless Local Area Networks (WLANs). The threats to those networks

are also growing. Due to the discovery of vulnerabilities of WLANs in 2001, many business

and government sectors have temporarily ceased to adopt WLANs in their networks because

they increase threats to their businesses [40].

The new cybersecurity policy from the Department of Homeland security has identified

many threats to our national networks and many business and government units have been

actively aware of these threats. The threats in wireless networks have also been identified as
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major threats to our national information security [34]. Subsequently, the National Institute

of Standards and Technology (NIST) released a special publication as a guideline for wireless

security geared primarily towards wireless local/personal area networks [62].

Providing security is not an option for wireless operators. It is imperative to provide

security services to wireless networks. However, providing security for wireless devices is a

challenging research topic. Wireless devices have limited resources such as low-speed CPUs,

small-sized memory, and importantly limited battery power. Making efficient use of battery

power alone has been an interesting research topic [55, 71, 106]. Enabling the efficient use

of security services in battery-powered devices is even more interesting and challenging.

Security services rely on cryptographic and mathematical functions that are known to be

computationally intensive. To deliver security to such resource-limited, battery-powered

devices, there is a need for methodologies to efficiently utilize a “reasonable” amount of

resources to supply a “reasonable” amount of security.

C. THE MAJOR CHALLENGES

Much research has focused on energy-efficient communication protocols for wireless devices.

Several protocols have been designed at different layers in the communication protocol stack

to save energy. At the link layer, for example, an adaptive transmission control protocol

was designed to save energy as described in [121]. In the standard protocol, after sending

a data packet, an acknowledgment packet is sent by the receiver to confirm the packet

delivery. However, when wireless channel conditions are degraded during transmission, the

acknowledgment packet may not be received due to the loss of itself or the transmitted data

packet. The adaptive transmission control protocol stops sending data packets, but instead

sends short packets or probes to the receiver. Until an acknowledgment of the probe packet is

received, the sender keeps sending probes. Once an acknowledgment is received, the sender

resumes the normal transmission mode. The idea here is that short probes consume less

energy than longer data packets for transmission.

Another example is in high error rate environments where a sender may adjust its error
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correcting code rate depending on the channel conditions encountered. Using lower rate

error correcting codes in low error environments can reduce energy while maintaining channel

integrity. By using these methods, energy saving is possible because sending short packets

or adjusting the error correcting code reduces energy consumption. These are examples of

how a protocol can be adapted or adjusted to dynamic environments in wireless networks.

To our knowledge, there are no adaptive or adjustable security protocols or systems that

have been suggested for use in wireless networks. Some protocols may offer adjustability or

can be used adaptively [43, 63], but none has really been used for the purpose of performance

optimization and energy efficiency. This may be due to the fact that these security protocols

are implemented for wired-line network systems and thus they do not consider variable

network environments and limited resources as factors in their design. Some security systems

have also been proposed to offer security adjustability, but none has considered the energy

efficiency [21, 22, 90].

For example, let us consider Kerberos which is aimed at providing authentication and

key exchange services in wired-line distributed networked environments [80]. A client device

needs to exchange at least six messages to be authenticated, to get a ticket for access, and

to access an application server. Transmission of these message exchanges could consider-

ably deplete the battery power of devices and would also substantially consume the network

bandwidth. Therefore, security services provided in wired-line networks can no longer be

directly applied as-is to wireless networks due to the difference in network characteristics.

Security in wired-line networks also has several assumptions about the networks (such as:

the transmission line is assumed to be somewhat physically protected, or devices operat-

ing in wired-line networks have unlimited-power and are not resource-limited, etc.). These

assumptions cannot be applied to wireless networks and systems. The following are some

unique characteristics of wireless networks that are relevant to security protocol design.

First, wireless networks are known to be “open”, in which their physical perimeter is

unknown. A person trying to access a wireless network may not be inside an authorized

perimeter. Additionally, since there is, of course, no wire in wireless networks, anyone

including an attacker can easily deploy his own wireless network which can be malicious.

An example is the case where an attacker deploys a rogue access point outside a company
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building to lure company employees to his malicious network to steal valuable information.

This attack is known as the “parking lot” attack [25]. Thus, the assumption of trust of

any network access point no longer applies to the design of a security protocol for wireless

networks.

Second, bandwidth is a limited resource in wireless networks. In wired networks, band-

width can be expanded by deploying more communication lines. This is not the case in

wireless networks and so a wireless network protocol should use bandwidth efficiently. A

security protocol that sends too many messages over a wireless link would waste bandwidth

and consume unnecessary energy for message transmission.

Third, radio signals are randomly degraded due to environment dynamics. Transmission

via radio signals requires protocol synchronization that can deal with the randomly changing

environment. A simple security protocol synchronization may not be a solution due to

random loss of data. A complex synchronization may be too expensive for small limited

devices. Asynchronous transmission may be a suitable solution to security protocol design

for limited-resource networks.

Fourth, roaming is a unique service present primarily in wireless networks. Users with

wireless devices often roam from one access point to another access point, requiring mobility

management mechanisms such as location updates and session handoffs or re-associations.

Security service management is also required for such scenarios. Roaming can complicate the

process of security service provision, or can probably be too expensive for small devices since

the newly associated access point may or may not be as secure as the previously associated

one. Wireless devices may need to start over a security process to securely access the new

access point, hence, utilizing large amounts of energy.

Last, wireless devices are powered by a battery which is a very limited resource. From

Moore’s law, the number of transistors in a chip will be doubled approximately every 18

months [78]. It implicitly says that the power of computing will grow exponentially. However,

the capacity of batteries is growing linearly, and this introduces a “power gap” which is the

difference between the power required by computing and the battery capacity [67]. Thus,

battery power tends to be a very seriously limited resource for small wireless devices, and a

security protocol should utilize energy to the minimum extent possible. This aspect is the
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primary focus of this dissertation.

D. MOTIVATION

From the aforementioned characteristic differences compared to wired-line networks, wireless

networks need a security system or protocol that is properly designed to account for these

inevitable differences. While there are several issues related to wireless networks as described

above, the focus in this dissertation is to design adjustable security protocols that are energy

efficient. The main thesis of our work is to employ the concept that it is possible utilize a

“reasonable” amount of energy to provide a “reasonable” amount of security. We will focus

this work only on WLANs; however, this concept of adjustable security can be applied to

other wireless networks as well.

Providing a reasonable amount of energy using the adjustable security concept may be

possible due to the following hypotheses:

The first hypothesis is as follows. The importance of information exchanged in wireless

networks should be a factor in designing a security protocol. Instead of being fixed, the

security protocol should be adjustable in term of the degree of security for network packets.

For example, A wireless user may use a medium level of security for normal information

exchange on his laptop. Then, when he needs to exchange important information such as

for on-line banking, he may increase the security level of his wireless protocol. Then, after

the exchange, he may decrease the security level to save energy for his laptop. Therefore,

there should be a way to allow wireless users to adjust their level of security as needed.

The second hypothesis is that the degree of security should also be related to the wireless

technology. In WLANs, there are 3 main types of packets, Management, Control and Data

packets. Management packets are for network association, authentication, and discovery.

They may not require encryption since the content is not secret. However, they may need

message authentication for packet integrity. Control packets are for traffic and access control,

and require similar security services as Management packets. Data packets carry user’s data

and require encryption for privacy. In each packet type, there are several subtypes and
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each subtype may require different security levels. Therefore, a security protocol should be

adjustable to the wireless technology to provide optimal security services for energy efficiency.

The last but most important hypothesis for this dissertation is that all encryption al-

gorithms or ciphers may not be energy-efficient all the time as they are currently used in

wireless networks. There may be some ciphers that could provide the same security level,

but consume less energy under some circumstances. Therefore, adjustable performance of

energy consumption is possible by utilizing different ciphers for different services under dif-

ferent circumstances.

From these hypotheses, we propose a security framework that utilizes different security

algorithms with different properties to provide tunable security to limited, battery-powered

wireless devices in dynamic wireless environments so as to reduce the overall energy con-

sumption.

E. CONTRIBUTIONS

• Performed exhaustive measurements of time and energy consumption of cipher primitives

as a function of a variety of parameters such as packet size, key size, number of operational

rounds, size of secret etc. and developed mathematical models for energy consumption

• Developed a method to estimate the robustness of a cipher and extended it to include

security protocols so as to have quantitative measures for evaluating security strength

• Proposed three methods for saving energy in security protocols in general and applied

them to wireless local area networks

• Developed an example security protocol for WLANs at both session and packet levels

that saves energy up to 40% compared to standard security protocols
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F. THE OUTLINE OF THE THESIS

The rest of this dissertation is organized as follows. Chapter II explains related material

that is used as background knowledge in our work. In Chapter III, we perform a detailed

study and propose a performance model of energy consumption of cryptographic functions

used to provide security services. In Chapter IV, we discuss the level of security strength

and propose a performance model of security strength. In Chapter V, we propose an energy

efficient security framework, and show the application of the framework to standard security

protocols to improve their energy efficiency. The application of the framework shows that we

can save energy by changing or modifying the standard protocols. In Chapter VI, we propose

a greenfield approach in which a new security protocol, called TuneSec (Tunable Security),

is designed and evaluated. The concluding remarks and our future work are presented in

Chapter VII.
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II. BACKGROUND

In this chapter, we present an overview of topics that are closely related to our work. First,

we explain cryptography in general and describe some cryptographic algorithms in detail.

Then we describe network security services such as encryption, message integrity and authen-

tication, and digital signatures. Finally, we explain standard security protocols for WLANs.

A. CRYPTOGRAPHY

Cryptography plays a very important role in providing network security services such as

securing information exchange, authenticating users and validating users’ identities in a

communications network. Generally, cryptography is categorized into two kinds, symmetric

and asymmetric cryptography or secret-key and public-key cryptography respectively [109].

1. Symmetric Key Cryptography

Symmetric key cryptography uses only one key to provide security services such as confiden-

tiality and authentication as described later. The key is often referred to as a secret key;

therefore, symmetric key cryptography is often called Secret Key Cryptography (SKC).

SKC is widely used for data encryption due to its fast operation and portability [102].

Although the cipher is widely used to provide encryption, it is also used to deliver authen-

tication or integrity services by modifying the usage of the cipher. The cipher could be one

of two kinds, a stream cipher or a block cipher.

A stream cipher encrypts each bit or byte of a message at a time. Its most important
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advantage is the speed and so it is commonly used for delay-sensitive applications or within a

device that has limited memory or computing resources. The stream cipher generally works

as follows. Using a key and an initial vector (IV), a stream of random numbers is generated

which is called the key stream. A different IV is required to produce a different key stream

with the same key. Then, each bit or byte of the key stream is XORed with each bit or byte

of the message which produces the ciphertext. Examples of stream ciphers are RC4 [95] and

SEAL [98].

A block cipher encrypts a message on a block-by-block basis. For each block of a message,

the bits in the block are typically diffused, permuted, and manipulated with a secret key

to produce a block of ciphertext. With the secret key, the block cipher produces a unique

ciphertext corresponding to a particular block of plaintext. This makes it easy to identify

part of the message that has a known ciphertext. To eliminate the problem of identifying

blocks by this uniqueness or to provide different security needs such as producing a key

stream similar to a stream cipher, a block cipher can operate in different modes such cipher

block chaining (CBC) mode or Counter mode [109].

There are many examples of block ciphers, but well-known ones are DES [12], RC5 [96],

IDEA [102], CAST [20], Blowfish [101], Rijndael [42], Serpent [23], and Twofish [103]. The

Rijndael cipher is now a new National Institute of Standards and Technology (NIST) stan-

dard called the Advanced Encryption Standard (AES) [14]. Some of these algorithms are

explained in following sections.

A drawback of SKC is that key distribution and key management are difficult. To use

SKC in a communication, two peers need a shared secret key to encrypt a message before

transmission and to decrypt the message after reception. The distribution of the shared

secret key to all associated peers is not a problem if the number of peers is small. However,

in a large communication network, key distribution and management is difficult. With N

peers in a communication network, N(N − 1)/2 pairs of secret keys need to be generated for

communication. Thus, SKC is not scalable.

a. RC4 RC4 [95] is a stream cipher designed by Ronald Rivest in 1987 and it is widely

used in many applications today and in wireless networks such as IEEE 802.11 Wired Equiv-
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alent Privacy (WEP) protocol [13], Cellular Digital Packet Data (CDPD) system [82], and

Transport Layer Security (TLS) protocol. Before generating a key stream, a key expansion

and an initial permutation process are required for each encryption. Hence, they introduce

an overhead for each packet before encryption. These processes can be cached into memory

for efficiency but the algorithm still requires more memory storage and it increases complex-

ity. It should also be noted that computation with RC4 does not depend on the key size or

operational rounds (a repeated operation that is common among SKC block ciphers).

Due to its simplicity, RC4 is fast and efficient once the key stream is generated, and

it can be written using only a few lines of code. It requires only 256 bytes of RAM. It

is also very fast since it uses only 7 CPU clock cycles per byte of output on a Pentium

CPU architecture [104]. Hence, it was one of the best encryption schemes during the past

decade. However, Fluhrer and many researchers have discovered several vulnerabilities in

the RC4 algorithm [48] that make it unsafe for any key size although increasing the key size

commonly increases the security strength. However, the weakness of RC4 can be mitigated

from potential attacks if the first 256 bytes of a key stream are discarded [93].

b. AES AES [14] (previously called Rijndael) is a block cipher designed by Joan Daemen

and Vincent Rijmen that has a variable key length of 128, 192, or 256 bits to encrypt data

blocks of 128, 192, or 256 bits long [42]. Both block and key lengths are extensible to

multiples of 32 bits. AES encryption is fast and flexible, and it can be implemented on

various platforms especially in small devices and smart cards. Also, AES has been rigorously

reviewed for security loopholes for more than two years before it was standardized by NIST

in 2001. AES is considered to be very secure.

The security of the AES algorithm depends on the number of “Rijndael” rounds. The

more the number of rounds, the more the security strength. Each Rijndael round is composed

of four operations, Byte Substitution, Shift Rows, Mix Columns, and Add Round Key with

some exceptions for the last round. The last round does not include the Mix Columns

operation. Also before the first round, an Add Round Key is required and this could be

considered as an overhead for each encryption or for each data packet in communications.

Compared to the computational overhead with RC4, AES has a much smaller overhead. AES
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is also known to be easily expandable. Its security strength can be increased by increasing

the number of Rijndael rounds.

c. Blowfish Blowfish [101] was created by Bruce Schneier as another cipher for 32-bit

microprocessors that is fast, simple, and has variable key length. It is composed of a key

expansion process and a data encryption process. Its key expansion process is very computa-

tionally intensive because it converts a key (up to 448 bits) into several subkeys totaling 4168

bytes. This can be a considerable overhead. Hence, Blowfish is only suitable for applications

without frequent key changes such as a file encryptor, and not suitable for data packets in

packet switching communications [102].

d. RC5 RC5 [96] was also created by Ronald Rivest. Like RC4, the RC5 algorithm

includes a key expansion process, and this is considered as an overhead for each packet

encryption. Unlike RC4, it is a block cipher and it is much more flexible in that it works

with variable parameters such as the input block size, the number of operational rounds,

and the key size to offer a great deal of flexibility for different applications. The security

strength of RC5 depends on the combination of block size and the number of operational

rounds.

2. Asymmetric Key Cryptography

Asymmetric key cryptography was first introduced by Diffie and Hellman in 1976. It was

invented to solve the scalability problem of SKC in distributed networks. Asymmetric key

cryptography uses two different keys with two different methods for encryption and decryp-

tion. One key needs to be known only to its owner (called a private key) and the other

is not secret and can be distributed to other parties (called a public key). The public key

is typically used to encrypt a message and the private key is typically used to decrypt the

message. Asymmetric key cryptography is also known as Public Key Cryptography (PKC)

because one of the keys can be made public.

The PKC system is commonly used for distributed computer networks. For one party
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to communicate with N other parties in a network, it needs to know only the N public keys

of the other parties and its own (private key, public key) pair. The number of keys in PKC

does not exponentially increase as the number of communicating parties increases, and this

solves the scalability problem in large distributed communication networks.

PKC is also important for certain network security services such as non-repudiation which

is provided by using a technique called digital signature. An owner of a message signs the

message with his digital signature, and the signature is used for verification of the message

authenticity and also integrity. With the digital signature, the owner cannot deny having

created or transmitted the digitally-signed message with his signature. The non-repudiation

service and the digital signature are commonly used in email and e-commerce transactions.

However, PKC is not as efficient as SKC in wireless networks in two ways. Because PKC

algorithms are based on mathematically hard problems, the key size has to be much larger

than that of SKC to provide the same security levels as SKC [69]. More importantly, the

encryption schemes are known to be computationally intensive [75]. Therefore, this makes

PKC undesirable for use in wireless networks where wireless devices have limited resources.

However, with a new type of PKC, based on elliptic curves, it may be possible to implement

security services based on PKC for wireless devices [36, 26].

A PKC algorithm makes use of a trapdoor one-way function. A one-way function is a

method used to produce a “digest” from a message and it is computationally impossible to

reverse the digest to get the corresponding message (as described later in the context of hash

functions). On the other hand, the trapdoor one-way function is a one-way function that

has the property that it is possible to reverse the function by simply using a secret trapdoor

(a key). Consider a public key y and a function f(y, x) that maps the plaintext x to a

ciphertext x′ = f(y, x). With the one-way property, it is hard to find x from x′. However,

by using a private key or a secret trapdoor, z, it is possible to reverse x′ to find x such that

x = f(z, x′).

A mathematical example of the trapdoor one-way function is integer factorization. Given

a product of two very large primes (21024-digit primes), it is hard to find each prime from the

product. However, if either one of the primes is known, it is easy to find the other prime.

Either of the prime numbers is then the trapdoor. Some other examples of trapdoor one-way
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functions are the knapsack problem, the discrete logarithm, and the lattice finding problem

[75]. In this work, we consider only popular PKC algorithms namely RSA [97] which is based

on the integer factorization and discrete logarithm problem and Elliptic Curve Cryptography

(ECC) [74] which is based on the discrete logarithm problem on an elliptic curve.

a. RSA The PKC algorithm that is widely used to provide security services today is the

Rivest-Shamir-Adleman code or just RSA [97]. In the example below Alice (A) wants to

send an encrypted message, to create a digital signature of the message, and to send both to

Bob (B). For this, she employs RSA. In RSA, first, a key pair needs to be generated. The

process begins with the selection of two large prime numbers p and q, and then calculating

their product n = p · q. Then, we choose an integer e between 3 and (n − 1) such that

GCD(e, p − 1) = GCD(e, q − 1) = 1 where GCD(x, y) is the greatest common divisor

of x and y. Then, we compute d which is the multiplicative inverse of e which satisfies

e · d = 1 mod φ(n) where φ(n) = (p − 1)(q − 1) is the totient function. The public key is

(n, e) and the private key is (p, q, d). The security of RSA lies in the fact that given (n, e)

and any encrypted message using (n, e), it is computationally impossible to find (p, q, d),

that is necessary for decryption [75].

To encrypt a message m, Alice uses Bob’s public key kub = (nb, eb) to produce the

ciphertext c = me
b mod nb. To decrypt the ciphertext, Bob will use his private key krb = db

to compute (c)d
b = (me

b)
d
b = m mod nb. The integer factorization of n into p and q is the

trapdoor one-way function (where calculating d which is necessary to reverse c to m is easy

if p and q are known). Thus, (p, q, d) is the trapdoor secret

In contrast to encryption, to sign a message m, Alice uses her private key da and her

public modulus na to encrypt a message to produce a signature sig = md
a mod na. Bob, the

message receiver, uses Alice’s public key (ea, na) to verify the signature as (sig)e
a = (md

a)
e
a =

m mod na. The signature is valid if the message m (calculated from the signature) is the

same as the one received from the sender.

A detailed explanation of RSA encryption and decryption as well as signature genera-

tion and verification algorithms can be found in [110]. Note that usually RSA encryption

and signature verification are not as computationally intensive as decryption and signature
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generation. This is because the exponentiation of m to the public integer e for encryption or

signature verification can be made easy by choosing e to be a small number such as 3 [75].

On the contrary, RSA decryption or signature generation is much more computationally

intensive since the private key d is typically a very large integer.

b. Elliptic Curve Cryptography (ECC) The security of the ECC is based on a math-

ematically hard problem called the Elliptic Curve Discrete Log Problem (ECDLP) [74]. Given

P and Q = k · P where P and Q are discrete points (x, y) on an elliptic curve and k is a

random integer, it is computationally hard to find k given P and Q. The operation k · P is

called scalar multiplication which is a trapdoor one-way function, and k is a trapdoor secret.

To prevent a successful attack, k must be a large integer, and the number of discrete points

on the elliptic curve must also be large.

In ECC, private and public keys are generated as follows. The private key k is an integer

number randomly selected from [2, 2n] where n is the number of bits of the key k. The

public key R is a point on an elliptic curve where R = k · G and G is the base point

which is fixed for an elliptic curve. In this case, the asymmetry between the public and

private keys can be clearly observed. Even after making R and G public to any party, it is

extremely hard for someone who is not the owner to determine k. Several algorithms (such

as Elliptic Curve Digital Signature Algorithm (ECDSA) for digital signatures and Elliptic

Curve Diffie-Hellman (ECDH) for key exchange) have been developed based on ECDLP [74].

The ECDH algorithm is commonly used to generate, for example, a pre-master key for a

session between Alice (A) and Bob (B). It is generated by “combining” a public key and a

private key of two peers. To generate the pre-master key, Alice uses her private key that she

combines with Bob’s public key, or Bob uses his private key combined with Alice’s public

key. The following explains how a pre-master key is generated for both Alice and Bob.

Given Bob’s public key RB, Alice uses her private key kA to generate ks = kARB = kAkBG.

On Bob’s side, given Alice’s public key RA, he uses his own private key kB to generate the

same pre-master key as ks = kBRA = kB(kAG) = kAkBG. Finally, both Alice and Bob have

the same shared key ks. Note that it is impossible for anyone else to generate the same

pre-master key when kA and kB are secret.
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The ECDSA signing and verification algorithms are somewhat similar to RSA in that

a party uses its private key to generate the signature of a message. The signature can be

verified using the party’s public key. A detailed explanation of the ECDH algorithm and the

ECDSA algorithm can be found in [122] and in [59] respectively.

B. NETWORK SECURITY (REVISITED)

Using techniques from SKC and PKC described in previous section, we can provide several

network security services. In this section, we discuss network security services in more detail.

1. Confidentiality

Confidentiality is a countermeasure to eavesdropping attacks. It utilizes encryption algo-

rithms such as RC4 or AES to manipulate or encrypt a message in such a way that anyone

who does not know the “secret” is computationally unable to reverse the manipulation to

recover the message. Note that the secret is typically called a key.

Figure II.1 shows the process of providing confidentiality. The scenario is that Alice

(sender) wants to send a message or plaintext to Bob (receiver) over an insecure channel. She

encrypts the plaintext using an encryption algorithm with a key kA to produce an encrypted

message or a ciphertext. Bob decrypts the ciphertext using a decryption algorithm with a

key kB to retrieve the plaintext. If the keys kA and kB are the same and the encryption

and decryption algorithms are the same, it is called symmetric key encryption or secret key

encryption, and the keys are called secret keys. If the key kA and kB are different, and so

are the algorithms for encryption and decryption, it is called asymmetric key encryption or

public key encryption. In the case of Alice sending Bob a message, the key kA is called Bob’s

public key and the key kB is called Bob’s private key. In the reverse case, Bob uses Alice’s

public key to encrypt and send a message to Alice, and she uses her private key to decrypt

it.

By employing symmetric encryption, two entities at both ends of a link need to share
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Figure II.1: An Encryption/Decryption Scheme

a key beforehand. Alternatively by employing public key cryptography, an entity (Bob)

may use a trusted third party (TTP) to distribute its public key. Any other entity (such as

Alice) that wants to send data to Bob obtains his key from the TTP beforehand and uses

his public key to encrypt data. Only Bob who owns the private key paired to the public key

can decrypt the data.

2. Entity Authentication

Entity authentication is also an important security service for wireless networks. Due to

the unknown coverage of wireless networks, an authorized area, such as a corporate build-

ing, limited by a physical perimeter can no longer be used to authorize users in wireless

networks. Radio signals can propagate outside the authorized area. Hence, without strong

authentication, a wireless network is vulnerable to unauthorized access which may lead to

other security problems.

