73 research outputs found

    Advanced Specialty Fiber Designs for High Power Fiber Lasers

    Get PDF
    The output power of fiber lasers has increased rapidly over the last decade. There are two major limiting factors, namely nonlinear effects and transverse mode instability, prohibiting the power scaling capability of fiber lasers. The nonlinear effects, originating from high optical intensity, primarily limit the peak power scaling. The mode instability, on the other hand, arises from quantum-defect driven heating, causing undesired mode coupling once the power exceeds the threshold and degradation of beam quality. The mode instability has now become the bottleneck for average output power scaling of fiber lasers. Mode area scaling is the most effective way to mitigate nonlinear effects. However, the use of large mode area may increase the tendency to support multiple modes in the core, resulting in lower mode instability threshold. Therefore, it is critical to maintain single mode operation in a large mode area fiber. Sufficient higher order mode suppression can lead to effective single-transverse-mode propagation. In this dissertation, we explore the feasibility of using specialty fiber to construct high power fiber lasers with robust single-mode output. The first type of fiber discussed is the resonantly-enhanced leakage channel fiber. Coherent reflection at the fiber outer boundary can lead to additional confinement especially for highly leaky HOM, leading to lower HOM losses than what are predicted by conventional finite element mothod mode solver considering infinite cladding. In this work, we conducted careful measurements of HOM losses in two leakage channel fibers (LCF) with circular and rounded hexagonal boundary shapes respectively. Impact on HOM losses from coiling, fiber boundary shapes and coating indexes were studied in comparison to simulations. This work demonstrates the limit of the simulation method commonly used in the large-mode-area fiber designs and the need for an improved approach. More importantly, this work also demonstrates that a deviation from circular fiber outer shape may be an effective method to mitigate HOM loss reduction from coherent reflection from fiber outer boundary. In an all-solid photonic bandgap fiber, modes are only guided due to anti-resonance of cladding photonic crystal lattice. This provides strongly mode-dependent guidance, leading to very high differential mode losses, which is essential for lasing far from the gain peak and suppression of stimulated Raman scattering. We will show that all-solid photonic bandgap fibers with effective mode area of ~920μm2 can be made with excellent higher order mode suppression. We then demonstrate a 50μm-core-diameter Yb-doped all-solid photonic bandgap fiber laser. 75W output power has been generated with a diffraction-limited beam and an efficiency of 70% relative to the launched pump power. We have also experimentally confirmed that a robust single-mode regime exists near the high frequency edge of the bandgap. It is well known that incorporation of additional smaller cores in the cladding can be used to resonantly out-couple higher-order modes from a main core to suppress higher-order-mode propagation in the main core. Using a novel design with multiple coupled smaller cores in the cladding, we further scaled up the mode area and have successfully demonstrated a single-mode photonic bandgap fiber with record effective mode area of ~2650µm2. Detailed numeric studies have been conducted for multiple cladding designs. For the optimal designs, the simulated minimum higher-order-mode losses are well over two orders of magnitudes higher than that of fundamental mode when expressed in dBs. We have also experimentally validated one of the designs. M2\u3c1.08 across the transmission band was demonstrated. Lowering quantum defect heating is another approach to mitigate mode instability. Highly-efficient high-power fiber lasers operating at wavelength below 1020nm are critical for tandem-pumping in \u3e10kW fiber lasers to provide high pump brightness and low thermal loading. Using an ytterbium-doped-phosphosilicate double-clad leakage-channel fiber with ~50µm core and ~420µm cladding, we have achieved ~70% optical-to-optical efficiency at 1018nm. The much larger cladding than those in previous reports demonstrates the much lower required pump brightness, a key for efficient kW operation. The demonstrated 1018nm fiber laser has ASE suppression of ~41dB. This is higher than previous reports and further demonstrates the advantages of the fiber used. Limiting factors to efficiency are also systematically studied

    Demonstration of ultra-low NA rare-earth doped step index fiber for applications in high power fiber lasers

    No full text
    In this paper, we report the mode area scaling of a rare-earth doped step index fiber by using low numerical aperture. Numerical simulations show the possibility of achieving an effective area of ~700µm2 (including bend induced effective area reduction) at a bend diameter of 32cm from a 35µm core fiber with a numerical aperture of 0.038. An effective single mode operation is ensured following the criterion of the fundamental mode loss to be lower than 0.1dB/m while ensuring the higher order modes loss to be higher than 10dB/m at a wavelength of 1060nm. Our optimized modified chemical vapor deposition process in conjunction with solution doping process allows fabrication of an Yb-doped step index fiber having an ultra-low numerical aperture of ~0.038. Experimental results confirm a Gaussian output beam from a 35µm core fiber validating our simulation results. Fiber shows an excellent laser efficiency of ~81% and a M2 less than 1.1