A generic way that a peer authenticates itself is to provide to another peer its credentials

that only it can produce from a message and a secret key. A common scheme for entity

authentication is call a Challenge-Response scheme as shown in Figure II.2.

An authenticator (Bob) sends a message which is a challenge, C, to Alice who needs to
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Figure II.2: A Symmetric Key Challenge-Response Authentication Scheme

be authenticated. Alice replies with a response, R′, or the credentials associated with the

challenge to Bob. Bob verifies the response to his version of Response, R, which he generates

with his shared secret with Alice (k). Alice is authenticated if both R and R′ are the same.

This can only be the case if they are generated from the same key k and no one else can

produce R or R′ like Alice and Bob do. However, R′ and C can be recorded and reused by

any attacker. Therefore, the message R should be used only once to prevent so-called replay

attacks. The challenge should be unique to each entity, or it is vulnerable to impersonation

attacks. R is called a nonce, since it is a Number used only ONCE.

Different cryptographic functions, for example, SKC encryption (such as RC4 and AES)

or PKC encryption (such as RSA) can be used to create the credential which is required to

be uniquely associated with the key and the challenge.

3. Message Authentication

Transmission over wireless links is also susceptible to message modification or message in-

jection attacks. For instance, an attacker may capture packets during a bank withdrawing

transaction and modify them that the withdrawal goes to his bank account. Also an attacker

may inject malicious packets that look like they are from an authorized user to gain access

to the network. Message authentication is aimed at protecting such active attacks.

18



Message authentication is similar to entity authentication in that it uses the credentials

produced from a message to prove the authenticity of the message. It shows not only that

the message is generated by an entity that claims to be the originator, but also that the

message has not been modified during transmission. The message modification or message

fabrication can be detected by verifying whether or not the credentials associated with the

message are valid.

The credentials of the message can be produced by using a one-way function. The

function f is a one-way function if it has a following property. Given a message m, it is easy

to compute f(m) = D. Given D, it is hard to find an m such that f(m) = D by any means.

D is called the credentials of the message m. This is because the authenticity of the message

m relies on the fact that if the message is modified to be m′, the corresponding credentials

will be D′ that is not the same as D. The functions that have the one-way property are

Hash functions and Message Authentication Codes (MACs)

The Hash function is a light-weight function that can be applied to a message m of any

size, and produces a fixed length output D called a message digest or a hash as shown in

Figure II.3 (a). There is no key for the Hash function, and that means anyone can produce

a pair of m and D. A hash provides only the detection of message modification. However,

applications often require the ability to prove who sent the message or to limit messages

only to some entities. In such cases, we need to use the MAC function.

m m

Message 
digest k

D D
Hash 

Function
H(.)

(a) (b)

H(.)E(.)

MAC

Figure II.3: (a) A Hash Function, (b) A Message Authentication Code (MAC) function

The MAC is different from a Hash function in that it uses a key or a secret k to produce

the message digest. Thus, only entities who possess the key can generate the message digest.
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The MAC is a compound function that is commonly composed of an encryption function

E(.) and a Hash function H(.). Figure II.3 (b) shows one example of how to use H(.) and

E(.) to create a MAC function. The MAC gives more security than the Hash function alone.

Without the key k, it is computationally impossible to produce a digest D from a message

m. The examples of Hash functions are Secure Hash (SHA) [81], Message Digest 5 (MD5)

[94], and RIPEMD-160 [75]. The examples of MAC functions are Hashed MAC (HMAC)

[66] and Cipher-Block-Chaining MAC (CBC-MAC) [28].

4. Digital Signature

Another kind of an attack is repudiation. A bank client may deny his/her transaction with

an on-line banker since there is no guarantee that the transaction was actually made by

the bank client. To protect against such an attack, a digital signature, which serves as a

written signature, for such an on-line transaction is introduced. The digital signature ensures

that only the concerned person can “sign” a transaction or a document. It is also used to

protect modifications to the transaction or the document. Unlike the written signature, the

digital signature is somewhat different in that it is message-dependent; it is unique to each

document or each message, and this provides message integrity as well.

Unlike the authentication scheme shown in Figure II.2 where SKC is used, the digital

signature is created by using asymmetric key cryptography or PKC techniques such RSA or

ECDSA. As shown in Figure II.4, Alice wants to send a message m to Bob. She uses her

private key krA to “sign” the message, and gets a digital signature D. Alice transmits m

and D to Bob. Bob then detaches the message m and uses Alice’s public key kuA to “verify”

the message which outputs D′. The message is valid if and only if the D′ is the same as D.

The digital signature provides two different security services for Alice and Bob. First,

Alice can use her digital signature to authenticate herself to Bob because no one else can

produce the signature without knowing krA (which is known only to Alice). In addition,

with the knowledge of only m, D, and kuA, it is computationally impossible to find krA.

Second, Bob also can use Alice’s digital signature as a guarantee that Alice is the one who

has signed the message m. This provides the non-repudiation service. Alice cannot deny the
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Figure II.4: A Digital Signature Scheme

fact that she did sign the message because no one else can forge her signature.

5. Key Agreement Protocol

In symmetric key encryption, the key used for encryption is assumed to be securely dis-

tributed beforehand. The key may be manually distributed via a secure channel. In wireless

networks with many peers, it would cause scalability problems. Therefore, key agreement

protocols are used to securely distribute a key in a scalable manner.

The key agreement protocol is usually performed after authentication to establish a

session key for security services such as encryption and message authentication. Many tech-

niques can be used in the key agreement protocol. Two examples of key agreement protocols

are described. In Figure II.5 (a), Alice and Bob want to establish a session key ks by using

an existing key k which is called a master key. Alice simply encrypts the session key ks and

sends Ek(ks) to Bob, and Bob decrypts it to get ks as Dk(Ek(ks)) = ks where Ek() and Dk()

are encryption and decryption functions with the master key k, respectively. The session key

ks is not known to any other person because it is encrypted during transmission. However,

this method is not scalable since the master key k still has to be distributed beforehand.

In Figure II.5 (b), another technique based on public key encryption is used to exchange

a session key ks. This technique uses two keys to generate the key ks, and it is called the
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Figure II.5: Key exchange protocol using (a) symmetric key, (b) asymmetric key algorithm

Diffie-Hellman key exchange protocol similar to ECDH.

Alice gives her public key kuA to Bob, and Bob also gives Alice his public key kuB. Alice

calculates the key ks from her private key krA and Bob’s public key kuB as ks = kuB ¯ krA.

However, Bob calculates ks = kuA ¯ krB. Here ¯ is a mathematical operation that is a

trapdoor one-way function. By using a function such as the discrete logarithm, both Alice

and Bob can produce the same ks. For example, if Alice’s public key is kuA = Ga mod n

where G is a common base integer and n is the modulus, it is computationally impossible

to find Alice’s private key krA = a given kuA, G, and n. Also Bob’s private key and public

key are krB = b and kuB = Gb mod n, respectively. The operation ¯ is simply modular

exponentiation in this case. Therefore, Alice calculates ks = kukrA
B = (Gb)a = Gba mod n.

Bob calculates ks = kukrB
A = (Ga)b = Gab mod n which is essentially the same as the ks Alice

calculates. A detailed mathematical explanation of the discrete logarithm problem can be

found in [110].
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C. STANDARD SECURITY PROTOCOLS FOR IEEE 802.11 WLANS

As shown in II.6, there are several standard security protocols such as TLS, IPsec, and WEP

for use with WLANs. Each of them (considered as an upper-layer protocol) is composed of

one or more security services as described in Section II.B. Each security service relies on

low-level components which are called security primitives such as ciphers, hash functions,

and trapdoor one-way functions as described in II.A.

Block 
Ciphers

Symmetric
Encryption

Hard
Problems

Hash 
Functions

Stream
Ciphers

Digital
Signature

Authentication
& Key Exchange

Random
Generator

Message
Authentication

Code

Asymmetric
Encryption

WEP/WPA

Electronic
Cash

SSL/TLS

IPSec/IKE

Electronic
Vote

KASUMI
MILENAGE

S/MIME

Bluetooth
LMP

XMLKerberos PGPSETApplication
Layer

Transport
Layer

Network 
Layer

Link
Layer

Security
Primitives

Security 
Services

EAP/802.1x

Upper Layer Protocol

Figure II.6: An Overview of Standard Security Protocols

For example, confidentiality or encryption service is provided using a block or stream

cipher. Authentication and key exchange services may be composed using both block ciphers

and hash functions. One or more first-level protocols are combined to provide an upper

layer security protocol. For example, the TLS protocol uses encryption, hash function,

authentication & key exchange, and digital signatures to provide security services at the

transport layer [91].

Security protocols for WLANs of interest in this thesis include:

• Extensible Authentication Protocol (EAP) or IEEE 802.1x for providing authentication

& key exchange services, and

• Wired Equivalent Privacy (WEP) and Wi-Fi Protected Access (WPA) for providing data

encryption and authentication.
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1. IEEE 802.11 WLAN Architecture

Security services in WLANs can only prevent attacks on link level traffic between two entities

that are wirelessly connected. The entities are often referred to as mobile station or MS and

access point or AP. As shown in Figure II.7, one or more MSs are wirelessly connected to a

network via an AP in its a coverage area called Basic Service Set (BSS). The AP may connect

to a local area network (LAN) via a router to provide access to other network resources. In

one WLAN, there may be an extended service set (ESS) of more than one AP, which allows

MSs to roam across the ESS area. When a MS wants to access the network, it sends a request

to an authentication server (AS) via its associated AP. The AS then performs authentication

and may authorize the access request to the MS. During the authentication process, the AP

acts as a proxy to relay messages between the MS and AS.
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Figure II.7: A WLAN architecture

As an MS roams from its home network to a public access WLAN or hotspots as shown

in Figure II.8, it may have to participate in authentication processes that may be quite

different. The authentication process may be executed locally in the hotspot network to

access the Internet, or remotely in the MS home network. As the confidentiality service in

this scenario is only provided on the wireless link between the MS and the hotspot network,
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an upper-layer security protocol, such as IPsec, is needed to provide security services on the

link between a MS and its home network. Therefore, a security protocol for this scenario

needs to be carefully designed; otherwise, it is not efficient for use in small wireless devices.

We do not consider this problem in the thesis.
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Figure II.8: A WLAN architecture connected to the Internet

2. Data Encryption & Authentication Protocol

The first data encryption and authentication protocol used in WLANs was called Wired

Equivalent Privacy (WEP). It was originally created for use in IEEE WLANs or IEEE 802.11

link technology in 1999. However, the WEP protocol has been identified to have several

security flaws in the following years [32]. The Wireless Ethernet Compatibility Alliance

(WECA) that later changed its name to Wireless Fidelity (Wi-Fi) alliance, released a new

security protocol standard in 2002, called Wi-Fi Protected Access (WPA), which aims to fix

the flaws [11]. A year later, another version of the WPA standard, WPA version 2 (WPA2),

was released to provide advanced security services. WPA is backwards compatible with

WEP; however, WPA2 is not backwards compatible with either WEP or WPA.
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The WPA and WPA2 are part of a new standard IEEE 802.11i that is an amendment

to the IEEE 802.11 standard to provide stronger encryption services and secure methods

of authentication [16]. The 802.11i standard provides two data encryption services called

Temporal Key Integrity Protocol (TKIP) and Counter Mode (CTR) Encryption with AES

cipher (CTR-AES), and two data authentication services called Michael and Cipher Block

Chaining Message Authentication Code (CBC-MAC). The WPA standard is composed of the

use of TKIP and Michael together to provide data encryption & authentication services while

WPA2 is composed of CTR-AES and CBC-MAC. Together with CBC-MAC and CTR-AES,

it is called CCMP (Counter Mode CBC-MAC Protocol).

The WEP protocol utilizes RC4 [95] as the underlying cipher. WEP has several flaws

due its poor design and also the weakness of the RC4 algorithm [48]. There is a need

to replace WEP with a stronger protocol. However, many 802.11 network interfaces and

infrastructures are already deployed and it is expensive to migrate to a totally new standard

protocol. Therefore, TKIP and Michael offer intermediate security fixes while utilizing the

same hardware that resides in those network interfaces and infrastructures. TKIP offers a

software-based solution which adds a two-tier key mixing process that generates a random

key for the RC4 cipher to mitigate the IV-weakness attack in WEP [111]. Michael offers a

message authentication service which was not included in WEP. Due to the limited capacity

of WEP-based hardware, Michael needs to be lightweight. Therefore, Michael is composed

of only shift-and-rotate algorithms, and it is known to be a weak algorithm [46].

Due to the weakness of the RC4 cipher itself and the weak Michael algorithm, a new

standard, IEEE 802.11i, was proposed and ratified in 2004. It offers a new cipher, AES, which

is the new standard for data encryption proposed by NIST [14], as the underlying cipher

for CCMP protocol. Therefore, WPA2 employing CCMP protocol will not be backwards

compatible; however, it provides high-class security services. RC5 is another cipher that is

considered to be secure and efficient although it is not a standard cipher [61]. Due to its

flexibility features, we will consider both AES and RC5 instead of RC4 as underlying ciphers

in our work.

The WPA and WPA2 standards have two operation modes, Enterprise and Personal

modes. The Enterprise mode provides security services that fit an enterprise network which
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already has a network infrastructure including an authentication server. The Personal mode

favors users of small offices or home networks which has no authentication server. The

difference between these two modes is the protocol used for authentication and authorization

of network users. The Personal mode employs a password-based authentication, called Pre-

Shared Key (PSK), to authenticate users. In contrast, The Enterprise mode utilizes the

standard 802.1x protocol to provide a stronger authentication and key exchange protocol.

The 802.1x protocol will be discussed in the next section. Table II.1 summarizes the WLAN

security protocol standards.

Table II.1: WLAN Security Protocol Standards

Mode Service IEEE 802.11 WPA WPA2
Enterprise Authentication WEP IEEE 802.1x IEEE 802.1x

Encryption WEP TKIP/Michael AES-CCMP
Personal Authentication WEP PSK PSK

Encryption WEP TKIP/Michael AES-CCMP

3. Access Authentication & Key Exchange Protocol

a. EAP/IEEE 802.1x Extensible Authentication Protocol (EAP) or IEEE 802.1x is a

standard for Local and Metropolitan Area Networks (LAN/MAN) which is used to provide

port-based network access control [15]. The EAP itself is not an authentication protocol. It

provides an encapsulation for any entity authentication protocol such as the TLS Handshake

protocol [43] to perform actual authentication. The EAP was first used for point-to-point

network access with password-based authentication such as CHAP [107], and later proposed

for use with TLS for WLANs. Now EAP-TLS is part of the WPA, WPA2, and IEEE 802.11i

standards.

Within the EAP framework, three entities are involved in the user authentication process:

Supplicant, Authenticator, and Authentication Server. In a typical scenario, Supplicant is a

mobile station (MS) requesting network access, Authenticator is the MS’s access point (AP)

that is a bridge to the rest of the network, and Authentication Server (AS) is an Authentica-

tion, Authorization, and Accounting (AAA) server such as RADIUS (Remote Authentication
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Dial In User Server) [92]. For the authentication process, the current EAP standard man-

dates only asymmetric authentication such that it only requires a MS to authenticate an

AS (or server authentication) but not vice versa. It leaves the MS authentication (or client

authentication) to vendors who can specify their own method using their RADIUS server.

For example, the client authentication could be a traditional password-based authentication

that it is widely used for dial-up and authentication in hotspot networks.

The scheme of the EAP authentication protocol is based on a challenge-response scheme.

In this scheme, there are four types of messages: Request, Response, Success, and Failure.

A typical EAP message exchange is shown in Figure II.9. First, a supplicant initiates an

authentication process by sending an EAPOL-start message. Then a series of Request and

Response messages are exchanged. The number of the Request and Response pairs depends

on the underlying authentication scheme (such as TLS or passwords). The underlying au-

thentication protocol is enclosed in a box in Figure II.9. There are many authentication

schemes that are proposed to be used with EAP, but the mandatory one is EAP with TLS

or EAP-TLS [19].

Supplicant Authenticator Authentication
Server

EAP-Request/Id

EAP-Response/Id Radius-Access-Request

Radius-Access-Challenge

EAP-Request 1

EAP-Request N

EAP-Response 1

EAP-Response N

Radius-Access Response 1

Radius-Access AcceptEAP-Success/Failure

EAPOL Key (optional)

Radius-Access Response N

EAPOL-Start

Figure II.9: A typical EAP authentication protocol

EAP-TLS can provides mutual authentication, but the client authentication is indicated

as optional in the standard. Figure II.10 shows a typical EAP-TLS protocol with only the

server authentication between a MS and an AS server. After initiating the authentication
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by exchanging EAP Request/Response Id messages with an AP, a normal TLS handshake

protocol between the MS and the AS is started. After the authentication process, the key

generated during the Handshake protocol between the MS and the AS is forwarded to the

AP by the AS.

EAP Request/Id

EAP Response/Id

ClientHello

ServerHello, ServerCertificate,
ServerHelloDone

Change Spec, Finished (Encrypted)

ClientKeyExchange, ChangeSpec, 
Finished (Encrypted)

EAP Success

MS AP AS

EAP/ TLS Start

Radius Accept/ a Key

Radius-Access-Request
Radius-Access-Challenge

Figure II.10: An EAP-TLS with only server authentication

Client authentication is also possible using EAP-TLS. This process is usually optional

because it requires each client to have a valid public key certificate that will be used to

authenticate the client. It also requires a Public Key Infrastructure (PKI) to issue and revoke

the certificates that additional investment is needed. Instead, a traditional password-based

authentication protocol is often preferred to use with EAP Tunneled TLS (EAP-TTLS) to

avoid the expensive PKI deployment [50].

b. WPA-PSK WPA-PSK is the standard security protocol in Personal mode for home

or SOHO (Small Office Home Office) networks where there is no authentication server such

as RADIUS. The WPA-PSK provides user authentication and session key management.

The authentication is based on a shared secret or a paraphrase that is known between

an access point (AP) and a mobile station (MS) prior to authentication. Based on the
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ESS identity (ESSID) of the networks and the paraphrase, a pairwise master key (PMK)

is generated. From the PMK, nonces and MAC addresses of the AP and MS, a session

key is generated. The nonce is for preventing the replay attack. The session key has to be

renewed after a time interval to increase the security and prevent attacks on a fixed key. The

WPA-PSK authentication relies solely on the secret of the paraphrase to generate a session

key; thus, it may be subject to dictionary-based attacks as shown in [113].

4. IEEE 802.11 Authentication and Key Agreement

Generally, authentication and key agreement (AKA) occurs in one protocol. The authenti-

cation is performed between a mobile station (MS) and an authentication server (AS) via an

access point (AP). If the user has the right to access the network, a session key is generated

with an agreement between MS and AS. Figure II.11 shows the standard AKA protocol for

802.11 WLANs.
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Figure II.11: The 802.11i Standard Authentication and Key Agreement Protocol

In the figure, the AKA protocol can be divided into three phases. During the Service

& Security Discovery and Associate phase, the MS looks for an AP that provides capacities

and security services to which it is compatible. Then, the MS selects the capability and
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services. The capacities and services of an AP is described in a beacon packet which is

periodically broadcast. The MS then requests an association to the AP. The AP responds

to the request and initiates an authentication process in the second phase, which now occurs

between the MS and AS. In this phase, the AP acts as a proxy between the MS and AS. After

the authentication is successful, a session key called Pre-Master Key (PMK) is generated

and distributed from the AS to AP. The PMK is also generated by the MS without key

transportation from the AS or AP. This way the key is never revealed on the air.

In the third phase, the AP initiates a 4-way handshake. The purpose of the standard

4-way handshake is twofold. It is used between the MS and AP to confirm the possession of

the PMK and to derive a pairwise transient key (PTK) from the PMK for freshness. The

PTK is then used to derive three other keys: a key confirmation key, a key encryption key

and a temporal key for data encryption during a session. Additionally, the 4-way handshake

is used for agreement upon the cipher suite, and for transportation of an encrypted group

transient key from the AP to the MS for secure broadcasting.

When a MS wishes to disassociate from an AP, the MS may request deauthentication

to destroy the PTK, but the PMK may be cached. With the cached PMK, the MS can re-

associate to the same AP without authentication, and only the 4-way handshake is required

to generate a new PTK (see [16] Section 5.4.3.2). To reuse the PMK, the MS needs to

include a list of cached PMKs in a (Re)Association Request frame, and the AP may reply

with which PMK is selected in the first message of the 4-way Handshake (See [16] section

5.9.5). This requires both the MS and AP to cache PMKs and to provide for secure key

caching.

D. SECURITY ATTACKS IN WLANS

Wireless networks are inherently vulnerable to several security attacks due to the nature of

open medium in the networks. In this section, we give an overview of security attacks in

WLANs. The following attacks are also common to other types of wireless networks.
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1. Brute-Force Search Attack

The brute-force search attack is the attack trying to find a match of two messages by going

through every possible message. For example, for a message that is 64 bits long with an

equally long key, the attack requires 264 operations at most or 263 operations on average. The

attack is commonly used for key search; thus it is commonly called key search attack. From

a pair of known plaintext and a its corresponding ciphertext, the attack tries to find the key

using the brute-force search. The key is found if the encryption of the plaintext matches

the ciphertext. This attack is simple, and requires only the pair of plaintext-ciphertext. It

however requires more operations as the message or the key size increases.

2. The Dictionary-based Attack

The dictionary-based attack is similar to the brute-force attack. However, the searching

space is smaller. The attack is also called the password-guessing attack. Based on the

known words in a dictionary, the table of pairs of the known words (or plaintexts) and the

encryption of the words (or ciphertexts) is pre-computed. Then, an encrypted password is

captured and is brute-force searched through the table to find the match of the plaintext.

To prevent the dictionary-based attack, the paraphrase needs to be long and random. The

WEP and the WPA-PSK could be vulnerable to this attack since they utilize a password

or a paraphrase as a shared secret. The non-password-based EAP such as EAP-TLS is

not vulnerable to this type of attack. However, EAP-MD5 which is the password-based

authentication is vulnerable to this attack.

3. The Eavesdropping Attack

Due to the nature of the radio signal that can propagate through walls and ceilings, it is

possible for an outsider to eavesdrop traffic sent or received by a mobile station. To increase

the privacy of WLANs, encryption is required, which is provided by using a cipher with a

secret key. The WEP assumes that all mobile stations in the entire network share the same

key. Therefore, with WEP any mobile station, which can access the network, can eavesdrop
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on traffic and this is called the insider attack. The WPA and WPA2 are not vulnerable to

eavesdropping and insider attacks since each pair of communication utilizes a pairwise key.

4. The Replay Attack

The replay attack is where an attacker tries to access or claim to be legitimate to the network

or other parties without possessing the secret key. The attack relies on previously recorded

conversations of other legitimate parties and replaying the conversation. The attack can be

eliminated if a session key is freshly generated for each conversation and for each session. It

is common to use a nonce as a countermeasure with a shared key to generate a fresh session

key for each conversation. WEP is vulnerable to this attack as it uses a 24-bit IV with a

shared key as the RC4 key for encryption. Since the IV is short and can be repeated, it

is possible that the RC4 key is not freshly generated. WPA and WPA2 are not vulnerable

to replay attacks since each session key is generated from nonces which guarantee the key

freshness.

5. The Session Hijacking Attack

It is an attack that tries to steal a session from a legitimate user to access the network.

This attack happens after the authentication between users and the network, and the MS is

authorized or is allowed a session to access the network. Therefore, if a malicious user can

hijack the session, he can access the network without authentication.

The session hijacking attack often includes the packet injection attack and the imper-

sonation attack. The injection attack is to disassociate an associated user from the network

without detection by the network; hence, the session created by the legitimate user is still

available. This means a malicious user can impersonate the legitimate MS, which is already

disassociated from the injection attack, and is able to transmit or receive messages as a

legitimate user.

This attack can be prevented by using message authentication codes (MACs). WEP is

vulnerable to this attack since it does not utilize any MAC algorithm. code. WPA employs

Michael as the MAC algorithm, but it is known to be weak [46], which means the attack is
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still possible although requiring some effort. WPA2 employs CBC-MAC with AES cipher,

and it is known to be strong and immune against this attack.

6. The Man-in-the-Middle Attack

It is an attack whose goal is to steal valuable information from a legitimate MS of the

network. The information can be the username and password, or a shared secret which may

later be used to access the same network. In this attack, an attacker sets up a device to be

a “man in the middle” between the legitimate MS and AP. The device acts as a (legitimate)

access point to the legitimate MS, and a (legitimate) user to the legitimate AP. The device

tries to convince the legitimate MS to associate with it to steal valuable information. The

convincing may require communication with the legitimate AP. This attack can be prevented

if a mutual authentication between MS and AP is employed.

WEP as well as WPA and WPA2 that use PSK are not vulnerable as long as the shared

secret or paraphrase is not compromised. WPA and WPA2 (that use IEEE 802.1x/EAP) may

be vulnerable to this attack. For example, EAP-TLS with mutual authentication is strong

against this attack. However, EAP-MD5 is subject to the dictionary-based attack since the

encapsulated protocol which is password-based authentication is already vulnerable to the

dictionary-based attack [31].
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III. MEASUREMENT AND MODELING OF ENERGY CONSUMPTION

OF CRYPTOGRAPHIC PRIMITIVES

Security can be provided at different levels using different settings with different security

primitives, which can consume different levels of energy. The security settings can be different

in many factors, but the main factors are the choice of ciphers used to provide security

functions, the key length, and the number of operational rounds. These factors also have a

substantial impact on the energy consumption for providing security.

A security algorithm or a cipher is a function that is commonly used to provide security

services such as encryption and message authentication. Many ciphers have been created,

but only few are known to be strong and secure, which means no loophole or backdoor is

known. That a cipher is strong is practically hard to prove unless it has been rigorously

reviewed by cryptographers and experts for many years (such as in the case of AES). RC4

was known to be very efficient in term of computation, but has some loopholes [48]. RC5

and Blowfish are known to be strong. One may however expect these ciphers to consume

different levels of energy since the way they operate are different.

With a strong secret key cipher, the length is another factor to increase the strength of

encryption. A key size of 128 bits would able to resist an exhaustive key search or brute-

force attack until the year 2075 [69]. This belief is based on the argument that the strong

cipher has no known short-cut attacks, e.g. attacks that are more efficient than the brute

force attack. Using the brute force search with an 128-bit key requires 2127 searches on

average. This is considered to be infeasible with today’s technology. Thus, a large key size

would provide more strength against a brute force attack. On the contrary, a long key may

increase computation and hence energy consumption.

The strength of a cipher depends not only on the key size but also on the number of
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operational rounds (which normally is a routine of data diffusion and manipulation). The

number of rounds is an important factor that provides security strength against attacks such

as linear cryptanalysis [73] and differential cryptanalysis [29]. Unlike the brute-force attack

where 2k−1 trials (on average for a k bit key) are required to break the key, cryptanalytic

attacks can be more efficient. Depending on the algorithm, a high number of rounds may be

required for robustness against such attacks. A good security algorithm should not use too

few or too many operational rounds. Too few rounds would make the encryption vulnerable

to cryptanalysis attacks, and too many rounds would be unnecessary, and importantly can

consume more energy. Thus, to provide the same security strength, each algorithm may

require a different number of operational rounds.

For example, Rijndael needs at least 6 rounds for a 128-bit key, 8 rounds for a 192-bit

key, and 10 rounds for a 256-bit key to provide enough security strength against all known

attacks [41]. However, the proposed standard adds more rounds for providing a security

margin. Thus, AES performs 10 rounds for a 128-bit key, 12 rounds for a 192-bit key and

14 rounds for a 256-bit key [14]. RC5 is a block cipher with a variable key size, a variable

input size, and variable numbers of rounds of operations. There is a differential attack that

requires 253 chosen plaintext for 12 rounds and 268 for 15 rounds [61]. However, the input

of RC5 is only 64 bits long; therefore, such an attack is impossible with at least 16 rounds

since collectiong 253 chosen plaintexts is virtually impossible. The linear attack, which is

less powerful than the differential attack, is impossible after 6 rounds. The recommendation

from Rivest, the creator of RC5, is that RC5 should have at least 12 rounds to provide

enough security strength, or 16 rounds to provide complete security strength [96]. Blowfish

is another flexible block cipher with a variable key length and a customizable S-box (a non-

linear diffusion box). The key for Blowfish can be up to 448 bits. There is a differential

attack which requires 24r+1 chosen plaintexts where r is the number of rounds. Therefore,

with 16-round Blowfish, such an attack is completely ineffective because the input size in

the case of Blowfish is 64 bits long.

Clearly, different settings of algorithms, key sizes and rounds of a cipher will have different

amounts of energy consumption. In wireless communications, as we will see in this chapter,

the data packet size is also another factor that impacts the energy consumption. For instance,

36



some security algorithms are more efficient only if they are used to encrypt longer packets. In

the next sections, we explore the performance of different security settings in terms of energy

consumption. We also propose performance models for energy consumption of the security

settings. Additionally, we also use different implementations of cryptographic functions to

confirm the difference in energy consumed. We consider three commonly used cryptographic

libraries, OpenSSL, Cryptlib, and Crypto++. We also use different methods for measuring

energy consumption to confirm the validity of the difference in energy consumed.

A. MEASUREMENT OF ENERGY CONSUMPTION

Energy consumption of security primitives can be measured in many ways. The obvious

mechanism is to directly measure the energy consumption of each component of a device

such as a laptop or a PDA. This method gives the actual value of energy consumption due

to each hardware component of the device. Components involved in operations of security

primitives would be the CPU and its memory unit. However, to measure only the energy

consumption of a security primitive, this method is probably too complex. This method

is used in the research work by Viredaz and Wallach to measure energy consumption in a

pocket personal computer device [115]. A less complex method is to measure the total energy

consumption of the device, which can be measured by measuring the input current drawn

by the device from its power supply.

A second method used to measure energy consumption is to assume that an average

amount of energy is consumed by normal operations and to test the extra energy consumed

by an encryption scheme [56]. This method simply monitors the level of the percentage

of remaining battery by using the standard API of Advanced Power Management (APM)

or Advanced Configuration and Power Interface (ACPI). This method has some limitations.

The extra energy consumed by one encryption can be very small compared to that by normal

operations especially for SKC algorithms. Thus, the granularity of power measurement is

very coarse; hence, the amount of measured energy consumption is unlikely to be precise.

However, the accuracy of this method could be improved by using an external multi-meter
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that can read the level of current drawn by one encryption.

The energy consumption of security primitives can also be measured by counting the

amount of computing cycles which are used in computations related to cryptographic oper-

ations. The number of cycles is usually used by cryptographers to evaluate new encryption

algorithms such as those which were proposed for the new Advanced Encryption Standard

(AES) [105]. Each cycle of CPU spent for an instructional set consumes some amount of

energy. In [79], details of the numbers of cycles taken up by each instruction of Intel 486DX2

processor and also various amounts of current drawn from a battery are provided. By av-

eraging the amount of energy consumed in each cycle, we can convert the number of cycles

used by a security primitive into its amount of energy consumed. This technique is also used

in research work by Carmen et al. [38].

While the first method shows the real energy consumption and gives the overall energy

performance and the second method actually reads out the battery level in a mobile device,

in this work, we use the third method to determine the energy consumption of a security

algorithm. This provides us simplicity and fine-grained measurement. We also use the first

method for comparison with the third method in Section III.G.

1. Cycle Counting Energy Measurement

To convert cycles to energy consumption, we need to know approximately how much current

is drawn for one computation cycle, the operating voltage, and the operating speed of a

processor. For example, an Intel Mobile Pentium III processor has two working modes,

full power mode and low power mode. In the full power mode, the processor is normally

operating at 1.60 volts with a maximum current of 16.6 A at the speed of 800 MHz. In the

low power mode, it is running at 650 MHz, and operating at 1.35 volts with a maximum

current of 12.0 A [9]. From the above variables, the energy consumption (E) of each security

algorithm can be computed as E = (C × V × I)/F where C is the number of cycles, V is

the operating voltage, I is the average current for each cycle, and F is the CPU frequency

or speed.

However, we do not have a benchmark tool that can measure exactly how much current
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is drawn for each instruction or each cycle. Also, this approach assumes that the current is

constant over the cycle. We need to estimate this value. On average, each cycle consumes

approximately 270 mA on an Intel 486DX2 processor [79] or 180 mA on an Intel Strong

ARM chip [108]. Based on these, we assume that the average current drawn for our Mobile

Pentium M is close to 200 mA. This number is fixed for all energy consumption calculations,

and it could be changed easily for energy calculations if the true average current for the

processor is known. The key variable here is the number of cycles used for each security

algorithm.

For our experiments, we use a laptop with a mobile Pentium III 800 MHz CPU, in which

performance data are collected. We use the cryptographic software library from OpenSSL

version 0.9.7a [1] to implement security test programs in our work. While other libraries do

exist [114], we choose OpenSSL because it has been widely used in the research community

and in many open-source research projects. It has been rigorously reviewed by many cryp-

tographers and programming experts for its correctness and performance. We also use the

widely-used Cryptlib [2] and Crypto++ [3] libraries for performance comparison as described

later. All of the three crypto libraries are certified under the NIST FIPS-140-2 specifications.

B. ENERGY PERFORMANCE OF SECRET KEY CRYPTOGRAPHY

Before transmission, a message is often divided into packets. Packets are encrypted individ-

ually to provide data confidentiality. Encryption of different packets should not be related

because a loss of one encrypted packet means a loss of all related encrypted packets. Es-

pecially in wireless networks where the packet loss rate is high, it is common to provide

a per-packet key to encrypt each packet independently so that the decryption can tolerate

packet losses.

Since each packet requires a per-packet key, before the packet encryption takes place,

there may be need to expand the single shared key. The key expansion process can be con-

sidered as an overhead for each packet encryption. Thus, the first parameter for encryption

that may affect the security performance is the packet size. While the packet size is often
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statistically distributed and it depends on what communication layer produces the packet, a

long packet would usually reduce the encryption overhead and thus improve the performance.

The second important parameter for the encryption is the size of the encryption key. A

large key size would provide more strength against a brute force attack as well as other types

of attacks. On the contrary, a long key may also increase computation and hence energy

consumption. The third factor that would affect the security performance is the number

of operational rounds. A larger number of rounds would prevent successful cryptanalytic

attacks, but would also require more computation and hence energy.

In this section, we describe the effect of these three parameters, data packet size, key size,

and the number of operational rounds, on the performance of different secret key encryption

algorithms in terms of energy consumption. These three parameters are chosen as they tend

to be significant factors of energy consumption for encryption.

1. Encryption with Different Packet Sizes

The packet size has been known to have significant effect on wireless transmission. Transmit-

ting large sized packets improves the network utilization because the ratio of the overhead

to data payload size is low. On the contrary, large size packets are more susceptible to errors

during transmission than smaller sized packets [70]. The packet size also affects the energy

consumption due to transmission [45].

The packet size also has an effect on energy consumption due to encryption. From the

need for per-packet keying, each packet may require a key expansion process which requires

a fixed amount of energy for computation and is independent of the packet size. Our study

has shown that encryption of long packets consumes less energy than that of short packets

using the same key length and operational rounds [88]. For example, with 128-bit key RC5

algorithm, the key expansion takes about 65 % of the total energy for encrypting a 16-byte

packet, and that can be decreased to 14 % if used for encrypting a 256-byte packet. Some

encryption algorithms need to expand the key that requires more subtle data diffusion and

manipulation such as the case of the Blowfish algorithm. The 128-bit key expansion process

in Blowfish takes about 98 % and 94 % of the total energy to encrypt a 16 byte long packet
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and a 256 byte long packet respectively. Hence, Blowfish is only appropriate for encrypting

a large file rather than individual packets.

After key expansion, a packet can be encrypted. In the case of a block cipher, the

packet that is larger than the input size of the cipher is divided into several blocks, and

then encrypted. The overhead in this process is the block division. However, block division

consumes very little energy since it can be done using instructions which take few CPU

cycles.

Figure III.1 shows the energy consumption of different encryption algorithms using 128-

bit keys with different packet sizes. It can be observed that AES encryption consumes far

less energy than others when encrypting smaller packets. The AES key expansion consumes

much less energy than others. Hence, the packet size only slightly affects the AES algorithm.

RC5 consumes more energy than AES, but less than others when the packet is small. RC4

consumes the least energy when the packet is large. Blowfish has a significant key expansion

overhead and it is not suitable for packet transmission although it is supposed to be a light-

weight encryption scheme with sufficient security [102]. Although, we can use the same key

for all packets to reduce the key expansion overhead of Blowfish, this requires an efficient

cache, state and key management, and hence increases the system complexity which is not

recommended.

2. Encryption with Different Key Sizes

In this measurement, we study whether the key size has an effect on energy consumption.

From previous section, we know that the packet size has an impact on the energy consumption

due to key expansion. In this study, we consider energy consumption due to encryption with

different key sizes for two cases, with and without the key expansion process. Without the

key expansion, we start to count the number of cycles for encryption after the key expansion

process.

Figure III.2 shows the amount of energy consumed per byte by each encryption with

different key sizes, packet sizes and ciphers without the key expansion. From the figure, we

can see that AES consumes different levels of energy when different key sizes are employed.
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Figure III.1: Energy consumption of encryption with different packet sizes

As we will see later, the reason for this is not the key size itself. With a longer key, the

encryption algorithm needs to do more “Rijndael” rounds according to the AES standard

which results in more computation and more energy consumption. The RC4 encryption

relies on a random number generator or a key stream generator to produce a series of keys.

Generating a key from the stream consumes very little energy; therefore, its performance

is almost independent of the key size. Thus, for RC4, a larger key size would only make a

successful brute-force key search harder without increasing the energy consumption.

In a manner similar to that of RC4, the energy consumption of RC5 encryption is almost

independent of the key size. With a longer key size, the encryption just needs a few more

additions and rotations of 32-bit words according to the algorithm. These operations are

very simple; hence, increasing the key size is unlikely to increase the energy consumption.

The computational load of Blowfish is also independent of the key size. No matter what the

key size is, Blowfish always runs 16 rounds of a Feistel-like network. However, Blowfish has

a heavy key expansion process before encryption as shown in Section III.B.1

We also study energy consumption of encryption with the key expansion process and
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Figure III.2: Energy consumption of encryption without key expansion

different key sizes. Figure III.3 shows the energy consumption. We can see that the energy

consumption of both RC4 and RC5 is not affected by the key size while AES is slightly

affected when the key size increases and the key expansion process is present.
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3. Encryption with Different Operational Rounds

The energy consumption of SKC algorithms or ciphers is also largely based on the difference

in operations or nature of the algorithms. Especially for block ciphers, the energy consump-

tion heavily depends on the recursive cryptographic algorithm which is normally a routine of

data manipulation or operational rounds. Block ciphers like AES and RC5 have a recursive

operation in which an input to the cipher goes through operational rounds. As the number

of the rounds increases, the energy consumption of the cipher increases.

From the previous study of the key size and the energy consumption, we saw that the

increase of key size only increases the energy consumption of AES. In fact, the increase of

key size changes the number of operational rounds of AES, but not RC5 or Blowfish. As

shown in Figure III.2, the energy consumption of RC5 is independent of the key size. This

is because RC5 has a fixed key expansion process that does not depend on the key size.

In contrast, the energy consumption of AES is increased mainly due to the increase of the

operational rounds as suggested by its standard. The key size has an impact on the AES key

expansion process, but the impact is much less compared to the AES round operations. The

standard AES requires the operational rounds to be 10, 12, and 14 for AES with 128, 192,

and 256-bit keys, respectively. Ignoring the standard, we can operate AES with 256-bit keys

with a lower number of rounds, but it may be subject to cryptanalysis attacks. In summary,

it can be seen that the energy consumption of block ciphers heavily depends on the number

of operational rounds, and the key size of a cipher may or may not be a factor in increasing

the energy consumption for SKC algorithms. It is known that a long key size has a large

impact on preventing the brute force search attack; however, it has only a slight effect in

increasing the energy consumption.

The number of operational rounds also has an impact on the security strength of the

cipher against attacks such as linear cryptanalysis [73] and differential cryptanalysis [29].

Depending on the algorithm, some algorithms may require higher numbers of rounds to

be robust against such attacks. We discuss this further in Chapter IV. A good security

algorithm should not perform too little or too many of operational rounds.

In this section, we study the performance of energy consumption of block ciphers, AES,
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RC5, and Blowfish. RC4 is not studied here since its algorithm is not based on operational

rounds. We consider the energy consumption due to encryption with a per-packet key

scheme. This means that for each data packet we need to perform key expansion and

encryption, and a different key is used for each packet. This scheme is commonly used in

wireless networks.

Figure III.4 shows the amount of energy consumption of encryption algorithms with

different numbers of rounds. The algorithms are used to encrypt a packet of 1024 bytes with

a 128-bit key. The energy consumption shown does not include that from the key expansion

process. We see that AES consumes energy at a higher rate than others as the number of

rounds increases. RC5 is probably a good cipher for constrained devices in terms of energy

consumption. However, it has a high overhead due to the key expansion as shown in the

previous section.
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Figure III.4: Energy consumption of encryption with different rounds

Figures III.5 and III.6 shows the energy consumption (using cycle counting approach) of

AES and RC5 as a function of packet size and operational rounds. We see that the energy

consumption of AES increases as the number of operational rounds increases regardless of

the packet size. The energy consumption of RC5 also increases as the number of rounds

increases. However, as the packet size increases, the increase of the energy consumption
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with the number of rounds becomes less significant.
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Different Packet Size and Rounds

4. A Summary of SKC Performance

From the previous sections, we summarize the impact of the factors that affect the perfor-

mance of SKC encryption in Table III.1. It can be seen that AES and RC5 tend to be energy

efficient encryption algorithms for wireless devices since the impact of variable packet and

key sizes is low to medium. The AES has advantage over RC5 that the energy consumption

is slightly variable with the packet size. Despite its known vulnerability, RC4 is also likely to

be very energy efficient due to the medium impact of the packet size variation. Blowfish is

not suitable for wireless networks and devices because the variation of packet size has high

impact on the energy consumption.
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Table III.1: A Summary of Impact of Factors on SKC Performance

Factors RC4 AES RC5 Blowfish
Packet Size medium low medium high
Key Size no impact low no impact no impact
Round - medium low low
Vulnerability known unknown unknown unknown
Suitable for yes yes yes no
Wireless

C. ENERGY PERFORMANCE OF PUBLIC KEY CRYPTOGRAPHY

Security algorithms based on public key cryptography (PKC) are computationally intensive.

They are unlikely to be used for data encryption for every packet. However, they are com-

monly used in exchanging a shared secret or for key exchange. The performance of the key

exchange algorithms are different based on what the underlying PKC algorithm is. PKC is

also used for digital signatures, which can only be implemented using PKC algorithms. The

performance of digital signature algorithms are also different based on the underlying PKC

algorithm used. In this section, we show the performance of the key exchange and digital

signature algorithms.

1. Shared Secret or Key Exchange Algorithms

Figure III.7 shows the energy consumption of RSA to exchange a secret. Basically, the secret

is encrypted using RSA by a sender and it is decrypted by a receiver. It is shown that the

energy consumption does not depend on the size of the secret. However, it depends on the

key size of RSA and whether it is encryption or decryption. RSA with a 2048-bit key con-

sumes more than twice the energy than 1024-bit RSA. However, doubling the key size does

not double the security of the algorithm [69]. Therefore, RSA may not be appropriate for

the future where more security strength may be needed with linearly increasing energy con-

sumption. Unlike secret key encryption, it is also clear that RSA encryption and decryption

47



consume different amounts of energy. RSA encryption is quite simple and consumes very

little energy. This is suitable for constrained wireless devices in an infrastructure network

where there is a powerful device to do decryption.

Figure III.8 shows the amount of energy consumption of secret exchange using the

ECDH [122] algorithm. It is shown that exchanging different secret sizes affects the energy

performance. The ECDH algorithm can also be used with different elliptic curves which

yield different performances. An ECDH with a prime curve is based on prime number oper-

ations such as addition and multiplication which can easily be coded in software. An ECDH

with binary curves (Koblitz or Random) is based on binary operations which can easily be

embedded into a microprocessor. From the figure, it is shown that ECDH with a prime curve

consumes less energy than one with the Koblitz and Random curves respectively. Note that

energy consumption shown in the figure is only of the key exchange algorithm excluding that

of transmission. The performance of ECDH with binary curves can be improved if efficient

techniques based on binary algorithms are used [54].
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2. Digital Signature Algorithms

Figure III.9 shows the energy consumption of the RSA digital signature algorithms. The

digital signature is generated on 160 bits of hash generated from a message. Since the

RSA digital signature is based on the RSA encryption/decryption technique, it also has an

asymmetrical performance. The RSA signature verification algorithm (which is similar to

RSA encryption) consumes much less energy than the signature generation algorithm (which

is similar to RSA decryption) especially when the key size is large. This implies that the

verification algorithm is appropriate for constrained devices, but not the signing algorithm.

Figure III.10 shows the energy consumption of the ECDSA [59] algorithm. With increas-

ing key size, the ECDSA also consumes more energy. The level of energy consumption also

depends on the underlying elliptic curve. With the prime curve, the verification and sign-

ing algorithms consume approximately the same energy and also consume less energy than

other curves. However, the energy consumption of the verification and signing algorithms

with binary curves (Koblitz and Random) are much different and much higher than that

with the prime curve. Note that the ECDSA with a prime curve can be simply implemented

in software, and the ECDSA with a binary curve can be easily implemented in an embedded

microprocessor.

3. A Summary of PKC Performance

From previous sections, we summarize the impact of several factors on the performance

of PKC functions in Table III.2. We note that RSA encryption and signature verification

functions are very efficient since the variation of secret size has no or very low impact on

the energy consumption. However, RSA decryption and signature generation functions are

very inefficient for wireless devices. They are not energy efficient mainly due to the high

computation although the variation of secret or key size has no or minimal impact on the

energy consumption. ECC-based functions such as ECDH and ECDSA are efficient and are

usable for small wireless devices. This is because they are not sensitive to the variation of

the factors such as the secret or key size.
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Figure III.9: Energy Consumption of RSA
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Table III.2: A Summary of Impact of PKC Performance Factors

Factors Secret Size Key Size Energy Efficiency Complexity

RSA Encrypt no impact - high low
Decrypt no impact - low high

ECDH Prime low impact - high medium
Random medium impact - medium low

RSA Sign - very low impact low high
Verify - very high impact high low

ECDSA Prime Sign - low impact high medium
Verify - low impact high medium

Random Sign - medium impact high low
Verify - medium impact high low

D. ENERGY PERFORMANCE OF HASH FUNCTIONS

Hash functions are also as important as other cryptographic functions. They are used to

provide data integrity in digital signatures and public key certificates. They are also used

in conjunction with a secret key to provide message authentication and integrity to prevent

malicious message injection into or modification of messages in a wireless network. In this
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section, we study the performance of two popular hash functions (SHA-1 [81] and MD5 [94]).

Figure III.11 shows the energy consumption of SHA-1 and MD5 with different packet

sizes. It can be seen that SHA-1 consumes much more energy than MD5 especially when

the packet size is small. To create a digest of a packet, SHA-1 processes 512 bits as input

at a time, and continues for as many as 512-bit blocks as in the packet. Each 512-bit block

is passed through four rounds, each of which are identical and have 20 operations. Each

operation performs a non-linear function, adding, and shifting.
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Figure III.11: Energy Consumption of Hash Functions

MD5 also has four rounds of operations, but each round has only 16 operations. In

addition, each operation in MD5 is much simpler than that in SHA-1. This results in less

computation and energy consumption of MD5 than those of SHA-1. Note that the SHA-1

produces a 160-bit hash which is longer than a 128-bit hash produced by MD5. MD5 is

known to have security loopholes [44] unlike SHA-1 which has better security strength.

E. ENERGY PERFORMANCE OF MAC FUNCTIONS

In section III.D, we have shown the energy consumption of hash functions such as SHA-1

and MD5. The security service provided by hash functions is the message integrity in which
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a message receiver can only detect whether a message is modified. Unlike hash functions,

a Message Authentication Code (MAC) provides both message integrity and message au-

thentication in which the receiver can verify not only the integrity, but also the authenticity

of the message. Therefore, the MAC is commonly used in security protocols to verify the

sender identity and message integrity.

The MAC is an algorithm that is composed of a secret key and a one-way function such

as a cipher or a hash function. Examples of MAC functions with a cipher function and a hash

function are Cipher Block Chaining MAC (CBC-MAC) [28] and Hashed MAC (HMAC) [66],

respectively. The output size of the MAC depends on the output of the one-way function.