    Specialty Fiber Lasers and Novel Fiber Devices

    Get PDF
    At the Dawn of the 21st century, the field of specialty optical fibers experienced a scientific revolution with the introduction of the stack-and-draw technique, a multi-steps and advanced fiber fabrication method, which enabled the creation of well-controlled micro-structured designs. Since then, an extremely wide variety of finely tuned fiber structures have been demonstrated including novel materials and novel designs. As the complexity of the fiber design increased, highly-controlled fabrication processes became critical. To determine the ability of a novel fiber design to deliver light with properties tailored according to a specific application, several mode analysis techniques were reported, addressing the recurring needs for in-depth fiber characterization. The first part of this dissertation details a novel experiment that was demonstrated to achieve modal decomposition with extended capabilities, reaching beyond the limits set by the existing mode analysis techniques. As a result, individual transverse modes carrying between ~0.01% and ~30% of the total light were resolved with unmatched accuracy. Furthermore, this approach was employed to decompose the light guided in Large-Mode Area (LMA) fiber, Photonic Crystal Fiber (PCF) and Leakage Channel Fiber (LCF). The single-mode performances were evaluated and compared. As a result, the suitability of each specialty fiber design to be implemented for power-scaling applications of fiber laser systems was experimentally determined. The second part of this dissertation is dedicated to novel specialty fiber laser systems. First, challenges related to the monolithic integration of novel and complex specialty fiber designs in all-fiber systems were addressed. The poor design and size compatibility between specialty fibers and conventional fiber-based components limits their monolithic integration due to high coupling loss and unstable performances. Here, novel all-fiber Mode-Field Adapter (MFA) devices made of selected segments of Graded Index Multimode Fiber (GIMF) were implemented to mitigate the coupling losses between a LMA PCF and a conventional Single-Mode Fiber (SMF), presenting an initial 18-fold mode-field area mismatch. It was experimentally demonstrated that the overall transmission in the mode-matched fiber chain was increased by more than 11 dB (the MFA was a 250 ?m piece of 50 ?m core diameter GIMF). This approach was further employed to assemble monolithic fiber laser cavities combining an active LMA PCF and fiber Bragg gratings (FBG) in conventional SMF. It was demonstrated that intra-cavity mode-matching results in an efficient (60%) and narrow-linewidth (200 pm) laser emission at the FBG wavelength. In the last section of this dissertation, monolithic Multi-Core Fiber (MCF) laser cavities were reported for the first time. Compared to existing MCF lasers, renown for high-brightness beam delivery after selection of the in-phase supermode, the present new generation of 7-coupled-cores Yb-doped fiber laser uses the gain from several supermodes simultaneously. In order to uncover mode competition mechanisms during amplification and the complex dynamics of multi-supermode lasing, novel diagnostic approaches were demonstrated. After characterizing the laser behavior, the first observations of self-mode-locking in linear MCF laser cavities were discovered

    Fiber amplifiers at 1.5 [my]m for gravitational wave detectors : power scaling, gain dynamics, and pump sources

    Get PDF
    [no abstract

    Second IEEE/LEOS Benelux Chapter, November 26th, 1997, Eindhoven University of Technology, The Netherlands

    Get PDF

    Second IEEE/LEOS Benelux Chapter, November 26th, 1997, Eindhoven University of Technology, The Netherlands

    Get PDF

    High-Peak-Power Fiber-Laser Technology for Laser-Produced-Plasma Extreme-Ultraviolet Lithography.

    Full text link
    This dissertation studied and demonstrated, for the first time, the feasibility of using a fiber laser as a practical EUV driver for next generation lithography. Our specially-designed fiber laser successfully emulated the same conversion efficiency achieved by the solid-state lasers, which was not believed possible before this study. An innovative spectral combining scheme was also developed to accommodate the broad linewidth from a high-peak-power fiber-laser with concurrent MW-peak power and multi-kW average power, as required to reach the EUV power for high-volume manufacturing. The concept of a single-emitter-fiber-integrated module (SEFIM) was realized. Using an 80-μm-core Yb-doped large-mode-area fiber, we achieved a record high peak power 6MW with 110-ps pulses and 6 mJ energy with 6-ns pulses, giving a near-diffraction-limited mode quality of M^2~1.3. These pulse parameters will provide sufficient intensities for optimal EUV generation using Sn targets. High average power 140 W is also achieved with proper forced cooling arrangements. Implementation of arbitrary waveform generator as the seed driver also provided pulse temporal-shaping capability, providing an instrumental tool for the study of plasma dynamics. The first 13.5-nm EUV generation was demonstrated using our single emitter module, with a conversion efficiency 1% at a intensity of 1.0 × 10^10 W/cm2, using a solid-Sn planar target. Conversion efficiency was limited by the highest achievable laser intensity at the time. The second demonstration, using the improved SEFIM and Sn-doped water-droplet targets, achieved a conversion efficiency of 2.1% at a intensity of 8.8 × 10^10 W/cm2. The intrinsic advantages of this mass-limited target greatly are debris mitigation and compatibility with high repetition rate power scaling. We developed a new high power spectral beam combing scheme based on sharp spectral- edge multi-layer dielectric filters, which does not use spectral spatial dispersion and, therefore, is free from the constraints on laser linewidth and beam size inherent in conventional diffraction-grating-based beam-combining approaches. This scheme is particularly well suited for high energy pulse power combining, as experimentally demonstrated in >91% efficient combination of three nanosecond-pulse fiber laser beams with a combined power and energy of 52 W and 4.0 mJ repectively.Ph.D.Electrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/60738/1/kchou_1.pd

    Belle II Technical Design Report

    Full text link
    The Belle detector at the KEKB electron-positron collider has collected almost 1 billion Y(4S) events in its decade of operation. Super-KEKB, an upgrade of KEKB is under construction, to increase the luminosity by two orders of magnitude during a three-year shutdown, with an ultimate goal of 8E35 /cm^2 /s luminosity. To exploit the increased luminosity, an upgrade of the Belle detector has been proposed. A new international collaboration Belle-II, is being formed. The Technical Design Report presents physics motivation, basic methods of the accelerator upgrade, as well as key improvements of the detector.Comment: Edited by: Z. Dole\v{z}al and S. Un

    Integrated wavelength division multiplexing receivers

    Get PDF
    corecore