For example, using CBC-MAC with AES produces an output of 128 bits, and using HMAC

with SHA-1 produces an output of 160 bits.

In this section, we study the energy consumption of MAC functions as a function of packet

size. We study the HMAC function with SHA algorithm (HMAC-SHA) which produces

variable output sizes of 160, 256, 384, and 512 bits as well as CBC-MAC with AES which

produces a 128-bit output.

Figure III.12 shows the energy consumption of HMAC-SHA with variable output sizes

and 128-bit CBC-MAC-AES. It shows that the CBC-MAC uses much less energy than

HMAC-SHA. However, HMAC-SHA produces a larger output size than CBC-MAC-AES.

Additionally, with HMAC-SHA, we can produce variable output sizes, such as 160, 256, 384

and 512 bits. Note that we do not show the performance of 384-bit HMAC-SHA because

it uses the algorithm of 512-bit HMAC-SHA, and truncates the output of 512 bits to 384

bits; therefore, both 384-bit and 512-bit HMAC-SHA have identical performance. From

the figure, we can also see that the energy consumption per byte is reduced as the packet

size is increased. This shows that CBC-MAC-AES has much less overhead per packet than

HMAC-SHA.
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Figure III.12: Energy Consumption of HMAC-SHA and CBC-MAC

F. COMPARISON OF CRYPTOGRAPHIC LIBRARIES

Many cryptographic libraries that are commercially graded are freely available for implement-

ing security functions for software-based applications. They are also available in different

application programming interfaces (APIs), programming languages, and platforms. Due

to the variety of the libraries, performance of cryptographic functions in terms of energy

consumption is probably different. In this section, we perform a comparative study of three

different cryptographic libraries, OpenSSL [1], Cryptlib [2], and Crypto++ [3]. Their recent

versions are known so far to be efficient and without known vulnerabilities, and widely used

in the security research community.

1. Cryptographic Libraries

OpenSSL is probably the most commonly used library to implement cryptographic functions

since it is free for both commercial and non-commercial use. It was first implemented by Eric

A. Young and was known as SSLeay. The library was originally written for SSL protocol

transactions which employ several cryptographic functions. Later, it has been extended to

53



include many more new cryptographic algorithms such as AES, RC4, and RC5. It also

includes some hand-tuned assembly code for performance optimization. The OpenSSL’s

primary API is for C programming, and it supports different processor architectures.

Cryptlib is another efficient and robust cryptographic library. It is written by a security

expert, Peter Gutmann. It can be easily integrated into any application using its easy-to-

code API. The API supports C programming on a variety of processor architectures. Like

OpenSSL, it contains some hand-tuned codes for performance improvement. However, it is

free only for non-commercial use.

Crypto++ is known to have the largest list of cryptographic functions available for devel-

opers. Its API supports C++ programming with hierarchical class structure and templates.

By using the C++ object-oriented scheme, it can be easily integrated into any C++ pro-

gram. However, the library is not tuned for optimal performance. It is free for any use.

More comparative descriptions of these three libraries can be found in [114].

Using these three cryptographic libraries, we conduct a comparative study on a laptop

PC platform with an Intel Pentium III 800 MHz CPU. We use the cycle-counting method

for energy measurement.

2. Comparative Results

Figure III.13 shows the energy consumption of 128-bit AES with different libraries. The

Cryptlib and OpenSSL libraries show results that are close to each other because both of

them are based on C programming language. However, Crypto++, which is based on C++

programming, consumes more energy for extra processing of memory/resource management

and error checking. When the packet size is small, Crypto++ tends to consume even more

energy. Due to memory management in C++, the overhead of allocating and de-allocating

small memory becomes significant. However, all of them show similar trends in that the

encryption consumes more energy per byte when it is used for small packet sizes, and the

consumption is decreased when the packet size is larger.

Figure III.14 and III.15 show results of RC4 and RC5 encryption. We can see that the

overhead of using C++ in Crypto++ becomes more significant when the packet size is small.
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Figure III.13: Energy Consumption of AES with Different Cryptographic Libraries

Compared to that of AES, the algorithms of RC4 and RC5 during the key expansion require

higher memory manipulation while AES utilizes a very simple key expansion.

The comparison of only OpenSSL and Cryptlib when used for 128-bit cryptographic

functions is shown in Figure III.16. As shown, they both have similar performance in terms

of energy consumption.

G. COMPARISON OF ENERGY MEASUREMENT METHODS

Three different methods that are commonly used for energy measurement for cryptographic

functions have been described in section III.A. We have already shown the performance

of cryptographic functions using the cycle-counting energy measurement method. Using

other methods may have different complexity and accuracy. In this section, we perform a

comparative study of different energy measurement methods. We compare the cycle-counting

method to that using external hardware that is specialized for energy measurement.
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1. Hardware-based Energy Measurement

Energy consumption of a cryptographic algorithm can also be measured using a dedicated

hardware or a data acquisition (DAQ) system. We use the DAQ system which includes

SCXI-1000 module chassis and SCXI-1100 32-channel analog input module from National

Instruments, Inc. to measure the amount of current drawn to a laptop while running cryp-

tographic operations. The DAQ system is capable of measuring 240,000 samples/sec. Based

on the experiment setting for our experiments and the specification of the SCXI-1100, the

absolute accuracy of our measurement is between ±1.265 mA (±0.0614%) and ±1.429 mA

(±0.0632%) (See Appendix for absolute accuracy calculation). We used at least 260,000

samples for each measurement, and we obtained a standard deviation of less than 0.82%.

We have set up our measurement test bed as shown in Figure III.17. We measure the

power drawn by the laptop during cryptographic operations. We use the same test codes

that are used in the cycle-counting method to run the cryptographic operations. We add a

programming interface to trigger the DAQ machine to start measurement just before and to

stop after the operation. The energy measured by the DAQ is the energy consumed by all

components of the laptop, including LCD, hard drive, and etc. We do 1000 experiments for

each test and find the average amount of energy consumption. We calculate the standard

deviation of energy consumption of all experiments, and find that it is less than 1%.

Laptop computer

Power Supply

Test Circuit

DAQ Machine

Trigger

Figure III.17: A Hardware-based Measurement Testbed
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2. Comparative Results

Figure III.18 shows the energy consumption of 128-bit cryptographic functions using the

OpenSSL library. It shows similar characteristics of energy consumption to those when using

the cycle-counting method in Figure III.1. However, the amount of energy consumed is higher

when using the DAQ system. Although it is proportional to the amount of computation, it

may include energy for LCD, hard disk, memory, and other devices during the cryptographic

operation. Figure III.19 shows the comparison between OpenSSL and Cryptlib libraries for

128-bit encryption. It shows results similar to those when we apply the cycle-counting

method as shown in Figure III.16.
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The comparison of using different methods for energy measurement is shown in Figure

III.20. The measurement of energy consumption uses the cycle-counting (on the left y-axis

with solid lines) and the DAQ-system (on the right y-axis with dashed lines). Both methods

show close performance, but on a different scale. The DAQ system method which measures

the total energy consumed by the device shows much higher energy consumption.
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Figure III.20: A Comparison of Using Different Energy Measurement Methods

H. COMPARISON OF TRANSMISSION AND ENCRYPTION ENERGY

In this section, we compare the the energy consumption due to transmission with that due

to encryption. To calculate the transmission energy, we use the energy transmission model

for point-to-point transmission in IEEE 802.11b WLANs proposed by Feeney and Nilsson

[45]. The transmission energy model is a linear model given by:

Tx Energy = 431µJ + 0.48µJ/bytes (III.1)

Rx Energy = 316µJ + 0.12µJ/bytes (III.2)

The transmission and reception energy have a fixed cost that is similar to that in encryp-

tion for key expansion process. We compare the transmission energy with our encryption

energy model as proposed in Section III.I. Figure III.21 shows the energy consumption per

byte of transmission and encryption as a function of packet size. It can be seen that the

transmission energy is higher than the encryption energy. This is because the transmission

requires a higher fixed cost or overhead to turn on the radio circuit on for transmission or

reception. Note however that PKC algorithms consume around an order of magnitude higher

energy than even transmission and reception.
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Figure III.21: A Comparison of Transmission and Encryption Energy

I. MODELING ENERGY CONSUMPTION

In our study in previous sections, we show the performance of cipher functions in term of

energy consumption. In this section, we come up with models of energy consumption of

the cipher functions in various settings. The energy consumption model is important in

that it can be used for simulation of mobile devices to estimate the energy consumption for

encryption. For example, for a given packet size and number of operational rounds, we can

estimate how much the energy consumption will be for securing packets using a cipher such

as AES or RC5. Additionally, from the packet size, we can estimate the energy consumption

of Hash and MAC functions.

1. The Energy Model

As we have shown in previous sections, energy consumption per byte of cryptographic func-

tions is a function of packet size. The characteristics of the energy consumption per byte is

closed to the linear-in-parameter exponential function of as a function of the natural loga-

rithm of the packet size. Therefore, we model the energy consumption per byte as a function

given by:
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ε = α + βe− ln x + γ ln xe− ln x, (III.3)

(III.4)

where ε is the energy consumption per byte (in µJ/byte), and α, β, and γ are the model

arguments, and x is the number of bytes.

To find the model arguments, we use curve fitting techniques to find the curve that best

fits the energy consumption from measurement. By trial-and-error, we found that the above

equation yields the best approximation or best fit for the measured energy consumption

for all cryptographic functions. We use the least-mean-square fitting [119] technique with

the above equation to find the energy model of each cryptographic function. We use the

R-square or Coefficient Correlation to find the goodness of fit [118] and we show this for

each function in later sections.

We can reduce the above equation into a short form, and we have the energy consumption

per byte as follows:

ε = α +
β

x
+

γ ln x

x
. (III.5)

To calculate the energy consumption per packet, E, we multiply ε by x, the packet size

in bytes, to get:

E = β + αx + γ ln x. (III.6)

From this model, we see that the energy consumption per packet of cipher functions is

almost linear as a function of packet size if we ignore the last term. The energy consumption

per packet, E, depends on three costs, the fixed cost, the first variable cost, and the second

variable cost. The fixed cost (β) is the energy overhead independent of the packet size, which

is from the computation required for the key expansion process. The first variable cost, α,

is dependent on the packet size. The second variable cost, γ, has a lower dependency on

packet size than the first variable cost.
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To make the encryption energy model simpler, one may ignore the second variable cost

since it is not significant compared to the first two costs as the packet size increase. The

model can be reduced into a simple form for encryption energy consumption per packet as

shown below:

E = β + αx. (III.7)

2. Modeling Energy Consumption of Ciphers

As we have seen in Section III.B.1, standard ciphers such as AES, RC4, and RC5 consume

different energy levels for different packet sizes. In this section, we use a curve fitting

technique and the energy model in the previous section to find the model arguments (α, β,

and γ) from the data in Figure III.1.

Table III.3 shows the arguments of the energy model for the cipher functions and the

goodness of curve fit in term of R-square values for each cipher. We can see that the fixed

cost, β, of RC4 is higher than that of other ciphers, and AES has a much lower fixed cost

than RC4 and RC5. However, AES has a high variable cost, α, compared to RC4 and RC5.

Table III.3: An energy model of fixed-round ciphers

Cipher R-Square α β γ

RC4 0.99999999 0.005352241 1.570481104 -0.019608391
RC5 0.99999996 0.010556583 1.052393166 0.006131408

AES-128 0.99999824 0.021548394 0.205036074 -0.000142957
AES-192 0.99999619 0.025066828 0.188190654 0.000362155
AES-256 0.99999616 0.028178031 0.201417806 0.000399011

We use the arguments in the table and plot the energy consumption per byte, ε, of the

cipher functions with different packet sizes as shown in Figure III.22. The resulting figure

shows a good fit to the energy consumption from measurement in Figure III.1. We also show

the energy consumption per packet, E, in Figure III.23. From the figure, we can see that the

AES cipher consumes energy for encrypting a packet at a higher rate than RC4 and RC5 as

the packet size increases.

62



16 64 256 1024 8192
0

0.02

0.04

0.06

0.08

0.1

0.12

Packet Size (bytes)

E
n

er
g

y 
C

o
n

su
m

p
ti

o
n

 (
u

J/
b

yt
e) RC4

RC5
AES−128
AES−192
AES−256
Fitted Curve

Figure III.22: The energy per byte model of encryption algorithms
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Figure III.23: The energy per packet model of encryption algorithms

From the model shown in Figure III.22, AES-128 performs better than RC4 and RC5

when the packet size is less than 80 bytes. However, this may not be true since AES and

RC5 are block ciphers. When input data is not equal to an input block size, the data needs

to be padded to the input block size. The input block size of AES and RC5 is 16 bytes and
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8 bytes, respectively. Therefore, when a packet size is not of 16 bytes for AES or 8 bytes for

RC5, the energy consumption per byte is increased as it needs to encrypt more bytes than

the actual packet bytes.

Figure III.24 shows more granular measurements of energy consumption between packet

size of 56 and 88 bytes. We see that AES actually performs better than RC4 and RC5 when

the packet size is smaller than or equal to 64 bytes. Therefore, the above proposed model

can only be used to estimate the energy consumption of AES and RC5 when the packet size

is equal to the input block size. If the packet size is not equal to the input block size, we

need to calculate the energy consumption of the packet using the input block size that is

larger than the packet size using the energy model. For example, encrypting a packet of

size 65 bytes consumes energy that equals the energy for encrypting an 80-byte packet using

AES or a 72-byte packet using RC5.
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Figure III.24: The granular measurement of energy per packet

Figure III.25 shows the difference of energy consumption per byte between the granular

measurement and using the energy models of AES, RC4 and RC5. The model provides a

lower bound on the energy value.
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Figure III.25: Comparing the energy model to the granular measurement

3. Modeling Energy Consumption of Variable-Round AES and RC5

In Section III.B.3, we show the energy consumption of block ciphers such as AES, RC5, and

Blowfish. From the results, we can model the energy consumption per byte based on the

number of operational rounds and the packet size. We do not model the energy consumption

of Blowfish since it will not be used later in our work. In any case, it will not be hard to

model the energy consumption of Blowfish by using the same curve fitting technique.
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From Figures III.5 and III.6, we use the energy model to find the model arguments and

the goodness of fit for different numbers of operational rounds and packet sizes. Table III.4

shows the R-square values and the model arguments. From the table, we can see that the

fixed cost component, β, of AES is fairly constant, while that of RC5 is increased as the

number of operational rounds increases. This is because RC5 needs more computation for

key expansion as the number of operational rounds increases. The increase of the number

of rounds also increases the computation in the encryption process, but it is insignificant

compared to the key expansion process. The RC5 encryption process is only composed of

one XOR, one rotation and one addition operation for each round.

Using AES and RC5 with 14 rounds from Table III.4, we show the goodness of fit in

Figure III.26.

Table III.4: An energy model for variable-round AES and RC5

Cipher Round R-Square α β γ
AES 2 0.99999878 0.008447073 0.17643700 -0.000372095

4 0.99999901 0.011159903 0.17790412 -0.000295925
6 0.99999389 0.013974894 0.19367355 -0.004574693
8 0.99999923 0.016615498 0.17672169 -9.27346e-06
10 0.99999901 0.019417545 0.17720414 0.000132047
12 0.99999865 0.022534813 0.17499212 8.82427e-05
14 0.99999978 0.025258314 0.17694732 -0.000175299

RC5 2 0.99999829 0.007433666 0.25628641 0.002915492
4 0.99999860 0.007427554 0.38893572 0.005036759
6 0.99999960 0.007435403 0.52541720 0.002830619
8 0.99999860 0.007424251 0.64547943 0.007890188
10 0.99999986 0.007439175 0.79930360 0.001637456
12 0.99999993 0.009364852 0.93294880 0.000983088
14 0.99999997 0.007443185 1.07992994 0.000756165
16 0.99999989 0.010977162 1.19542920 0.002287954

From Table III.4, we can model energy consumption of variable-round AES and RC5.

Figure III.27 shows the figure of α and β cost components as a function of the number of

operational rounds (r). We do not consider γ since it has very little significance in the energy

model; therefore, we simplify our variable-round model to only α and β. From the figure,

it is clear that α of AES and β of RC5 are linear functions of the number of operational

rounds, and β of AES and α of RC5 are likely to be constant values. Using the curve fitting

technique, we compute α of AES and β of RC5 as follows in terms of r, the number of

operational rounds.

66



16 64 256 1024 8192
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
ε = α + β/x + γ(ln x)/x

Packet Size (bytes)

E
ne

rg
y 

C
on

su
m

pt
io

n 
(u

J/
by

te
)

14−Round AES
14−Round RC5
Fitted Curve

Figure III.26: Goodness of fitting for AES and RC5 energy consumption
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AES: α = 0.005582889 + 0.001398641r, R-square = 0.999591509 (III.8)

β = 0.176701065 (III.9)
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RC5: α = 0.007433872 (III.10)

β = 0.116988204 + 0.067887565r, R-square = 0.999409297 (III.11)

By using α and β of AES and RC5 into Equation III.5, we have variable-round energy

models of AES and RC5 as follows.

AES: ε = 0.005582889 + 0.001398641r +
0.176701065

x
(III.12)

RC5: ε = 0.007433872 +
0.116988204 + 0.067887565r

x
(III.13)

From the above equations, we can clearly see that AES has a smaller overhead than

RC5 in terms of energy consumption as we discuss in Chapter II.A. As shown in Section

III.I.2, the overhead of RC5 is smaller as the packet size increases for each encryption when

operating using the standard number of operational rounds. When operating using more

rounds, as shown in Figures III.6 and III.5, the overhead of using RC5 becomes greater

while that of using AES is only slightly increased.

This can be clearly seen in Figure III.27. The overhead cost component, β, of RC5,

linearly increases as we increase the number of operational rounds while that of AES is

slightly increased. In contrast, the variable cost component, α, of RC5 is fixed while that of

AES is linearly increased as we increase the number of operational rounds.

In summary, we conclude two rules for RC5. First, RC5 should only be used for en-

crypting large-size packets due to its high overhead cost. Second, when using RC5 for large

packet size, we may increase the number of operational rounds to increase security strength

while the energy consumption is only slightly increased.
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4. Modeling Energy Consumption of Hash Functions

In Section III.D, we show the performance of hash functions such as SHA-1 and MD5 in terms

of energy consumption per byte, and we use this data to find an energy model for them. From

Figure III.11, we use the energy model and the curve fitting technique previously described

to find the energy arguments and the goodness of fit.

Table III.5 shows the model arguments and the goodness of curve fit indicated by the

R-Square values. We can see that SHA-1 has a much higher overhead (a fixed cost) than

MD5. SHA-1 also has a higher variable cost since it performs more computations than MD5.

Note that MD5 is known to have vulnerabilities.

Table III.5: An energy model for hash functions and packet size

Hash R-Square α β γ

SHA-1 0.99999324 0.00570248 1.61598213 0.06370296
MD5 0.99999999 -0.00000086 0.44510441 0.00036898

Using the arguments, we show the energy per byte model of hash functions in Figure

III.28, and it shows a good fit to that in Figure III.11.

5. Modeling Energy Consumption of MAC Functions

In Section III.E, we study the energy performance of MAC functions such as HMAC and

CBC-MAC. In this section, we model the energy consumption of the MAC functions using

the results from the study. We use the curve fitting technique and find the model arguments

and the goodness of fit in Table III.6.

From the table, we can see that the CBC-MAC-AES (using AES as cipher) has a much

lower fixed cost, β, than HMAC-SHA. The fixed cost of the HMAC-SHA also increases as

the size of the SHA output or digest is increased. The variable cost, α, of the HMAC-SHA

is also increased as the digest size increases; however, it is increased at a lower rate than the

fixed cost. The high overhead cost is due to the fact that SHA function already has a high

overhead cost, HMAC function multiplies the overhead cost in that it performs two SHA

functions internally to produce an output.
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Figure III.28: The energy per byte model of hash functions

Table III.6: An energy model for HMAC-SHA and CBC-MAC

MAC Output
(bits)

R-Square α β γ

HMAC-SHA 160 0.99892989 0.01097168 8.69571394 -0.30388744
256 0.99973079 0.01898750 10.23319142 -0.07599955
512 0.99991585 0.05268896 36.20744206 -1.35579240

CBC-MAC-AES 128 0.99552824 0.01912965 0.20543614 -0.01385172

We use the model arguments from the table and create a plot as shown in Figure III.29.

The plot shows the goodness of fit for energy consumption per byte of HMAC-SHA with

variable output sizes and 128-bit CBC-MAC-AES for different packet sizes.

J. CONCLUSION

It has been shown that several factors have an impact on the performance of security prim-

itives of both SKC and PKC. The packet size can significantly affect the key expansion (or

preparation) process of secret key encryption algorithms, although the key can be expanded
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and cached for later use to reduce the computational load. However, cache management may

not efficiently utilize the memory space especially in packet switching networks where data

are bursty. It also increases the system complexity and may introduce a security loophole

because of the buffered key. In addition, in wireless networks where packet error rates can

be high, a per-packet key scheme is often used to provide security services to each packet.

Thus, the packet size is a significant factor in determining the energy consumption.

The key size has only a slight impact on the performance of SKC algorithms such as

AES. As suggested by the AES standard, increasing the key size of AES requires an increase

of the number of operational rounds; hence, the computational load is increased. Thus, the

impact for increasing AES operational rounds is more significant than increasing the key

size. Compared to SKC, the key size of PKC algorithms can significantly affect the energy

consumption. It is because increasing the key size implies an increase of mathematical

operations, and hence increases the computation and energy consumption. The number of

operational rounds can only affect the performance of block ciphers whose encryption process

is recursive. Increasing the number of rounds does magnify the computation but increases
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security strength. Hash functions are often light-weight, and hence they are not of much

concern. Although, the packet size may impact the performance of hash functions, it is

insignificant compared to SKC and PKC functions.

We have shown that using different cryptographic libraries could also affect the perfor-

mance of energy consumption. It is shown that OpenSSL and Cryptlib show similar results

because they are both based on a C-programming interface which is lightweight. On the

contrary, Crypto++ uses the C++ programming interface which requires more computation

and more energy for error checking and memory/resource management.

We also use different methods of energy measurements to compare the performance of

different cryptographic libraries for cryptographic operations. We use the hardware-based

approach to measure the amount of current drawn to the laptop performing cryptographic

operations to be compared with the cycle-counting approach. The results show that both

methods can be used to measure the energy consumption of cryptographic operations. How-

ever, the cycle-counting approach yields only the amount of energy used by the CPU of a

mobile device such as a laptop. On the other hand, the hardware-based approach shows the

total energy consumed by the device including CPU, hard disk, LCD monitor and etc.

We also study and propose energy models for variable round AES and RC5 as well as

the MAC as a function of packet size. The models show that the energy consumption is a

linear-in-parameter logarithmic function with three components. These models can be useful

in performance evaluation of energy consumption of security protocols, and will later be used

in our study of security protocol performance.
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IV. SECURITY STRENGTH: MEASUREMENT AND MODELING

In the following sections, we discuss how we can characterize the strength of a security

protocol and how it can be estimated. Then, we propose a security strength model for use

in security strength estimation. The study in this chapter has been largely extended from

our work in [85].

A. MEASUREMENT OF SECURITY PROTOCOL STRENGTH

Fundamentally, the strength of a security protocol can be evaluated based on the underlying

security properties and primitives used in the protocol: such as ciphers, key size, operational

rounds, and mechanism of the protocol.

1. Strength from Cipher Algorithms

A cipher is a core component used in many security protocols. Each cipher is a unique

algorithm which mostly includes data manipulation, permutation, and diffusion which builds

the cipher strength. A cipher is known to be weak or insecure when it is possible to perform

shortcut attacks, e.g., attacks that are more efficient than exhaustive key search. Such attacks

are cryptanalysis attacks that analyze the cipher algorithm and try to reverse the ciphertext

to plaintext or discover the key. Examples of cryptanalysis attacks are differential and linear

cryptanalysis attack, weak key attack, related-key attack and Square attack [102]. Among

these attacks, the differential and linear cryptanalysis attacks are most efficient especially

for a block cipher like AES, RC5 and Blowfish. Details of these attacks are discussed later
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in this chapter.

2. Strength from Key Size

The size of the cipher key is also another factor that impacts the cipher security strength.

When a cipher used is strong and there is no short-cut attack, the most efficient attack is a

key search attack. The key search attack is simple and is most practical in that it can be

mounted to attack almost all ciphers. In the key search attack, attackers exhaustively search

for a key that matches a pair of known plaintext and ciphertext. Therefore, to strengthen

the protocol security, not only do we need a strong cipher, but also a key size that is long

enough to prevent the key search attack with a reasonable amount of time and resources.

The shorter the key size, the more vulnerable the cipher becomes to exhaustive key search

attacks.

Basically, the desired key size depends on how long we want our encrypted data to be

safe. The longer the key size, the longer the encrypted data is safe. It would approximately

take 5,300,000 years using a PC with a Pentium IV (3 GHz) to break a message encrypted

with a 80-bit symmetric cipher or about 1 year using 5 million PCs. Using a 128-bit key

with a provably secure cipher (e.g., AES) implies that the data can be protected until the

year 2075 [69]. Increasing the key size does increase the security strength, but may also

increase the amount of computation need by devices. Small devices such as wireless PDAs

may be resource constrained and hard pressed to perform such computation. This can be

more problematic if the devices have limited small battery capacity [99, 56]. Therefore, we

may need to reduce the security level or strength to an optimal level so that such devices

can operate longer.

3. Strength from Operational Rounds

The security strength of any secret key cipher is mainly based on the specific design of the

encryption algorithm. Most encryption algorithms follow a design where there are repeated

round operations. In each operational round, the algorithm manipulates data in two ways –

scrambling it to obscure the relationship between the plaintext and ciphertext and dissipating
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the effects of each plaintext bit over several bits of ciphertext. As more rounds are used, the

cipher tends to be more secure since it leaves no trails of the original data. The number of

operational rounds is often used to determine the strength of a cipher against cryptanalysis

attacks [102]. By employing the right number of operational rounds, one can ensure that

there is no shortcut attack that can be performed faster than an exhaustive key search. A

cipher with a smaller number of rounds than specified is weak against a shortcut attack such

as a linear or differential cryptanalysis attack [73, 29]. For example, it is required to use 10

rounds in AES with 128-bit block size as specified in the AES standard [14]. However, the

minimum number of rounds to provide adequate security is 6 rounds as described by the

author of AES [41].

4. Strength of Protocol Design

Besides the first three factors, the protocol design itself is most important. Security protocols

often have flaws due to improper design which leads to loopholes in the protocol. To eval-

uate a security protocol, we can use formalisms. The formalism is a mathematical method

using logic to verify whether the protocol is secure [75]. However, the use of formalism is

tedious and often has limitations that restrict the use to only security protocols with certain

conditions and assumptions [18, 51]. A modern and common way to evaluate the protocol

security is to use reasoning and arguments based on lessons learned from security protocol

design [24, 17]. A quantitative way to assess the strength level of a protocol is to assess

the strength of protocol security primitives such as the cipher and message authentication

code (MAC) used in the protocol. In our study, we only assess strength of security protocols

based on a quantitative method since formalisms are not the focus of our work. Note that

while it is important to ensure that protocol flaws do not exist, the objective of this work

is to demonstrate the effects on energy consumption rather than designing better security

protocols.
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5. Strength of Message Authentication Code

The security strength of a MAC or a hash function is often based on the output size or the

hash size. An attack on a hash function is successful if there are two identical hashes an

attacker can produce for two different messages. The equivalent exhaustive search is faster

due to the birthday paradox [110]. The attack requires computation of about 2x/2 hash

function outputs where x is the size of the output in bits in order to be successful with a

50% probability. Therefore, to be as secure as a 128-bit cipher, a hash function is required

to produce an output of at least 256 bits.

In IV.1, we provide a categorization of security strengths of protocols that make use of

different cryptographic primitives with different key sizes for the cipher and a hash output

size for the MAC. For example, a protocol with low security strength uses a cipher with

a 64-bit key and a MAC with a 128-bit output. This security setting is minimally secure

because researchers have proved that the primitives can be practically compromised using

a brute-force attack. For example, a 64-bit cipher (RC5) was broken using freely available

computing power from about 330,000 PCs (involving distributed.net) in about 4 years [4].

Successively larger key and hash output sizes make a security protocol stronger.

Table IV.1: Typical Key Sizes and Hash Sizes for Different Security Strengths

Strength Key size for cipher Hash size
Low 64 bits 128 bits

Medium 128 bits 256 bits
High 192 bits 384 bits

Very High 256 bits 512 bits

6. Estimation of Security Strength

The measure of security strength is usually computational – the amount of time and money an

attacker will need in order to break the security service. The computation which also implies

the security strength is often measured in MIPS-years, defined as the amount of computation

that can be performed in one year by a single DEC VAX 11/780. MIPS (million instruction
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per section) is widely accepted as a unit to approximate computing power of any processor

(such as Intel Pentium) even if it uses instruction sets different from VAX. For example,

in one year, a single PC with a 3 GHz Intel Pentium processor approximately provides the

computing power of 3,000 MIPS-years or 0.003 MMYs.

The security strength or the MIPS-years required to break a cryptographic primitive

indicates how long the data protected by the security protocol is secure. In the study by

Lenstra and Verheul [69], the time to break a cipher is quantitatively compared to the time

to break a DES cipher, the first standard block cipher internationally used since 1976 [5].

To break 56-bit DES, Lenstra and Verheul estimate that it requires about 0.5 MMYs. In

1997, it was first discovered that DES can be cracked using 3500 PCs and 4 months (using

an exhaustive search for a key) [69]. In 1999, DES was cracked in less than 24 hours using a

specialized hardware, “Deep Crack” [49], and computing resources from distributed.net [4].

From these evidences, it shows that 0.5 MMYs for cracking DES may be an overestimate.

From the MMYs required for DES cracking, we can estimate the amount of MMYs

required to crack any cipher using an exhaustive key search, based on the key size used. The

MMY estimation considers the increase of computing power which is approximately doubled

every 18 months according to Moores Law [78]. The estimation also considers the amount

of budget that an adversary may have and the declined price of CPU and memory to build

an infrastructure for the brute-force attack.

In summary, the estimation using MMY is somewhat practical and can be used as a

reference for selecting the key size of a cipher or the hash size based on what level of security

strength is needed to prevent a brute force key search attack. Although, this estimation

is applicable to a cipher or a crypto-primitive, the strength of a security protocol which is

based on its underlying crypto-primitive can be associated to be the same as that of the

crypto-primitive if protocol flaws do not play a huge role in the weakness of the protocol.
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B. STRENGTH MEASUREMENT BASED ON SECURITY ATTACK

There are several types of security attacks, but only few are known to be effective and

even practical. In this section, we describe some common security attacks and analyze the

strength of ciphers used in our work against such attacks.

1. Brute Force Key Search Attack

The easiest and most effective attack is a brute force key search attack. In such attack, one

obtains a plaintext and its corresponding ciphertext under a secret key, and simply tests each

of all keys until a match is found. If the key size is n bits long, there are 2n possible keys

to test. This attack requires minimal storage/memory and it can be parallel. Therefore, the

attack can be more effective by incorporating more than one computer. This attack is known

to be the most practical since it can be mounted against any cipher. However, this attack

is only effective when the key size is small. For example, RC5 with a 64-bit key was broken

using the key search attack which takes 1,757 days with 331,252 participating computers.

However, it would take only 790 days with approximately 45,998 2GHz AMD Athlon XP

machines running 24 hours a day [6].

The efficiency of this attack depends heavily on the key size used. As recommended

by NIST, a key size of 128 bits is safe for today’s security and it would be safe until 2075

using the approximation proposed by Lenstra and Verheul [69]. In Figure IV.1, we estimate

the amount of computing required in MMY (on the left y-axis), and the year (on the right

y-axis) that it would be broken for a given key size using the same approximation technique.

2. Cryptanalysis Attacks

A cryptanalysis attack is an attack that uses a mathematical model to analyze the pattern

of how a plaintext is “changed” to a corresponding ciphertext. It is a shortcut attack where

the attack can be faster than the key search attack if it can be practically used. The goal

of the attack is to find the “correlation” among a set of plaintexts, a set of ciphertexts and

the key. There are two common cryptanalysis attacks, differential and linear cryptanalysis.
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Figure IV.1: Required Computing Power for Brute Force Key Search Attack

Differential cryptanalysis was first introduced by Biham and Shamir [29], and has been

widely used to analyze most block ciphers such as RC5 and AES. The basic idea in this

technique is to find the “difference” between two chosen plaintexts and their corresponding

ciphertexts. The plaintexts, with difference ∆P , are chosen such that the difference of

the ciphertexts, ∆C, has a specific value with better than average probability. The tuple

(∆P, ∆C) is called a characteristic. Depending on the technique used in the analysis and the

cipher, certain bits of the key can be derived by analyzing the behavior of the characteristic.

The second common cryptanalysis attack is linear cryptanalysis pioneered by Matsui

[73]. The basic idea is to find correlation among certain bits of plaintext, ciphertext and key

that has a probability of less than or more than 0.5, which is called bias. With a certain

bias, the correlation or linear approximation can lead an attacker to find information about

the key. The cryptanalysis attack can be incorporated with a related key attack in which a

set of keys is used for the attack, and the set is chosen with a particular property.

The cryptanalysis attack is often used with variants of a cipher, which can be a reduced-

round cipher. It is easy to attack a cipher with a small number of rounds. As the number of

operational rounds increases, the correlation complexity among plaintexts and ciphertexts
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grows exponentially. The attack commonly works for a small number of rounds. Increasing

the number of rounds until it is impossible to attack or the attack is less effective than

the key search attack is a common way of securing a cryptosystem. Fundamentally, the

cryptanalysis attack is ineffective if it requires 2n−1 operations or more for an n-bit key.

From the above analysis, we propose a new security parameter to measure the capability

of ciphers against the cryptanalysis attack. The Cipher Robustness or simply called the

Robustness is the strength of the cipher to prevent the cryptanalysis attack. The Robustness

is the product of the number of plaintext-ciphertext pairs and the number of operations

required from the cryptanalysis attack.

Cipher Robustness = Plaintext-Ciphertext Pairs×Operations

As the number of required plaintext-ciphertext pairs grows, the possibility that an at-

tacker can collect those is decreased or impractical; thus, increasing the cipher robustness.

In addition, the number of required operations is another factor that impacts the possibility

of the attack. With a certain amount of available computing power, increasing the number of

required operations decreases the ability of attackers from analyzing the cipher. Therefore,

increasing the required number of operations does increase the cipher robustness.

Figure IV.2 shows the Robustness of AES(k,m) and RC5(k,m) where k is the key size in

bits and m is the plaintext size in bits. The Robustness of AES is derived from [72, 41, 47],

and that of RC5 is derived from [61, 30, 33]. From the figure, we see that the attack is more

difficult as the number of operational rounds increases. Second, we also see that attacking

AES is more difficult than RC5 as the number of rounds increases. However, one increased

round of AES requires about 60% to 175% more energy than RC5 as shown in Figure III.4.

Third, we can see from the figure that the attack of 256-bit AES with 9 rounds is more

efficient than that with 8 rounds because the attack incorporates the Related Key attack

of the long key size (256 bits) [47]. Therefore, as also recommended by AES authors, the

number of operational rounds should be increased as the size of keys increased. Lastly, to

make such attacks impossible, more than 10, 12, and 14 rounds are recommended for AES

with 128-, 192-, 256-bit keys, respectively, and 16 rounds for RC5.

In comparison with the key search attack, Figure IV.3 shows the required computing
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Figure IV.2: Cipher Robustness to Cryptanalysis Attack

power for a typical cryptanalysis attack against AES and RC5. If we assume that the

amount of available plaintext-ciphertext pairs is unlimited (which is unlikely to happen in

the real world), such attacks can be much more powerful than the key search attack since

they require much less computational effort.

3. Modeling the Cipher Robustness

In the previous section, we described the cryptanalysis attack for block ciphers such as

AES and RC5. The cryptanalysis attack relies on the number of operational rounds and the

amount of available plaintext-ciphertext pairs. From this two parameters, we proposed a new

parameter called Cipher Robustness. In this section, we model the Cipher Robustness based

on the the number of operational rounds of a cipher. From the data, we use curve fitting

techniques called least-mean-square (LMS) [119]. We derive the model of the Robustness.

We use the R-square or the Correlation Coefficient value as a parameter to evaluate the

goodness of the fitting [118].

The model is necessary for the calculation of the number of operational rounds based on
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Figure IV.3: Required Computing Power for Cryptanalysis Attack

the required Robustness of a particular security level. For example, for a given security level,

we calculate the Robustness, and we use the Robustness to derive the required number of

operational rounds. We then operate the cipher with this number of rounds with the guar-

antee that the cipher will protect information with the given security level. The definition

of the security level will be described in Chapter VI in more detail.

In Figure IV.2, we show the Robustness of AES and RC5 against cryptanalysis attacks.

We can see that the Robustness of RC5 is exponential with the number of operational rounds.

Thus, the Robustness model for RC5 is

RC5 Robustness = αeβr

where α and β are the model arguments, and r is the number of operational rounds.

We also model the Robustness of AES with a 128-bit key (AES-128) and a 256-bit key

(AES-256). The Robustness of AES with a 192-bit key is similar to that with a 256-bit key.

We can see from Figure IV.2 that the log function of the Robustness tends to be exponential

as a function of the number of operational rounds. Thus, we can model the Robustness of

AES as
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AES Robustness = exp(αeβr).

We have tested several curve functions, and we have found that the aforementioned

functions yield the highest R-square value. Using the LMS fitting on the above functions,

we find the arguments for RC5, AES-128, and AES-256 and the R-square value as shown in

Table IV.2.

Table IV.2: Robustness Model for AES and RC5

Cipher α β R-Square
RC5 8.45715666e-8 6.28948775 0.99886109

AES-128 0.18749891 0.97279156 0.98547977
AES-256 1.00967057 0.67885200 0.99790237

From the table, we can summarize as follows. An increase of one round of AES-128

would increase the Robustness more than one round of RC5 since the Robustness of AES is

exponentially increased as the number of rounds increases. One round of AES-256 increases

the Robustness less than AES-128 due to the fact that attacks on AES-256 are more efficient

than those on AES-128 and AES-192 (the β of AES-128 is higher than that of AES-256).

In Figure IV.4 and IV.5, we show the cipher robustness from the cryptanalysis and our

robustness models for RC5, AES-128 and AES-256, respectively. We will later use these

models to derive the number of operational rounds used by a cipher to provide a given

security level.

4. RC4 Cryptanalysis Attack

RC4 is a stream cipher and the cryptanalysis of RC4 is different from that of block ciphers

such as AES and RC5. The cryptanalysis attacks are related-key attack, “tracking” attack,

and statistical analysis attack [52, 77, 10]. The attacks try to predict the states of the key

stream; however, it is not efficient if the RC4 word size is more than 8 bits which is widely

used for RC4. The most successful and practical attack is the Fluhrer-Mantin-Shamir (FMS)

attack, where they found a weakness in the key scheduling algorithm (KSA) of RC4 [48].
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Figure IV.4: The Models of Cipher Robustness for RC5
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Figure IV.5: The Models of Cipher Robustness for AES

The FMS attack is practical as demonstrated by Stubblefield et.al. [111], and has been

implemented in many attack tools, such as Airsnort [7] and WEPcrack [8]. The FMS attack

has discovered two weaknesses in RC4, the invariance weakness and the initial vector (IV)

weakness.

The invariance weakness is the existence of specific patterns, which are invariant with

respect to the KSA. That means if we can find some pattern in RC4 keys, we can also find

a similar pattern in the key stream output with high probability. The RC4 keys that have
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such patterns are weak keys. Using this weakness, attackers only find the desired pattern in

the ciphertext (which is commonly an XOR between the key stream and a plaintext), and

they can determine the secret key. The complexity of this attack is an Θ(2n+l), where n is

the word size in bits and l is the key size in bytes. Typically, RC4 has 8-bit word size, n = 8

and a 128-bit key, l = 16, and the complexity of the attack is Θ(224).

The IV weakness occurs when RC4 is used in a common mode in which an IV is simply

concatenated to a secret key to produce an RC4 key. In this mode, the secret key can be used

on a long term basis, and one can only change the IV to generate a different RC4 key. The

IV is not a secret; therefore, it is exposed to attackers. With some known IVs to produce

RC4 keys, an attacker can analyze key stream outputs, and determine the rest of the RC4

keys whose part is the long-term secret key. The complexity of this attack is Θ(2n+8), which

is independent of the key size (l). This attack has been used against the WEP protocol,

which uses the aforementioned common mode, and it makes WEP unsafe for any key size.

The complexity of the WEP attack is Θ(216), where the word size (n) is 8 bits long.

Rivest, the creator of RC4, recommends the prevention of these attacks by discarding

the first 256 bytes of the key stream output since these bytes can be used by the key-related

analysis. Also, the key and the IV should be pre-processed before they can be used as

the RC4 key [93]. The discarding and pre-processing can prevent the IV weakness attack;

however, as described by Fluhrer et.al., the invariance attack is still possible with lower

probability [48]. The more the first several bytes are discarded, the less the successful rate

of the invariance attack.

5. Hash and MAC Function Attacks

There are three common attacks for hash functions, which are based on brute force search,

the pre-image attack, the second pre-image, and the collision attack.

The pre-image attack is that given the hash of the message M , h(M), one is trying to

find M ′ such that h(M ′) = h(M). With the brute force search, the attack tries to find all

possible outputs of hash function or digests. With the output size of n bits, the required

number of operations is about 2n−1 on the average. The second pre-image attack is that given
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h(M) and message M , one is trying to find M ′ such that h(M ′) = h(M). The difficulty of

the finding is as hard as that of the pre-image attack.

The collision attack is more efficient than the first two attacks. Instead of trying to find

a match from a given hash, one is trying to find a pair of messages, M and M ′, such that

h(M) = h(M ′). This is similar to the problem of how many people would be in a room so

that two people have the same birthday. The answer is 23 people as opposed to 183 (if we

use the brute-force search). This attack is also called birthday paradox attack. Thus, with a

n-bit output, the attack approximately requires only 2n/2.

Due to the birthday paradox attack, maintaining the security level of a hash function

requires the output or hash size to be at least twice as much as the size of the secret key.

Table IV.3 shows hash sizes of common hash functions, the required operations, the MMYs

of the operations, and the collision time1 of the birthday paradox attack.

Table IV.3: The estimated collission time of hash functions under the birthday paradox

attack

Hash Output Size Required MMY Collision
Operations Time

MD5 128 bits 264 128 15.57 days
SHA-1 160 bits 280 8.38E6 2796 years
SHA-256 256 bits 2128 2.36E21 7.87E17 years
SHA-384 384 bits 2192 4.35E40 1.45E37 years
SHA-512 512 bits 2256 8.03E59 2.67E56 years

From the table, it is suggested that we select the right hash function to generate the

hash output according to our security need. If our security need is that we can prove the

integrity of a messsage for the period of 16 days since the hash of the message is generated,

we should not use MD5. However, a recent attack has discovered a shortcut attack which

makes the collision time even less [116], and it is proved by an implementation that we can

find the MD5 collision within 8 hours using a 1.6 GHz Intel Pentium PC [64]. SHA-1 also

has a known shortcut attack which requires about 269 operations to find the SHA-1 collision

[117].

1The collision time is calculated using one 3 GHz PC capable of having about 3000 MIPS
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The attack for MAC functions is a bit different from hash functions since the MAC

functions requires a key to generate a message digest. In addition to those on hash functions,

attacks on MAC functions are related to and limited by the key size. Sometimes the attack

is specific to the algorithm of the MAC function. However, the common attacks on MAC

functions can be divided into two categories: the forgery attack and the key recovery attack

[89].

The forgery attack tries to predict the output of the MAC function of the message M ,

MacK(M), without knowing the k-bit key K. The simplest forgery attack is the MAC guess-

ing attack that one selects an arbitrary message and a randomly chosen MAC output, and

hopes that the verification of the message matches the MAC output. Ideally, the probability

of success is 1/2n, where n is the MAC output bits. The attack needs on the average 2n−1

operations for correct verification of the forgery. Such attacks can be avoided by making n

sufficiently large and/or limiting the number of forgery attempts on a given key. Without

knowing the key, the birthday paradox attack can also be used which requires about 2n/2

forgery attempts for a given key.

The key recovery attack to trying to find the key K from a number of the pairs (M,MacK(M)).

The simplest key recovery attack is the brute-force search attack which can be used to re-

cover the key from a few known (M, MacK(M)) pairs (about k/n pairs). The key recovery

attack can be specific to how the MAC fucntion is constructed. More details of attacks on

MAC functions can be found in [89, 76, 35].

Table IV.4 shows the security level of MAC functions, WPA Michael, 802.11i CBC-MAC,

and HMAC, equivalent to that of ciphers, and the number of forgery attempts2 which an

adversary may need to perform for the forgery attack, and the estimated key lifetime3.

From the table, it is suggested that the key used with the MAC functions be changed be-

fore the number of the plaintext-MAC processing reaches the forgery attempts. The number

of forgery attempts can also be used with, for example, a failure counter as a countermeasure

to limit the number of attempts from an adversary.

Note that Michael is a 64-bit MAC used in Wi-Fi Protected Access (WPA) standard while

2We assume the MAC key is not changed during the period of the forgery attempt.
3To calculate the key lifetime, we assume one forgery attempt takes about 200 msec
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Table IV.4: The estimated key lifetime of key in MAC functions under the forgery attack

MAC Output Equivalent Forgery Estimated
Size Secret Size Attempts Key Lifetime

Michael 64 bits 20 bits 220 58 hours 4

CBC-MAC 64 bits 32 bits 232 9942 days
HMAC-SHA1 160 bits 80 bits 280 2.798E18 days
HMAC-MD5 128 bits 64 bits 264 4.270E13 days

CBC-MAC (Cipher Block Chaining-MAC) is used in WPA version 2 (WPA2) standard. The

equivalent secret size of Michael is lower than 32 bits because it has a known weakness [46].

The weakness is further described in the next section. The WPA2 CBC-MAC output is the

first 64 bits of the output of an 128-bit AES with CBC-MAC.

C. ENERGY AND ROBUSTNESS

In previous sections, we show that the increase of security level, which increases the Cipher

Robustness, increases the amount of energy consumption. In this section, we compare the

energy consumption and the Cipher Robustness of AES and RC5. AES is a newer cipher

than RC5, and it is known to be stronger from our study. In Section IV.B.3, we show that

the Cipher Robustness of AES is higher than that of RC5 as one operational round is added.

Figure IV.6 shows the energy consumption as a function of the Cipher Robustness of AES

and RC5.

From the figure, we see that one additional operational round of RC5 slightly increases

the energy consumption and linearly increases the Cipher Robustness. However, one addi-

tional operational round of AES linearly increases the energy consumption, but exponentially

increases the Cipher Robustness.
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Figure IV.6: Energy Consumption VS Cipher Robustness

D. SECURITY STRENGTH ANALYSIS OF WLAN SECURITY

PROTOCOLS

In this section, we show an example of how we can estimate the security strength of a wireless

security protocol. We will evaluate the security of Wired Equivalent Privacy (WEP) protocol,

Wi-Fi Protected Access (WPA) and the recently standardized IEEE 802.11i or WPA version

2 (WPA2). These are standard protocols for providing security services in Wireless Local

Area Networks (WLANs).

1. WLAN Security Protocols

WEP was first used as the standard security protocol in WLANs. WEP employs RC4 cipher

as the underlying crypto engine for data encryption and authentication. WEP has known

weaknesses partly due to the improper use of RC4 and the key generation which simply

concatenates a secret to a counter (an initial vector). This has lead to a practical attack

on WEP [111]. WPA was then standardized to fix the WEP weaknesses. WPA introduces

TKIP (Temporal Key Integrity Protocol), a key mixing process to mitigate the weakness

of the key generation, but still uses RC4 as a cipher. RC4 is known to be weak due to its

key scheduling algorithm, the process that expands the secret key of any size to 256 bytes
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before generating a stream of random numbers for encryption [48]. Therefore, the WPA2

standard was released in July 2004 to be used as a strong, flawless security protocol for

WLANs. WPA2 is totally re-designed and utilizes AES as the underlying cipher in Counter

with CBC-MAC (CCM) mode [120].

For message integrity, WEP employs the Cyclic Redundancy Check-32 (CRC-32) which

is not a MAC and cannot be used for strong message authentication. WPA utilizes a MAC

function known as Michael that produces a hash output of 64 bits. Due to its simplicity and

lightweight, Michael has been subject to active attacks that actually reduces the security of

the output from 64 bits to 20 bits (instead of 32 bits due to the Birthday Paradox attack) [46].

In the attack, one simply tries to test two different messages that have similar corresponding

outputs. As more tries are tested, one can find a collision where two different messages

yield the same output for a given Michael key. This Michael design is intended to have low

security since Michael is needed to be compatible and affordable for legacy devices which

have low computing power.

The re-designed WPA2 employs a better MAC, CBC-MAC which is stronger and has no

known weakness. It utilizes the AES cipher in CBC mode to generate MAC from the upper

64 bits of ciphertext. This enables a verification process from ciphertext received before

actually decrypting it. The summary of standard security protocols for 802.11 WLANs is

shown in Table IV.5.

Table IV.5: Summary of Security Protocols for WLANs

Security WEP WPA WPA2/IEEE 802.11i
Services WEP-40 WEP-104
Encryption 40-bit RC4 104-bit RC4 RC4 128-bit TKIP 128-bit AES CCM
MAC N/A N/A 64-bit Michael 64-bit CBC-MAC

2. WLAN Security Protocol Analysis

Based on the specification of WLAN security protocols, we calculate the time required to

break a security protocol with computing power equivalent to a typical high-performance PC

available today which is an Intel Pentium IV 3 GHz CPU. The security strength of ciphers
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are shown in Table IV.6. The time can be reduced if multiple PCs are used together to break

the security in a distributed network. From the table, we see that 40-bit WEP can be broken

in less than an hour using one PC. As the key size increases, more computations are needed

to break the protocol. The MAC of WPA can be quickly broken since Michael is susceptible

to active attacks where an attacker tests two messages sent to a receiver with the hope that

the messages have the same output, although more tests are needed for the attack to be

successful. Therefore, it is required by the IEEE 802.11i standard to use countermeasures

such as an integrity check failure counter to monitor such attacks when Michael is used [16].

The maximum number of the counter should not exceed the number of forgery attempts as

shown in the previous section. WPA2 is the strongest protocol which has been rigorously

reviewed for many years by the 802.11i working group and security experts.

Table IV.6: Strength of WLAN Security Protocols

Protocol MAC Strength Cipher Strength Overall
Forgery Attempts MMY Broken Year Strength

WEP-40 N/A 7.629E − 6 Now Very Low
WEP-104 N/A 1.407E14 2044 Low
WPA 220 2.361E21 2075 Medium
WPA2 232 2.361E21 2075 High

In this analysis, we have not considered the protocol flaws in measuring the security

strength. WEP uses ICVs as MACs and they are known to be useless. Consequently we

do not estimate the strength of the MAC here. Attacks against ciphers that are better

than exhaustive search have also not been considered primarily because of the difficulty of

estimating the security strength. For example, the FMS attack could drastically reduce the

amount of time to break 104-bit RC4. The attack is based on the usage of weak keys and

this is hard to estimate. Additionally, TKIP is assumed to be as secure as AES although it

employs the weak RC4 algorithm since no attack has known to be faster than the exhaustive

key search attack at the time of this writing.
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E. CONCLUSION

The strength of a security protocol can be measured based on the underlying crypto-

primitives used, key size, the number of operational rounds, and the protocol design. Com-

monly used primitives are the cipher and the hash function or message authentication code.

The strength of the cipher often relies on the key size, operational rounds and algorithm

used. The key size is a countermeasure to the brute-force search or the key search attack

while the operational rounds and the algorithm are countermeasures to cryptanalysis at-

tacks. The strength of hash or MAC functions only relies on the output sizes. To have the

same security level of the cipher against the brute-force search attack, the output size should

be twice as much as the cipher key size. Applying the security strength analysis to existing

WLAN standard protocols shows that the current WEP and WPA are not so secure while

the newest standard, WPA2 or IEEE 802.11i, is fairly secure against all known attacks.
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V. AN ENERGY EFFICIENT SECURITY FRAMEWORK

We have shown that providing security services can consume different amounts of energy

depending on a variety of security parameters such as number of operational rounds, packet

sizes per encryption, key sizes, and choice of ciphers. We have also shown that security

services can be provided at different levels, each of which correspond to different security

strength or robustness. A requirement of high security strength needs a high amount of

energy for computation. From these observations, it is possible that we can trade off security

strength to provide higher energy efficiency to wireless and limited battery-power devices.

We may lower the security strength to a sufficient level in order to conserve more energy,

and hence to prolong the devices’ battery life.

In this chapter, we propose an energy efficient security framework which proposes meth-

ods to reduce the amount of energy consumption. We also apply such methods to security

protocols to achieve energy savings while maintaining the security level of the protocols.

A. METHODOLOGIES

Based on the evaluation of energy consumption of security primitives, we see that there is

potential for reducing the energy consumption of security protocols for wireless networks.

We propose three different methods by which energy can be conserved that can be applied

towards the design of energy efficient security protocols.
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1. Method 1: Eliminating/Replacing Most Energy Consuming Parts

The first and obvious way to reduce energy consumption is to eliminate or replace the most

energy consuming part of existing standard protocols. Besides transmission and reception

of packets, the most energy consuming part of the security protocols is due to cryptographic

functions such as encryption, key generation, and digital signatures. From our findings

as described earlier, different primitives consume different amounts of energy. Looking at

several standard protocols, we also find that most of them allow different primitives to be

used during a protocol transaction, but the protocols are not adaptive after a primitive has

been selected for use for a whole session. However, we believe it is possible to carefully select

a combination of primitives to be used in a single session, which is more energy-efficient than

a standard one. As an example, assuming that both RC4 and AES with 128 bit keys provide

similar security levels, it is better to use AES for shorter packets and RC4 for longer packets

to provide confidentiality as it is in current protocols.

2. Method 2: Modifying Protocol Primitives and Transactions

The second method to reduce energy consumption of security protocols is to modify the

protocols themselves. Beyond changing the security primitives, we can modify the protocol

primitives (messages) and transactions. Some protocols are not energy-efficient since they

have to exchange several primitives and messages; for example, a Kerberos client needs to

exchange at least six messages before it can access network services [80] and employing it on

a WLAN may result in a larger consumption of energy than required. However, the protocol

modification should not change the security level already defined in the existing protocol. To

ensure security equivalence, formal methods are often used to verify security strength and

to find flaws of a protocol. A well-known formal method is BAN logic [37]; however, it has

limitations in that it does not capture the aspects of real systems [18, 51]. In a different way,

we can also show security equivalence by reasoning or arguments based on lessons learned

[24, 17]. To implement protocol modifications and achieve energy savings, we can make use of

security protocol standards that allow us to ”plug-in” any security transaction. One example

of such a protocol for authentication is the Extensible Authentication Protocol (EAP) [31].
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3. Method 3: Using an Entirely New Security Framework

The last method we suggest is to take the greenfield approach where we start from scratch

and come up with security protocols that consume the least energy. Such a method should

offer tunable and adaptive security services. As an example, consider data integrity for

packets over a WLAN. MD5 is more efficient than SHA-1 for shorter packets, but it is also

less secure. MD5 may still be used for shorter packets that do not need a lot of security

(it would be sufficient if the security is not breached for a few days instead of a few years).

Another example is a modified communications/security protocol that adapts itself to chan-

nel conditions. For instance, knowing that the channel is bad, short probe packets can be

transmitted with a low level of security (simply providing confidentiality for the duration

of the probes). Both of these examples require the development of a policy for determining

how much security is required for a given communication session (what is reasonable) and

how this can be mapped into the appropriate primitives. We believe this method that tunes

the security protocol based on a policy and known performance measures would significantly

reduce energy consumption due to adaptive security provisioning and may also reduce the

energy consumed by signal/message transmission. We develop an example in the next chap-

ter, but do not consider channel conditions there. We also do not address the development

of policies in this dissertation nor do we consider optimality of the solution.

4. A Summary of Methodologies

A comparison of the three energy saving methods for security protocols is shown in Table

V.1. From the table, the first method improves the energy saving by simply analyzing

several existing security protocols and changing some protocol components. This method

will still be compliant with existing standards; however, the energy saving is probably small.

The second method probably offers more energy saving. However, it may or may not be

backwards compatible with existing protocols, but it is within the scope of the standard.

This method may also introduce a little complexity. The third method starts from scratch

and creates a security protocol that utilizes a new energy efficient framework. This method

introduces complexity ranging from medium to high and probably will not comply with any
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existing standards; however, we believe it has the potential to conserve the most energy.

Table V.1: A Comparison of Different Energy Saving Methods

Methodology Method 1 Method 2 Method 3
Complexity low low medium-high
Compliance yes maybe no
Adaptability no no yes
Energy Savings low medium high

Another method has been proposed by many researchers as one of the energy-efficient

methods, although this method is not related to security level adjustment [84]. This method

aims to reduce the size of transmitted messages of a security protocol. It aims at reducing

the energy consumed by the message transmission using several compression techniques.

Though the compression method probably offers some energy saving, we will not use this

method to reduce energy consumption of security protocols as it is not specific to security

protocols alone.

5. Applying the Framework

In next sections, we show two simple examples of using the proposed energy saving framework

described in Section V.A to conserve energy for security provisioning in WLANs. In the

first example, we use Method 1, where we replace the most energy consuming part with

something that consumes lesser energy. This example looks at a very simple variation of the

handshake protocol for SSL where the energy consuming RSA signature algorithm is replaced

by ECDSA, but other RSA processes are left as they are. In the second example, we employ

a technique that is a part of Method 2. We adaptively change the encryption algorithm

in a simple home WLAN. In the current WLAN standard, every packet transmitted over a

wireless channel can be encrypted with RC4 algorithm in the secure mode [13]. However, to

provide ”reasonable” security, the encryption needs not be equally applied to all packets. As

an example, if only confidentiality services are required for some packets, encryption should

only be applied to confidential data packets, and not to control and management packets

such as the beacon and acknowledgment packets. Also if the packet size is small, we may use
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AES instead of RC4 since AES has less overhead [88]. Employing both RC4 and AES and

switching between them are not possible in the current WLAN standard, but this example

shows the potential energy savings that can be achieved under a good framework.

B. A VARIATION OF TLS AUTHENTICATION FOR ENERGY SAVING

In this section, we utilize our proposed framework to an existing standard security protocol

to be more energy efficient. As we described in Section V.A, one of the methods suggested

by our framework is a replacement of security primitives that consume more energy than it

is necessary.

Based on the framework, we propose the replacement method to the authentication pro-

tocol of Transport Layer Security (TLS) protocol or the Handshake protocol. The Handshake

protocol negotiates a fixed set of cipher (called a ciphersuite) and a session key that will be

used for a TLS session. The ciphersuite is commonly based on RSA for authentication and

key exchange. However, from our study, ECC has some advantages over RSA for authenti-

cation. Therefore, the goal in this work is to study the replacement RSA algorithms that

consume high energy with ECC in the handshake protocol. We use both RSA and ECC in

the ciphersuite to make the standard TLS handshake protocol more energy efficient. This

work is extended from our work in [87].

1. TLS Standard Protocol

The TLS protocol or previously called Secure Socket Layer (SSL) protocol is widely used

to secure various network application protocols. It is the de facto standard for web-based

transactions for e-commerce (such as online banking and shopping). It is used to secure

application protocols such as email (IMAP, POP3, and ACAP) and network file systems

(NFS). Recently, it has been used as part of the Extensible Authentication Protocol (EAP)

standard and IEEE 802.1X standard for authentication in WLANs [19, 15].

Figure V.1 shows the protocol primitives of the TLS Handshake protocol [43]. First,
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the Mobile Station (MS) client and the server exchange random numbers (or nonces) and

negotiate a “cipher suite” with ClientHello and ServerHello. The cipher suite specifies which

cryptographic algorithms can be used to provide confidentiality, authentication and data

integrity. The server then sends its certificate signed by a Certificate Authority (CA) which

is trusted by the MS and the server. The server also requests client authentication with

CertRequest message. The MS uses PKC Verify process to validate the server’s certificate

by using the CA’s public key (which is distributed beforehand). If it is valid, the MS obtains

the server’s public key from the server’s certificate.

ClientHello

ServerHello, ServerCert,
CertRequest, ServerHelloDone

Change Spec., Finished (Encrypted)

ClientCert, CertVerify, ClientKeyExchange,
ChangeSpec, Finished (Encrypted)

MS
Authentication
Server

PKC_Verify

PKC_Verify
PKC_KeyEx

PKC_KeyEx
PKC_Sign

(1)

(2)

(3)

(4)

Figure V.1: The Handshake Protocol with Mutual Authentication

The MS then sends its certificate (ClientCert) signed by the CA to the server. The server

validates the MS’s certificate (using PKC Verify). This process is usually optional for web

browsers. The client also initiates a key exchange process (PKC KeyEx) to exchange a pre-

master secret. During this process, the MS sends an encrypted key in the ClientKeyExchange

message to the server so that the server can generate the same pre-master secret by decrypting

it using its private key. Additionally, the MS needs to authenticate itself to the server by

showing possession of its private key. The MS produces a message digest of previously

exchanged messages and signs the digest with its private key (using PKC Sign), and sends

the signed digest within the CertVerify message. Using the MS’s public key obtained from

the MS’s certificate, the server verifies the received digest (using PKC Verify). If it is valid,

the MS truly possesses the private key that pairs with the public key sent to the server.
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At this point, the MS and the server are authenticated to each other, and they already

share a master key derived from the key exchange process. To complete the Handshake

protocol, the MS and the server send the encrypted message digest of all previously exchanged

messages to ensure the integrity of the messages and to show possession of the shared master

key. Note that the three cryptographic processes, PKC Verify, PKC KeyEx, PKC Sign, are

different depending on which PKC algorithm (RSA or ECC) is used.

Fundamentally, at the MS, the Handshake protocol is composed of three processes: server

authentication, key exchange, and MS authentication. In the server authentication process,

a MS uses a digital signature verification (PKC Verify) process to validate a server’s cer-

tificate. This process uses either RSA or ECDSA verification algorithm but not both. The

key exchange (PKC KeyEx) process establishes a shared key which uses either RSA encryp-

tion/decryption or ECDH. The MS authentication (PKC Sign) process enables an MS to

prove its identity by digitally signing a message and sending it to a server. This process uses

either RSA or ECDSA digital signing algorithm.

2. The Variation of Handshake Protocol

From our experiments (described in Chapter III), we see that ECDSA has advantages over

the RSA signature algorithm in terms of energy consumption. However, signature verification

using ECDSA consumes more energy than the RSA signature verification algorithm. RSA

verification, like encryption is quite cheap in terms of energy consumption. In the key

exchange process, the RSA encryption algorithm consumes much less energy than the ECDH

algorithm to exchange a 48-byte pre-master secret. This asymmetrical nature of energy

consumption of the RSA and ECC algorithms is exploited in our proposed variation of the

Handshake protocol.

The goal of the proposed variation of the Handshake protocol is to reduce energy con-

sumption at only the MS side where the mobile device is energy constrained. The variation

introduces additional computational load at the fixed server-side device, but this would be

tolerable at the server. In this variation, the MS needs to hold an ECC-based certificate and

the server needs to hold an RSA-based certificate. The variation also requires more memory
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space to store both RSA and ECC modules than the traditional TLS protocol. However, it

would not be a constraint since the cost of memory is smaller than the cost of battery.

The variation is that, in Figure V.1, the MS uses the RSA verification algorithm to

validate the server’s RSA certificate in the PKC Verify process. Upon the certificate request

from the server, the MS sends its ECC certificate and not an RSA certificate. Then, in

the PKC KeyEx process, the MS generates and encrypts a pre-master secret using RSA

encryption algorithm along with the server’s public key (obtained from the server’s RSA

certificate). To prove its identity in the PKC Sign process, the MS signs all previously

exchanged messages using ECDSA. The security strength of the proposed protocol is the

same as that of the ECC and RSA algorithms if the proper key sizes are selected (160 bit

keys with ECC are equivalent to 1024 bit keys in RSA).

3. Results

Table V.2 shows the total average energy consumption on the client wireless device using

different Handshake protocols and different key sizes. These results are from the comparison

of RSA, ECC with the random binary curve (RBC), and the proposed variation of the

Handshake protocol. From the table, we see that by using the variation of the protocol, we

can save energy up to 90% compared to 4096-bit RSA or up to 70% compared to the 283-bit

ECC Handshake protocol. Note that the energy savings is small for smaller key sizes.

Table V.2: The Average Energy Consumption of a TLS Handshake Session

ECC Key Size Energy Consumption (mJ) Percent Saving Compared to

(RSA Key Size) RSA ECC RBC Proposed RSA ECC RBC

163 (1024) 5.07 13.02 3.82 24.79% 70.70%

233 (2048) 28.51 25.86 8.14 71.46% 68.54%

283 (4096) 186.05 50.13 18.27 90.18% 63.55%
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C. AN ENERGY EFFICIENT STANDARD SECURITY PROTOCOL FOR

WLANS

From our framework described in Chapter V.A, we offer a method of modification of protocol

primitives of a standard security protocol to be more energy efficient. In this section, we

propose a modification of a security protocol in WLANs for encryption and message authen-

tication services. The standard WLAN security protocol utilizes either RC4 or AES as an

underlying cipher. From our previous work in Section III.B.1, RC4 and AES have different

tradeoffs, and they may be used together to provide more energy saving. The goal of this

work is to use both AES and RC4 to provide more energy efficient encryption protocol. This

work is extended from our work in [86].

1. WLAN Standard Security Protocols

Currently, security protocols for WLANs, i.e., WEP, WPA, and WPA2 have been proposed

to provide security services such as encryption, authentication and data integrity. WEP has

been shown to be failed to provide such services. WPA and WPA2 have been proposed

to replace WEP. WPA utilizes RC4 cipher as a core cryptographic engine to provide the

services while WPA2 employs AES cipher. Both AES and RC4 have different pros and cons

as described in Section II.A.

From our study, we have shown that not only RC4 and AES have different pros and

cons, but also have different characteristics of energy consumption in data communication

networks such as WLANs. We know that for a small packet size, AES consumes less energy

than RC4. However, RC4 is more energy efficient for a large packet size. Based on this

simple fact, we propose an security protocol for WLANs based on the selection of AES or

RC4 as a cipher for packet encryption. The selection is based only on the size of the packet

to be encrypted. The result will yield more energy saving than than the standard protocols.
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2. The Proposed WLAN Security Protocol

We propose (see Figure V.2) an energy efficient security protocol for WLANs with a simple

modification. We use different cryptographic primitives to provide security to packets based

on their size and type. We show the results of how much energy can be saved by using such

a security protocol in WLANs.

Use RC4
Encryption

size > 80 
bytes

Use AES
Encryption End

No

Yes

Start

Management  
packet?

Use CBC-MAC 
function

Yes

No

Figure V.2: A Simple Energy Efficient Adaptive Security Protocol

We use CBC-MAC [28] to provide 128-bit message authentication to management pack-

ets such as an 802.11 ACKs (14 bytes long), beacon packets (40 - 546 bytes long), and other

short 802.11 management packets. The assumption here is that we need to provide only mes-

sage authentication to the control and management packets to prevent packet modification.

Additionally, the contents of these packets are not private; hence, encryption is unnecessary

unless complete privacy is required (and perhaps to thwart traffic analysis). For data pack-

ets, we use RC4 or AES to provide confidentiality. To be more energy efficient, we propose

to use RC4 only with the packets whose sizes are more than 80 bytes; otherwise AES is used.

The packet size of 80 bytes is determined based on our study in Section III.B.1 where we saw

that the AES performs better than RC4 with the packet size of 80 bytes or more. However,

there are security implications beyond the simple mechanisms used here. For instance, if

both RC4 and AES use the same key, if RC4 was broken and the key compromised, AES

would also be broken. In this study, we assume both AES and RC4 use two different keys.

From the results of the security performance in previous sections, we can compute the energy
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consumption of RC4, AES, and CBC-MAC as a function of packet sizes.

3. Experimental Design

In our study, we measure the energy consumption of cryptographic protocols in an emulated

environment. To create the emulated environment, we used a sniffer to capture packets

in two different network topologies, home and campus networks. Based on the collected

packets, we created an empirical distribution of the packet sizes in these networks. The

home network topology consisted of one access point and two mobile stations. The campus

topology consisted of 10 access points in an eight-story building and many mobile stations.

The packet size distributions for the two networks are shown in Figure V.3. The distributions

of the packets are used to compute the mean energy consumed by a mobile station in running

the security protocol. We can make the following observations from this figure. Most of the

packets in either network have small sizes. These are the management frames of IEEE 802.11

(probes, associations, reassociations, dissociations, and beacons) or acknowledgment frames.

As we will see below, this has an impact of how much energy is consumed in the security

process.

0 200 400 600 800 1000 1200 1400 1600
0

0.2

0.4

0.6

0.8

1

Packet size x in bytes

F
(x

)

Empirical CDF

Home Network

0 200 400 600 800 1000 1200
0

0.2

0.4

0.6

0.8

1

Packet size x in bytes

F
(x

)

Campus Network

Figure V.3: Distribution of packet sizes in home and campus networks
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Most encryption algorithms operate in the following manner. Initially, there is a process

in which the key is manipulated in a certain way. In RC4, there is a key expansion process

and an initial permutation process that requires several swaps of bytes between vectors. In

AES, a key schedule has to be created [110]. In IEEE 802.11, each frame is self-synchronized.

That is, each frame needs to be received independently of other frames. Consequently, a

mobile station encrypts and decrypts each frame independently. The key manipulation

processes constitute an overhead for encryption and can form the significant part of energy

consumption while encrypting short packets. In [88] and in Chapter III, we showed that it

is better to use RC4 for long packets and AES for shorter packets for this reason.

4. Results

For the scenario where we captured packets (10 MB in total for the home network and 4

MB in total for the campus network), we calculate the energy consumed for each packet

based on its packet size and type. Table V.3 shows the results of energy consumption using

a fixed algorithm (AES or RC4) and the proposed algorithm. For the fixed algorithm, only

one selected encryption algorithm is used to encrypt all packets. We use a 128-bit keys for

both RC4 and AES functions. The key size is selected as the minimum requirement for

today’s security [69]. From the table, we see that by using the proposed algorithm we can

save about 0.01% and 57% of energy for the home network compared to using fixed RC4

and AES encryption algorithms, respectively. By using the proposed algorithm, we can also

save about 0.03% and 5% for the campus network compared to using fixed RC4 and AES,

respectively. The energy saving compared to using RC4 is not significant because most data

packet sizes are long. The energy saving comparing to RC4 use will be improved when the

average size of data packets is more than 80 bytes.

To provide stronger security by using AES and save energy, we could also fragment a

long packet into smaller packets and use AES to encrypt them. Additionally, smaller packets

are likely to be less susceptible to wireless channel errors, and hence, we could save much

more energy. Although the fragmentation would give significant energy efficiency, it will

also lower transmission throughput (thereby increasing the energy consumed) and increase
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Table V.3: A Comparison of energy consumption using the fixed and proposed security

protocols

Algorithm Energy Consumption (mJ) Percent Saving Compared to
RC4 AES Proposed RC4 AES

Home 99.7654 236.8924 99.7486 0.0168% 57.8928%
Campus 88.9532 93.8633 88.9279 0.0284% 5.2581%

latency. The tradeoffs in this approach needs a more detailed investigation.

D. LIMITATIONS OF THIS WORK

This work demonstrates the benefits of applying energy saving techniques in the design of

security protocols for wireless networks. A major limitation of this work is that we do not

tie it with the security requirements of the wireless network and the implications it may have

on the security provided to a wireless network. For a given network or application we need

a security policy - a statement of what is allowed and what is not allowed. The security

services that implement the security policy can then be defined (e.g., confidentiality for data

packets, only authentication for probes, ACKs and management packets). Then the way

these security services use security mechanisms and primitives adaptively to conserve energy

can be determined. Wherever possible, we have pointed out the pitfalls of blindly adopting

the approaches presented in the chapter. In the case of the variation of the handshake proto-

col for SSL, there needs to be a new protocol version that would support mixed RSA/ECC

algorithms. In the home WLAN example, we have ignored the way the communicating par-

ties would identify the encryption scheme that is used with a particular packet. We have

also ignored how different keys would be used with different encryption schemes, how they

are exchanged and so on. The assumption here is that all MSs share the same secret with

an AP and that secret is used for encryption and message authentication. Instead of using

the shared secret, there should be a key management that generates a pairwise key from
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the shared secret for each station, and it should be subject to be renewed after an interval.

Finally, we have not investigated in detail, the impact of the radio channel nor have we

designed protocols that can exploit knowledge of good and bad states of the channel to save

on the energy consumed.

E. CHAPTER SUMMARY

This chapter describes a framework for designing energy efficient security protocols. We use

our study in Chapter III to suggest three approaches for designing efficient security protocols.

We apply two of these approaches in simple examples to demonstrate the potential for saving

energy.

From the methodologies, one can modify the existing standard security protocols to be

energy efficient. It has been shown that the saving can be significant. The replacement of

some RSA with ECC algorithms in the TLS Handshake protocol can typically save about

25% to 70% compared to plain RSA and ECC, respectively. For the protocol modification in

WLANs, the saving ranges approximately 0.01% and 57% compared to using plain RC4 and

AES ciphers. However, these savings are limited due to the existing structure of the standard

security protocol design. The re-design can only improve the savings to some extent. For

example, we can only change the underlying ciphers or algorithms in order to make the

standard protocol more energy efficient. We cannot specify a security level for the protocol.

Due the limitations, we need a security system that is more flexible in which we can

finely tune our security needs to a just enough level and save even more energy. One can

say that the level of the energy saving depends on the level of protocol tuning. A more fine

protocol tuning can save more energy. In the next chapter, we propose a tunable security

system to support a fine-grained tuning mechanism for more energy saving.
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VI. TUNESEC: AN ENERGY EFFICIENT SECURITY PROTOCOL FOR

WLANS

From the proposed methodologies in Chapter V to save energy due to security services

for resource-limited mobile devices, we showed that Methods 1 and 2 can reduce energy

consumption while trying to comply with existing standards. In Methods 1 & 2, we utilized

different security algorithms in a standard protocol to reduce its energy consumption. In

Section V.B, we use both RSA and ECC public key algorithm to provide authentication

and key establishment service for the WTLS protocol while the standard one utilizes one or

the other. The use of RSA and ECC for different purposes during the protocol transaction

yields energy savings of approximately 20% to 70% for authentication and key establishment.

In Section V.C, we use AES and RC4 differently to provide encryption service based on

packet size while the standard WLAN utilizes either one. The result is that we can save

approximately from 0.01% to 57% of energy consumption of data encryption.

These two methodologies have shown that security algorithms can be combined differently

to reduce the energy consumption while providing a fixed security level to provide the same

security strength. These methods tend to be compatible with standard protocols which

support security services at a fixed level.

We however believe that additional energy savings can be achieved if we can provide

a fine-grained method for security provision to adjust not only the combination of the al-

gorithms, but also the security level needed for individual messages. Based on Method 3,

the greenfield approach, we propose an example security system to provide energy-efficient

security in which the security level of security services can be tunable. Our example security

system is called Tunable Security or TuneSec. This is NOT an optimally energy efficient se-

curity protocol, but it provides an example of how one can design a security protocol keeping
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energy consumption in mind.

TuneSec is divided into two parts to provide packet-level security and session-level se-

curity. The packet-level security service comprises of encryption and message authentica-

tion and the session-level security service comprises of authentication and key establishment

(AKE). Thus, we propose two different strategies to provide tunability to packet-level and

session-level security.

In this section, we will describe a high-level TuneSec architecture in Section VI.A. We

describe the TuneSec protocol for packet-level security in Section VI.B and for session-level

security in Section VI.C. Then, we apply the TuneSec framework to IEEE 802.11 WLANs

to provide energy efficient security services with the packet-level and session-level security,

and show performance results in Section VI.D. We conclude our work in Section VI.E.

A. TUNESEC ARCHITECTURE

The goal of the TuneSec is to be a tunable, simple, high performance and secure system that

offers energy efficient security services that depend on available resources and changes in

the dynamic environment in wireless networks. The scenario we consider is that of a mobile

terminal as a client connecting to an access point to access a network and to request and

utilize services in a secure and energy-efficient manner.

First, the access point initiates negotiation of a security association (SA) for a client based

on the available resources through a control channel. The control channel is also protected

using confidentiality and authentication techniques. The negotiated security association

should comply with the security policy established by the client or a system administrator.

The security association describes which security primitives are used and at what level.

Once the SA is establish, network applications can use the security services which can be

dynamically switched to fit the client’s available resource and security policy. Then, the data

from network applications are securely transmitted through a data channel.

The architecture of TuneSec system is shown in Figure VI.1. It is composed of five

components: (i) Security Policy and Association Manager (SPAM), (ii) Authentication and
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Key Manager (AKM), (iii) Resource Manager, (iv) Tuner, and (v) Security Service Manager

(SSM).
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Figure VI.1: The TuneSec Architecture

The main purpose of the Security Policy and Association Manager (SPAM) is to maintain

security policies and SAs, and to solve conflict between user and system policies. The policy

may be active in which it can be temporally changed according to available resources and

environments. Examples of the active policy scheme are Role-based Access Control (RBAC)

with an extension to active security [27] and Generalized Temporal RBAC (GTRBAC) [60].

In this work, we assume no security policy is active and does not pose any conflict.

The main purpose of the Authentication and Key Manager (AKM) is for authentication

and session key establishment. The AKM may also be used to negotiate a security association

and to maintain the session key. It is also required to create and maintain a suite of SAs

corresponding to a security module for a given connection. In some case, control messages

are sent from the receiver to the sender through the AKM component to update or re-

negotiation the SA. An example of the AKM component is the IKE module of IPsec [39].

The AKM is involved only in the session-level security services. Before a session is started,

AKM gathers necessary information and establishes security modules needed for the session,

which are used by the Tuner to provide packet-level security services.

The resource manager reports the availability of resources to other components. Such
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resources are remaining battery level, the CPU load information, the transmission rate/

channel quality, possible location of the hosting device, and maybe alarms from the host or

the network system. The location of the device is possibly used for increasing or decreasing

the level of security when the device roams across different kinds of wireless networks. After

it gathers needed information, the resource manager summarizes and reports to Tuner for

making a decision.

The Tuner is responsible for making decisions about the security module used for each

application data set. In making the decision, the Tuner relies on the information about

system, network and application environments from other components such as the resource

manager, the SPAM, and the AKM. Based on the set of application data, the Tuner moves

the “switch” between different security modules to provide different security services. The

Tuner is only involved in the packet-level security services.

The main purpose of the security service manager (SSM) is to load and unload a secu-

rity module according to the SA suite provided by the AKM. The module is responsible to

perform packet-level security services such as encryption/decryption and message authenti-

cation code. It also reports any error or suspicious packet to AKM for further adjustment

or making a session.

In a system that supports the TuneSec system, the network application may need to

communicate with the Tuner for its specific security and resource policy for minimum security

level for its connection. The application may also provide information about how important

its data are and hence, security level may need to be adjusted according to the policy.

B. PACKET-LEVEL TUNESEC

The goal of packet-level TuneSec is to make the given security protocol be tunable to a

sufficient level of security at the packet level. To be able to determine the security level,

we need to identify “sufficient security” in a quantitative manner that can be converted to

parameters that are understandable to cipher algorithms. Upon having the parameters, we

need to apply them to an “adjustable security-level” cipher so that it can provide different
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security levels as needed, yet saving energy. In this section, we provide a mechanism to

interpret an abstract security level to some quantitative parameters, which are later applied

to existing ciphers such AES and RC5 to provide different security levels.

1. Flow Chart of TuneSec Mechanism

Figure VI.2 shows the flow chart of TuneSec mechanism. At the first step, a user may

initiate an information exchange session and asks for a specific security requirements. Then,

interpretation of these security requirements is needed to translate the requirements into

a set of quantitative parameters. Then, we use the parameters to create security modules

and to provide different levels of security. If there is a need to adjust the security services,

such as when the security need is changed or when the remaining energy budget is low, the

parameter interpretation is required again to create a new cipher module and to destroy the

unused one. The TuneSec is stopped when the user’s session is terminated.

Interpret
requirements to 

TuneSec
Parameters

Create
security
modules

Provide
security
services

Adjust
requirements

Adjust
the services?

Stop

Session
terminated?

Start

Figure VI.2: The TuneSec Mechanism Flow Chart
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2. Interpretation of Security Level

Generally, the term “security level” seems to be very abstract in which it can only be

qualitatively determined. Other previous works have proposed the way to qualitatively

indicate the security level. In [57], the security level is simply classified as low, medium,

and high. For each level, the security is numerically assigned based on fixed key size and

integrity rate for security. For example, low security means using 56-bit key and providing

message integrity to 60% of all packets. Similarly, in [112], the security level is known as a

class, each of which uses different algorithms and protocols. The qualitative classification of

the security level seems to be vague. For example, The 56-bit key encryption provides “low”

security level. The security class does not give a clear meaning of security level. Since the

low security can be interpreted in many ways with respect to individuals’ judgment.

In fact, we cannot provide security based on an abstract level, and we need a common,

understandable, and quantitative way to specify the security level. We can quantitatively

provide security based on the cost of data we want to protect. Since it is impossible to

provide “unbreakable” security, we often provide the security such that the cost of breaking

it is more than the benefit gained from breaking it or the value of the data being broken.

The value of data is naturally time-sensitive; for example, data we want to protect may

be worth a lot today, but may be worthless after 20 or 100 years. Thus, we propose to

provide the security level based on the time we need to protect any information or data.

Additionally, the security level is dependent on the packet type in wireless networks.

In IEEE 802.11 WLANs, there are 22 types of packets [13]. Each type definitely requires

a different security level. For example, we may only want to protect any Beacon packet

which contains network parameters such as SSID (Service Set Identifier), supported rates,

CF (contention free) period, and etc. for a few years, and to protect “Data” packets for

more years. Table VI.1 shows some examples of the number of years that may be required

for 802.11 WLAN packets for a low security level.
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Table VI.1: An Example of A Low Security Level for 802.11 Packets

Packet Years Description
Assoc Req 5 A request for association to an access point
Assoc Resp 5 A response to a client for association
Beacon 2 A packet to give network information
Authen 10 A request for authentication to an access point
Data 25 A payload carrying client’s data

3. Calculating TuneSec Parameters

In the previous section, we proposed to use the number of years as a security level to provide

security services to data. Then, we need to interpret the number of years to a security level.

We propose to employ not only the key size, but also the number of operational rounds as

the security level as described in Chapter IV.

Commonly, the security level is only defined in term of the key size. The longer the key

size, the higher the security level. However, this assumes that the number of operational

rounds is fixed at a level that the cryptanalysis attack is hard or completely impossible.

Using only the key size, we may not be able to provide a “true” different security level,

which in fact also relies on the number of operational rounds of a cipher. Therefore, we

propose to utilize both the key size and the number of operational rounds as parameters

for adjusting the security level. We have shown in Chapter IV that increasing the number

of rounds provides a higher cipher robustness; thus, yielding a higher security level against

cryptanalysis attacks. For easy understanding, we call both key size and the number of

operational rounds as TuneSec Parameters.

Figure VI.3 shows how we calculate the TuneSec Parameters. From the number of years

and data needed for protection, we calculate the needed key size using the security model

proposed by Lenstra and Verheul [69]. The needed key size (KS) is calculated using the

following formula:

KS = 56 + (y + y′ − 1982)× (12/m + 1/b)

113



where y is years needed for security, y′ is the current year (y′ = 2005). Here m is the

average number of months that the CPU speed and available memory is doubled. According

to Moore’s law, we define m = 18. The b is the number of years that the available budget

for attacking is doubled, and we define b = 10 as described in detail in [69]. This formula

is derived from incidents of breaking DES with a 56-bit key that it could happen, in theory,

in 1982 although it was first broken in 4 months in 1997 by Rocke Verser and in 56 hours

in 1998 by Electronic Frontier Foundation [49]. However, it is believed that DES could be

trusted to secure information only until 1982.
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Figure VI.3: The TuneSec Parameter Space

After having the needed key size for a cipher, it is easy to compute the MAC size.

The needed MAC size can be derived using the Birthday Paradox attack where only 2n/2

operations are needed to break the MAC, where n is the MAC size in bits. Note that

we require 2n operations for key searching attack, where n is the number of bits of the key.

Therefore, to provide an equivalent security level of MAC to the cipher, the MAC size should

be twice as long as the cipher key size.

To calculate the number of operational rounds, first we need to compute the security

robustness which is the multiplication of the number of operations and the amount of data

required for breaking. Based on the number of years, we can calculate how much computing

power is available in terms of MMYs. As derived in Lenstra and Verheul [69], the available
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MMY can be computed as:

AMMY = 0.5× 2(y′+y−1982)(12/m+1/b)

where AMMY is the available MMY that is possible to have in year y′ + y − 1982. The

calculation is based on the MMY margin (0.5 MMY in this case) which is possibly available

in year 1982, which can be used to break DES [69].

Then, we need to compute the possible amount of data available for cryptanalysis attack.

The amount of data depends on the available packet rate and the key lifetime. The key

lifetime says how long a session key will be used to provide security services. The key lifetime

can be specified using the session-level TuneSec. A long key lifetime makes a security system

more vulnerable.

Based on the key lifetime, which is the time a key will be used to provide security

services, we estimate the available data as the multiplication of the packet rate and the key

lifetime. Using the possible amount of data available and the MMY as the number of possible

operations, we calculate the robustness as their multiplication. From the robustness, we

derive the number of operational rounds using the robustness model that we have in Section

IV.B.3.

At this point, we have the needed key size and MAC size (derived from the key size) as

well as the number of operational rounds. These parameters, the TuneSec Parameters, will

later be used by a cipher to provide just needed security level.

4. Creating Security-Level Adjustable Modules

Once we have the TuneSec parameters, TuneSec creates one or more security modules to

provide security services. The security module is an adjustable cipher such as AES or RC5

or a MAC algorithm such as HMAC. There is no limitation on the number of security

modules created. For example, we can create different modules of AES, or one AES module

that can provide different security levels. Additionally, we may use both AES and RC5

modules. However, the number of cipher modules can be limited if devices have limited

memory resources, or it is defined by users or applications. However, we believe that the
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memory resources are not as limited as the available energy for small devices as the memory

capacity could be doubled approximately every 18 months according to advanced memory

chip technologies and Moore’s Law [58, 83].

We choose AES and RC5 as our adjustable ciphers because of two reasons. First, AES

and RC5 provide flexibility in changing the parameters such as key size, rounds, and block

size. Second, they are known to be efficient in term of computation and energy efficiency.

The current standard cipher such as AES does not provide the adjustable ability. However,

it is not hard to modify the AES to be adjustable and also to provide a security level as

needed. Like other block ciphers, AES employs several operational rounds to manipulate

input data into output data. As the input goes through more rounds, it is harder to trace

back from the output to input; hence, providing a strong encryption.

In the standard, AES uses 10, 12, and 14 rounds for keys of 128 bits, 192-bits, and 256

bits. The increased number of rounds provides strength against cryptanalysis attacks while

the increased key size provides strength against brute-force key attacks. As intended by the

Rijndael creators, AES can be very flexible. The key size can be increased from 128 bits to

a multiple of 64 bits such as 192 and 256 bits without increasing the number of rounds. In

contrast, we can increase the number of rounds without increasing the key size. To use AES

as an adjustable cipher, we only need to provide different key schedules for each round. The

key scheduling is a process that translates a user key (a fixed-size secret key) into a longer

key, and part of the long key is used for each round. Thus, for more rounds, we need a longer

key schedule.

RC5 is also designed to be flexible. It has a variable number of operational rounds from

0 to 255, key sizes from 0 to 2040 bits, and block size of 32, 64, or 128 bits. The suggested

parameter set is 12 rounds, 128-bit key, and 64-bit block size. However, 12-round RC5 was

discovered to be weak against an improved cryptanalysis attack in early 1998 [30]. Thus,

RC5 is suggested to be operated at 16 rounds to be completely secure [61]. However, we can

utilize the lower number of rounds as we need a lower security level.

We choose CBC-MAC to provide 128-bit MAC outputs and HMAC with SHA (HMAC-

SHA) to provide MAC outputs of 160, 256, 384, and 512 bits. The CBC-MAC algorithm

generates a MAC output using a block cipher. In our study, we choose to use 128-bit AES
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with the CBC-MAC which generates an 128-bit output. To generate longer outputs, we use

HMAC with SHA algorithm. HMAC can be used with any hash function such as MD5 or

SHA. The MD5 algorithm, known to be more efficient than SHA, but it is not as secure

as SHA [44]. A recent attack on MD5 claims to find a collision of MD5 outputs within an

hour [116] while such collision can happen in 15 days using the birthday paradox attack. A

real implementation of the shortcut attack shows that the collision can be found in 8 hours

using a 1.6 GHz Intel Pentium PC [64]. The SHA algorithm is also known to have weakness,

but the weakness is not as severe as that in MD5. A recent attack on SHA-1 provides a

shortcut attack that needs a number of operations less than that of the birthday paradox

attack. Compared to the number of operations needed for the birthday paradox attack, 280,

the shortcut attack requires only 269 operations [117]. Despite this attack, we choose SHA

because SHA is standardized by NIST, and it is widely used. However, a recent debate

suggests that the use of MD5 and SHA with HMAC is secure in spite of the weakness [65].

Second, SHA can produce variable output sizes of 160, 256, 384, and 512 bits.

C. SESSION-LEVEL TUNESEC

Session-level security services often serve two purposes, for authentication and for session

key agreement. The session-level security services are required before a packet-level service

can begin. Before a session is started, a user is needed to be authenticated before being

authorized to access network resources. This step is performed by the Authentication and

Key Manager as shown in the TuneSec architecture. Once a user is authenticated, the user

and a network server need to agree on a session key used to provide packet-level security

services for this session.

Due to the very specific characteristics of a wireless network, the Authentication & Key

Agreement (AKA) protocol is needed to be specifically designed to fit those characteristics.

For example, the AKA protocol for WLANs is totally different from that for GSM networks.

Due to their specific design, it is difficult to generalize the TuneSec concept for any AKA

protocol for all kinds of wireless networks. Therefore, in this study, we only propose a new
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AKA protocol based on TuneSec framework for only IEEE 802.11 WLANs to be tunable

and hence energy efficient.

1. The Problem with the IEEE 802.11 AKA Protocol

As we described in Section II.C.4, the IEEE 802.11 AKA protocol is composed of three

phrases, the Discovery and Association, the Authentication, and the 4-way Handshake pro-

tocol. At first, a mobile station (MS) discovers an access point (AP) that has capabilities to

support the MS’s security requirements. Then, the MS and the AP authenticate each other,

and the MS is granted an access to the network if the authentication is successful. Before

accessing the network, the MS and AP needs to agree on a master key, called Pairwise Master

Key (PMK), which may be used to re-associate to the network without the authentication.

From the PMK, the MS and the AP needs to agree on a temporary key or a session key,

called Pairwise Transient Key (PTK), using the 4-way handshake protocol. The PTK key is

subject to be used for a period of time until the MS disassociates from the network.

The problem with the IEEE 802.11 AKA protocol is that it does require the 4-way

handshake protocol when the MS wants to re-associate to generate a new PTK. Additionally,

the handshake protocol can be expensive for small limited-power devices. Therefore, we

propose to use one-time pad keys or one-time passwords for lightweight re-association to

replace the expensive 4-way handshake protocol. In our scheme, a series or a chain of one-

time passwords is recursively generated using a hash function to hash from one root key to

several child keys [68]. For WLANs, the root key is the PMK, and the child keys are the

PTKs.

The advantages of the proposed scheme are two-fold. First, from one PMK we generate

a series of PTKs using the hash chain. The length of the chain can be varied based on

the security level. A long PTK chain may be vulnerable to key collision; however, it can

save energy from performing a full association and the 4-way handshake. Second, by using

the hash chain, each PTK generated can be used as an authentication token, and MS does

not require a re-authentication process as long as the generated PTKs are not used up, yet

saving even more energy.
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The security level here is the inverse of the length of the PTK chain. A high security

level requires the chain length to be short to prevent from the key collision, which must

never happen in the one-time password scheme. In the following sections, we explain our

proposed scheme in more details and we show the performance comparison of the standard

AKA scheme to the proposed one.

2. One-time Secret Key Authentication Protocol

In this section, we propose a new authentication protocol that does not require the 4-way

handshake repeatedly, and it is able to provide a fresh key. It also provides a lightweight

(re)authentication to save energy for small wireless devices. The proposed protocol is based

on the concept of the one-time password scheme such as S/Key [53], and we call it One-time

Secret Key Authentication (OSKA) protocol.

After the first full AKA, the MS and AP possess a PMK. Then, the 4-way handshake

protocol is used to exchange nonces and to generate a root key, RK, from the PMK as shown

in equation VI.1 where the PRF (pseudorandom function) could be HMAC-SHA [66]. Then,

we use the RK to generate a sequence of one-time keys, Ki where i = n− 1 to 0 and n is the

length of the sequence, as shown in equation VI.2. The whole sequence needs not be stored

at the MS and AP if we cache the RK since we can always generate it from the cached RK.

RK = PRF (PMK, ANonce||SNonce||APMAC||MSMAC) (VI.1)

Ki−1 = f(Ki), i = n− 1 to 0 (VI.2)

For example, we generate Kn−1 = f(Kn) where Kn is the RK, and f(.) is a secure

hash function such as SHA [81]. Each Ki is used to generate PTKi for each re-association

as described later. The summary of the key derivation is shown in Figure VI.4. We may

provide up to 256 keys in a sequence if we define an 8-bit parameter for n. The length of

the sequence can be adjusted based on the tradeoff between energy and security which is

studied in the latter section. A shorter sequence yields better security, but more energy is

consumed because a full 4-way handshake protocol is required to generate a new RK for a
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new sequence. In contrast, a long sequence is probably susceptible to collisions (there may

be two similar keys in the sequence). However, using a secure hash such as SHA-512 which

produces an output of 512 bits, a long collision-free sequence can be obtained.

f( )
RK

Kn-1

K1

K0 PTK0

PTKn-1

PTK1

PRF( )

PRF( )

PRF( )

PRF( )

f( )

f( )

PMK

Figure VI.4: The Key Derivation for OSKA

a. The OSKA protocol After a full authentication and the key sequence derivation,

the MS and AP start using the first key, K0, to generate a pairwise transient key, PTK0, of

length m, using the HMAC-SHA algorithm [66]. The PTK is composed of keys for encryption

and for message authentication, and it is generated as shown in Figure VI.5.

For j 0 to (m/128)

PTKi PTKi || HMAC-SHA-1 (PMK, Ki ||
ANonce || SNonce || AP MAC || MS MAC || j)

PTKi NULL

Figure VI.5: The PTK derivation

PTK0 is used until the MS disassociates from the AP, or there is a need for a key

change. The MS requests a new key by simply re-associating with the AP again, and in the

re-associate message, the MS attaches the K0, which is no longer used. The attachment of K0
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serves two purposes. First, it is used for MS authentication. By verifying that K0 = f(K1),

AP knows that the MS is legitimate because only legitimate MS knows the key sequence.

The K0 needs not be encrypted since it is no longer a secret after once used. Additionally,

from the PTK derivation, an adversary who knows K0 cannot generate PTK0 without the

secret PMK; hence, it provides forward secrecy.

Second, it is used to prevent man-in-the-middle attacks by providing mutual authentica-

tion. As shown in Figure VI.6, for i = 0, after receiving K0, the AP authenticates the MS.

Then the AP replies whether it accepts the re-association. If not, the full authentication is

performed. Otherwise, the AP generates a MIC using HMAC-SHA(K1,K0), and replies to

MS for AP authentication. The MS verifies the MIC using K1. After authentication, both

MS and AP discard K0, update the currently used key to be K1, and derive PTK1. As the

re-association number grows, the one-time key in the sequence may be used up. Then, a full

authentication is required.

MIC = HMAC-SHA-1(Ki+1, Ki)

Association Response, 
Re-Association ok?

Association Request, Ki

MS AP

Derive
PTKi

Derive
PTKi

(1)

(2)

(3)

Figure VI.6: The OSKA Protocol

b. OSKA Security analysis We analyze OSKA security protocol based on security

reasoning and argument. Despite a formal verification, the reasoning and argument are a

practical and common method of analyzing a security protocol based on past incidents of

discovered flaws in security protocol design [24, 17].

Key Recovery:
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The security of the OSKA depends on the strength of the hash function, f(.), such as SHA

which is standardized by NIST. SHA is known to be (so far) a strong hash function while

MD5, another popular hash function, is known to have collisions for some inputs [116]. From

the properties of the SHA, it is computationally impossible to reverse the key sequence. For

example, an adversary cannot derive Kj though he knows Kj−1, Kj−2, . . . , K0.

Key Reusing or Key Replay Attack:

An adversary can replay the key if a key sequence is not freshly generated. In the OSKA

protocol, we generate a key sequence based on new nonces from MS (SNonce) and AP

(ANonce), and this guarantees the freshness.

Man-in-the-Middle attack:

The attack can be prevented by mutual authentication. To authenticate a MS, an AP needs

to prove that Ki = f(Ki+1) where Ki is attached in the (Re)Association message. To

authenticate the AP, the MS needs to verify that the MIC in Message (3) in Figure VI.6 is

valid.

Birthday paradox attack:

A hash function is often subject to a birthday paradox attack [75]. To use a hash function to

generate a key which provides a resistance of the birthday paradox attack, the hash output

should be twice as long as the key length. For example, to generate a 128-bit Ki, we use

SHA-256 which produces a 256-bit output. Then, we can truncate it to use only 128 bits.

We use SHA-384 and SHA-512 to generate a 192-bit and 256-bit key, respectively. The use

of SHA algorithm is strictly deployed as specified in the FIPS 180-1 standard [81].

3. OSKA Performance Results

In this section, we show the performance of OSKA compared to the standard protocol. We

use the cycle counting method as described in Section III.A to measure energy consumption

used by any cryptographic process. We calculate the transmission/reception energy based
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on the amount of data exchanged during a protocol transaction. By using the linear energy

model for WaveLAN wireless interface [45], we can approximate the energy consumption

of transmission and reception. It requires (431 µJ + 0.48 µJ/bytes) for point-to-point

transmission of messages, and (316 µJ + 0.12 µJ/bytes) for receiving messages.

Figure VI.7 shows the total energy used for AKA protocols as the number of re-associations

increases. The total energy includes energy from both transmission and cryptographic pro-

cesses. Despite the existing standard re-association protocol, most commercial wireless de-

vices do not support the re-association since it is not mandatory in the standard. The full

association needs to start over from the association and discovery phase to the 4-way hand-

shake phase, which consumes a great amount of energy. Using the standard re-association,

the energy consumption is reduced. Compared to them, our proposed protocol, OSKA with

a 256-bit key, performs much better in terms of total energy consumption since it reduces

the energy from message handshaking.

Figure VI.8 shows the energy consumption from only the cryptographic process. It is

shown that the OSKA outperforms the standard re-association when the number of re-

associations exceeds about 30 re-associations. We do not show the performance of the full

association since its energy consumption linearly grows at a much higher rate.

Figure VI.9 shows the energy consumption of 1000 re-associations as the length of the

key chain increases. The increase of key chain means that we require less full associations

to generate PMKs. For example, the key chain of 20 keys requires 50 out of 1000 full

associations to generate 50 PMK keys, each of which is used to generate 20 PTKs.

For a small chain length, OSKA consumes high energy; however, as we increase the

key chain length, the energy consumption is exponentially reduced. This is because we

infrequently need a full associations, an expensive operation, to generate a new key chain

as we set the key chain length to be long. The energy consumption of using standard re-

associations is also reduced as the frequency of full associations decreases. However, its

energy consumption is much higher compared to OSKA.

To reduce its energy consumption, OSKA uses a long key chain to avoid an expensive

full association process. However, the long key chain may be subject to a collision in which

two PTK keys are generated from one PMK key. Figure VI.10 shows the probability of
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key collision of OSKA key chain. As the length of the key chain increases, the collision

probability is slightly increased. It shows that using a 512-bit hash function to generate the
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OSKA key chain highly reduces the probability of collision.
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Figure VI.10: The Probability of Key Collision in a Key Sequence

D. EXPERIMENTS AND RESULTS

1. Pre-Defined Security Levels

In Chapter III, we have shown that the energy consumption of security services such as

encryption and message authentication is different due to security properties such as key

size, operational rounds, and ciphers as well as the data packet size. A set of properties can

provide different security level and consume different energy level. To provide energy efficient

security services, we need to determine a sufficient security level to provide security services

to yield more energy savings. The goal of packet-level TuneSec here is to find a sufficient

security level based on network packet types and to provide security services according to

the security level.
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In this section, we only consider IEEE 802.11 WLANs. In this study, we define 5 security

schemes, each of which differently defines a security level for each packet type defined in

IEEE 802.11 standard. Table VI.2 shows these five security schemes and levels in term of

the number of years the data should be protected for each scheme for each packet type. In

this table, we define three levels: low, medium and high, that provides different security

levels for different packet types. These three schemes are supported by TuneSec system,

in which a security level can be fine-tuned for each packet type. We also define two fixed-

security schemes, fixed-low and fixed-high, in which all packet types have the same security

level. From the years needed for data protection in the table, we interpret the number of

years into the TuneSec parameters (rounds, key size, and MAC size) for ciphers and MAC

functions to provide just enough security level.

Table VI.2: Years to protect data based on IEEE 802.11 packet types

Years Protected
Type Packet Services High Medium Low Fixed Low Fixed High
Management Assoc Req (1) 20 10 5 25 100

Assoc Resp (1) 20 10 5 25 100
ReAssoc Req (1) 20 10 5 25 100
ReAssoc Resp (1) 20 10 5 25 100
Probe Req (1) 5 3 2 25 100
Probe Resp (1) 5 3 2 25 100
Beacon (1) 5 3 2 25 100
ATIM (1) 5 3 2 25 100
DisAssoc (1) 5 3 2 25 100
Authen (1) 40 20 10 25 100
DeAuthen (1) 5 3 2 25 100

Control Action (1) 5 3 2 25 100
PS-poll (1) 5 3 2 25 100
RTS (1) 5 3 2 25 100
CTS (1) 5 3 2 25 100
Ack (1) 5 3 2 25 100
CF-End (1) 5 3 2 25 100
CF-End+Ack (1) 5 3 2 25 100

Data Data (1,2) 100 50 25 25 100
Data+CF-Ack (1,2) 100 50 25 25 100
Data+CF-Poll (1,2) 100 50 25 25 100
Data+CF-Ack/Poll (1,2) 100 50 25 25 100
Null (1) 20 10 5 25 100
Null+CF-Ack (1) 20 10 5 25 100
Null+CF-Poll (1) 20 10 5 25 100
Null+CF-Ack/Poll (1) 20 10 5 25 100

(1) = Message Authentication services, (2) = Encryption service

We also provide different security services to different packet types. In the table, Ser-

vice (1) means Message Authentication service, and Service (2) means Confidentiality or

Encryption. For example, we may provide both encryption and message authentication
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Table VI.3: The security level of session-level security protocols

Security Level Low High Fixed Low Fixed High
# of Full Asso-
ciations

Using OSKA
for every 50
associations

Using OSKA
for every 5
associations

Using standard
re-association
for every 50
associations

Using standard
re-association
for every 5
associations

to Data packets which may contain sensitive data. However, we may provide only mes-

sage authentication to those Management and Control packets such as Beacon, Associa-

tion/Disassociation, etc. since they contain no secret. However, it depends on the users or

application requirements to define such services. We only provide here an example for what

we can expect in a typical WLAN.

Table VI.3 defines four security levels for session-level security for associations in IEEE

802.11 WLANs. For fixed security levels, we use the standard re-association as defined

in the 802.11 standard [13]. For TuneSec, we use OSKA as the security protocol for re-

associations. For the low security level, we infrequently perform the full authentication to

refresh the master key, PMK. For a higher security level, the interval of the master key

refreshment needs to be shorter to reduce the probability of a successful security attack.

2. Performance Study

In this performance study, our goal is to find how much energy can be saved in typical WLAN

environments. We collect packet traces using an 802.11 sniffer. Each packet trace contains

packets that have been sent and received by a client or a mobile station. It also includes

packets that are broadcast to clients for network management purpose. Such packets are

Beacon and CTS/RTS packets for collision avoidance, etc. The traces include all kinds of

packets, Management, Control and Data packets according to the 802.11 standard [13].

We collect the traces from 3 different network locations to provide diversity in our test

environments. We collect traces in a home network, at Hillman library, and in the School of
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Information Science (SIS) building, which have three different characteristics. In the home

network, there is only one access point (AP) and few mobile devices. At the library, there

are several APs and more client devices, and its physical environment is a big hall room in

which received signal strength (RSS) at client devices is probably high, and a typical packet

loss rate is low. At the SIS building, its physical environment is a multi-floor office building

which also has several APs and client devices. We have collected 12 traces for each location

and the summary of traces is shown in Table VI.4. Figure VI.11 shows the Cumulative

Distribution Functions (CDF) of the packet size of the traces at three locations. It can be

seen that all three locations have similar packet size distributions in which there are more

short packets than long packets.

Table VI.4: A Summary of Packet Traces

Location Traces Total Packets Total Bytes Association
Requests

Home 12 286,307 65,669,596 57
Library 12 2,831,383 292,323,060 53
Building 12 1,248,565 375,997,034 41

In addition to five different security schemes, we also use three different cipher schemes

for providing security services. The three scheme are using only AES cipher (ALLAES),

only RC5 cipher (ALLRC5), and using both AES and RC5 (BOTH). The last scheme is the

feature of TuneSec in which we can add more than one security module such as AES and

RC5 cipher modules. We use AES and RC5 because from our study, it is shown that for

packet sizes of less than 80 bytes, AES consumes less energy than RC5. Therefore, we use

AES for packets whose size is less than 80 bytes; otherwise, we use RC5.

For providing message authentication service, we use one MAC algorithm, HMAC-SHA,

for the scheme that uses only one cipher, ALLAES and ALLRC5. However, when using

BOTH scheme, we use both CBC-MAC and HMAC-SHA. We utilize CBC-MAC to provide

128-bit MAC output, and HMAC-SHA to provide 160, 256, 384, and 512 bits of MAC

outputs.
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Figure VI.11: The CDF of Packet Size in Different Locations

3. Packet-Level Security Performance Results

In this section, we show the performance results of using TuneSec with five security schemes,

three cipher schemes, and at three locations. Figure VI.12 shows the average energy con-

sumption of using fixed and fine-tuning security levels with different cipher schemes for the

Hillman library network. The bar height shows the average of normalized energy consump-

tion (in µJoule/byte), and the lines on the bars show the 95% confidential interval.

From the figure, it is shown that using TuneSec can save energy in both the low and high

security scenarios compared to the fixed low and high scenarios. The amount of savings using

TuneSec in the high security scenario is more than that in the low security scenario. This is
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Figure VI.12: Comparison of Different Security Levels for the Hillman Library Network

the case that in the high security scenario, the amount of computation for security is intensive

due to the high security requirement, and using TuneSec can leverage the computation and

hence save energy.

When comparing between the cipher schemes, ALLAES scheme consumes more energy

than ALLRC5 scheme. This shows that in the network, the size of data packets is more than

80 bytes on the average. Note than both schemes use the same MAC function, HMAC-SHA,

for authentication of management and control packets whose size is typically smaller than

that of data packets. However, BOTH scheme, which utilizes both AES and RC5 ciphers as

well as both CBC-MAC and HMAC-SHA, can save more energy although it is not significant

in this case.

Figures VI.13 and VI.14 show the average energy consumption of using fixed and fine-

tuning security levels for the SIS building network and the Home network, respectively. When

comparing three different networks or locations, the energy consumption at the Hillman

library location as shown in Figure VI.12 is higher than that in the SIS building and in the

Home network because there are more users in the same network at the Library. We show

all performance results as the mean and standard deviation in Table VI.5.

Table VI.6 shows the amount of energy consumption (in µJ/byte) which is compared

130



At SIS Building

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Low Medium Fixed Low

Security Level

A
ve

ra
g

e 
E

n
er

g
y 

C
o

n
su

m
p

ti
o

n
 (

u
J/

b
yt

e) ALLAES

ALLRC5

BOTH

At SIS Building

0

0.005

0.01

0.015

0.02

0.025

High Fixed High

Security Level

A
ve

ra
g

e 
E

n
er

g
y 

C
o

n
su

m
p

ti
o

n
 (

u
J/

b
yt

e) ALLAES

ALLRC5

BOTH

Figure VI.13: Comparison of Different Security Levels for the SIS Building Network
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Figure VI.14: Comparison of Different Security Levels for the Home Network

between using fixed security levels and using TuneSec and the percentage of energy saving

of different settings. It is shown that we can save up to 8% for low-level security, and up to

43 % for high-level security.
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Table VI.5: A Comparison of Energy Consumption

SIS Building At Home At Library
Scheme Level Avg. Energy STDEV Avg. Energy STDEV Avg. Energy STDEV

(µJ/byte) (µJ/byte) (µJ/byte)
ALLAES Low 0.00963087 0.00489169 0.01309751 0.00276620 0.01801368 0.00305351

Medium 0.00963633 0.00488853 0.01310135 0.00275733 0.01815302 0.00306116
High 0.01155064 0.00568788 0.01551342 0.00341330 0.02106827 0.00356431
FixedLow 0.01028754 0.00485831 0.01353913 0.00259690 0.01961033 0.00381954
FixedHigh 0.01663180 0.00742264 0.01679438 0.00175423 0.03667975 0.01400912

ALLRC5 Low 0.00812484 0.00329794 0.00872728 0.00156698 0.01444745 0.00422319
Medium 0.00838126 0.00302813 0.01045390 0.00201349 0.01649165 0.00441110
High 0.01070796 0.00379244 0.01239773 0.00254900 0.01928582 0.00545369
FixedLow 0.00878151 0.00339058 0.00916890 0.00143555 0.01604409 0.00497666
FixedHigh 0.01749185 0.00740832 0.01716274 0.00192737 0.03770560 0.01460972

BOTH Low 0.01833452 0.00773463 0.02027844 0.00225421 0.03948805 0.01302484
Medium 0.00775267 0.00333283 0.00858821 0.00151851 0.01407481 0.00397385
High 0.00776370 0.00312620 0.01019322 0.00192935 0.01576759 0.00390110
FixedLow 0.00984792 0.00395622 0.01202937 0.00242636 0.01825997 0.00469288
FixedHigh 0.00840934 0.00342177 0.00902983 0.00138323 0.01567145 0.00473783

Table VI.6: The Percent Saving of Fixed Security and TuneSec

Energy Consumption (µJ/byte)
Scheme Fixed TuneSec % Saving

Low High Low High Low High
ALLAES 0.01447900 0.02603367 0.01358069 0.01604411 6.204 38.372
ALLRC5 0.01133150 0.02412007 0.01043319 0.01413050 7.928 41.416
BOTH 0.01103688 0.02336864 0.01013856 0.01337908 8.139 42.748

4. Session-level Security Performance Results

In this section, we show the performance results of session-level security (it occurs during

the association or re-association phase). We use the traces from three different locations and

determine the possible number of associations in the typical WLAN environment. Then,

we calculate the amount of energy consumption for each association, which can be a full

association, a standard re-association, and the proposed OSKA re-association as shown in

Table VI.3. The calculation of energy consumption is similar to that described in Section

VI.C.3.

Table VI.7 shows the amount of energy consumption in millijoules in the three typical

WLAN environments for two different security levels as described in Section VI.D.1. We
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Table VI.7: Session-level Security: Energy Consumption (mJ)

Scheme Level SIS Building At Home At Library
Full Low 159.9070 222.3097 206.7090

Associations High 159.9070 222.3097 206.7090
Standard Low 103.9164 145.3226 135.321036

ReAssociation High 113.7147 157.9205 146.519156
OSKA-256 Low 49.2392 70.14151 65.6076139

High 68.6060 95.04177 87.7411726

can see that the energy consumption of session-level security in the Home environment is

higher than that in other environments because there are more associations and possible

re-associations as shown in Table VI.4.

It is shown in Table VI.8 that by using OSKA with 256-bit key chain, we can reduce

the energy consumed by a significant amount. The reduction is up to 68% for low security

level and up to 57% for high security level. The saving is less for the high security level due

to the fact that we require a higher number of full associations (which includes expensive

authentication) to reduce the probability of a successful attack. Otherwise, we can reduce

the energy used for the session-level security as we reduce the number of full associations as

well as reduce the security level.

Table VI.8: The percentage of average energy saving using OSKA

Scheme Energy Consumption (mJ) % Energy Saving in TuneSec
Low High Low High

Full Assoc 196.3085 196.3085 68.58% 57.31%
Standard Reassoc 128.1866 139.3848 51.89% 39.88%

OSKA-256 61.6627 83.7963 - -
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5. TuneSec Performance Summary

In this section, we look at the overall performance of TuneSec security protocols (including

session-level and packet-level security protocols) compared to the fixed-level security protocol

that is suggested by IEEE 802.11 or WPAv2 standards. We use the traces described in

Section VI.4 and combine the average energy consumption at the packet-level and session-

level security as already described in Sections VI.D.3 and VI.D.4, respectively. In Table

VI.9, we see that by using TuneSec security protocols, we can save energy up to 10% for

low-level security and up to 42% for high-level security compared to the standard WLAN

security protocol.

Table VI.9: The Average of the Total Energy Consumption (mJ) of Packet Traces

Scheme Security Level
Low High

Fixed 2825.6109 5831.6779
TuneSec 2539.3036 3332.0114
% Saving 10.13% 42.86%

E. CONCLUSION

We have proposed the concepts of tunable security that the level of security services should

be adjustable to support security requirements, yet providing a sufficient security level. We

explain the TuneSec architecture that is designed to support tunable security features. We

have divided the TuneSec security into packet-level and session-level services. The packet-

level security services are at the packet level to provide encryption or confidentiality and

message authentication. In contrast, the session-level security services provides authentica-

tion and key agreement for a session to be started. The agreed key will be used for the

packet-level security.

We have proposed to use the number of years as a quantitative indicator for an abstract

security level. From the number of years, we proposed an interpretation of security robustness
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which is later used to determine the number of operational rounds used by a security module.

A high security level requires a security module to operate with a high number of rounds.

We used RC5 and AES ciphers as the security modules due to their flexibility, well-known

secure design, and their wide usage.

In our previous study in Section V.C, we could save up to 57% by using RC4, AES

and CBC-MAC to provide security services at the fixed level of 128-bit key or 70 years of

security. By using the packet-level TuneSec which provides a fine-grained security tuning to

the packet level, it has been shown that the amount of energy saving can be further reduced

by about 6% to 40% compared to using a fixed level security protocol as in our previous

study.

The deployment of TuneSec in session-level services is difficult due to the necessity of it

being specific to the design of the session-level protocol. Thus, we propose to use the TuneSec

concepts to the session-level services only in WLANs. We have proposed One-time Secret

Key Authentication (OSKA) as an adjustable authentication and key agreement protocol.

OSKA provides a key chain which can be used not only for the packet-level security, but

also as an authentication token for a lightweight re-authentication process. Hence, we reduce

the number of full re-authentication process which is expensive, and increase the amount of

energy saving. OSKA is secure and also energy efficient.
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VII. CONCLUSION

Information security services for today’s computing is no longer a choice. It must be deployed

to prevent information abuse and to protect malicious attacks. Basic information security

services are confidentiality or encryption, authentication, and integrity. To provide the

services, we need to leverage our computing resources. Small wireless devices often have

very limited resources especially battery power. A high and intensive security service is not

always the best for wireless devices. We need a way to provide security services that are

suitable for the small and wireless devices.

In this work, we proposed the concept of providing just enough security in which the

security level is determined and security services are provided with the minimum use of

energy resources. We used the concept of tunability of security strength to account for

different security needs instead of a fixed level as provided in today’s security services.

The tunable security or TuneSec provides a fine-grained security level specification. For

example, a fixed security service may prevent an unauthorized access to all of the informa-

tion for 100 years. However, some part of the information may not require the 100-year

protection. By using the TuneSec mechanism, security levels can be specified to each part

of the information that requires different security strength. Hence, energy is saved by using

appropriate ciphers for appropriate packet sizes and content.

A. SUMMARY

In our work, we have proposed an energy efficient security framework. We suggest three

methodologies for energy efficient security protocol design. The first method suggests the
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replacement of the security algorithm with one that consumes less energy. From our study, we

have found this is possible due to the variety of cryptographic algorithms and their differences

in performance. We applied this method to the TLS Handshake protocol to use both RSA

and ECC public key algorithms to achieve a more energy efficient TLS Handshake protocol

that is still able to provide the equivalent level of security strength and still be compatible

to the TLS standard. Using this method with the handshake protocol, we can save about

25% to 70% energy compared to the plain handshake protocol.

The second method in our proposed framework suggests the modification to standard

protocols in order to achieve energy efficiency. We apply this method to a standard WLAN

security protocol. We modify the protocol such that two ciphers are used to provide packet

encryption based on the packet size. From our study, we have shown that AES cipher

performs better than RC4 cipher when the packet size is about 80 bytes or smaller. We have

also utilized the MAC to provide message authentication based on the packet type. In our

study, we have achieved approximately up to 57% energy reduction. Using this method, the

security level provided to each packet is still fixed.

In the last method, we suggest the greenfield approach, where a new system is designed to

provide an energy efficient security protocol. In this work, we developed an example TuneSec

system where the security level can be adjusted to provide different levels to different packets.

We have shown that the use of TuneSec can save even more energy, from approximately 6%

up to 40%, on the top of the fixed security level system. The percentage of energy saving may

vary depending on the security specification. TuneSec is designed based on a very simple, yet

practical concept. It can be applied to any security scheme related to any small and limited-

resource devices. Especially in wireless networks where a cell phone is built to be smaller

and smarter and security services are of paramount importance, the TuneSec framework can

be deployed to provide security services, and yet be secure at the very minimum amount of

energy consumption.
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B. FUTURE RESEARCH

The TuneSec framework is a proof-of-concept that security can be provided at different

levels and hence consumes different level of energy. It is not optimal, nor does it use specific

benchmarks of available resources to pick cipher suites and so on. One approach to achieve

an optimal method of saving energy is to use approaches like [100]. TuneSec also ignores

communication protocols. Combining energy efficient communication protocols with security

protocols could potentially save more energy.

Future work can also build a prototype utilizing the TuneSec framework and apply it to

be used with multimedia applications on small and limited devices over a wireless network.

Potential applications are Voice over Internet Protocol (VoIP) over Wireless LAN network,

or video-on-demand over WLANs. We expect a tremendous saving on such applications due

to their intensive use of the resources.
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APPENDIX

ABSOLUTE ACCURACY CALCULATION

The absolute accuracy shows the specification of a measurement of data to show the actual

range of the measurement error in a given environment. There are five variables for absolute

accuracy calculation:

• Percent of Reading – is uncertainty gain that is multiplied by the actual input voltage

for the measurement.

• Offset – is a constant value applied to all measurements.

• System Noise – is a natural random noise that may occur in the system.

• Temperature Drift – is the drift due to the ambient temperature of measurement. If the

temperature is between 15 to 35◦C, the temperature drift is already compensated by the

system. Otherwise, the calculation of additional temperature drift is required.

• Input Voltage – the value of input voltage being measured.

Below is the formula of absolute accuracy and its relative to input (RTI) percentage.

Absolute Accuracy = ±[(Input Voltage×% of Reading) + (.1)

Offset + System Noise + Temperature Drift] (.2)

Absolute Accuracy RTI = ±Absolute Accuracy

Input Voltage
(.3)

139



In our measurement, we use a data acquisition (DAQ) system which includes an SCXI-

1100 module of National Institute to measure the voltage dropped across an 1 ohm resistor

which is calculated as an input current used by our laptop or a device-under-test. Our ambi-

ent temperature is between 15 to 35◦C; hence, there will be no drift. From the specification

of SCXI-1100 when using at ±10V range, we have the percent of reading of 0.05%, the offset

of 250µV and the noise of 15µV .

From our experiment, we found a range of the voltage between 2.001194 and 2.328655

volts. Therefore, we calculate the absolute accuracy for the minimum and the maximum

voltages as follows. The minimum absolute accuracy and its RTI are

Min. Absolute Accuracy = ±[(2.001194× 0.05%) + 250 µV + 15 µV + 0] (.4)

= ±1.265 mV. (.5)

Min. Absolute Accuracy RTI = ± 1.265 mV

2.001194 V
(.6)

= ±0.0632%. (.7)

(.8)

The maximum absolute accuracy and its RTI are

Max. Absolute Accuracy = ±[(2.328655× 0.05%) + 250 µV + 15 µV + 0] (.9)

= ±1.429 mV. (.10)

Max. Absolute Accuracy RTI = ± 1.265 mV

2.001194 V
(.11)

= ±0.0614%. (.12)

(.13)
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