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ABSTRACT 

At the Dawn of the 21st century, the field of specialty optical fibers experienced a scientific 

revolution with the introduction of the stack-and-draw technique, a multi-steps and advanced fiber 

fabrication method, which enabled the creation of well-controlled micro-structured designs. Since 

then, an extremely wide variety of finely tuned fiber structures have been demonstrated including 

novel materials and novel designs.  

As the complexity of the fiber design increased, highly-controlled fabrication processes 

became critical. To determine the ability of a novel fiber design to deliver light with properties 

tailored according to a specific application, several mode analysis techniques were reported, 

addressing the recurring needs for in-depth fiber characterization.  

The first part of this dissertation details a novel experiment that was demonstrated to 

achieve modal decomposition with extended capabilities, reaching beyond the limits set by the 

existing mode analysis techniques. As a result, individual transverse modes carrying between 

~0.01% and ~30% of the total light were resolved with unmatched accuracy. Furthermore, this 

approach was employed to decompose the light guided in Large-Mode Area (LMA) fiber, Photonic 

Crystal Fiber (PCF) and Leakage Channel Fiber (LCF). The single-mode performances were 

evaluated and compared. As a result, the suitability of each specialty fiber design to be 

implemented for power-scaling applications of fiber laser systems was experimentally determined. 

The second part of this dissertation is dedicated to novel specialty fiber laser systems. First, 

challenges related to the monolithic integration of novel and complex specialty fiber designs in 

all-fiber systems were addressed. The poor design and size compatibility between specialty fibers 

and conventional fiber-based components limits their monolithic integration due to high coupling 

loss and unstable performances. Here, novel all-fiber Mode-Field Adapter (MFA) devices made 
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of selected segments of Graded Index Multimode Fiber (GIMF) were implemented to mitigate the 

coupling losses between a LMA PCF and a conventional Single-Mode Fiber (SMF), presenting an 

initial 18-fold mode-field area mismatch. It was experimentally demonstrated that the overall 

transmission in the mode-matched fiber chain was increased by more than 11 dB (the MFA was a 

250 𝜇m piece of 50 𝜇m core diameter GIMF). This approach was further employed to assemble 

monolithic fiber laser cavities combining an active LMA PCF and fiber Bragg gratings (FBG) in 

conventional SMF. It was demonstrated that intra-cavity mode-matching results in an efficient 

(60%) and narrow-linewidth (200 pm) laser emission at the FBG wavelength. 

In the last section of this dissertation, monolithic Multi-Core Fiber (MCF) laser cavities 

were reported for the first time. Compared to existing MCF lasers, renown for high-brightness 

beam delivery after selection of the in-phase supermode, the present new generation of 7-coupled-

cores Yb-doped fiber laser uses the gain from several supermodes simultaneously. In order to 

uncover mode competition mechanisms during amplification and the complex dynamics of multi-

supermode lasing, novel diagnostic approaches were demonstrated. After characterizing the laser 

behavior, the first observations of self-mode-locking in linear MCF laser cavities were discovered. 
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CHAPTER 1: INTRODUCTION 

At the dawn of the 21st century, new-technologies are one of the prime factors participating 

in the evolution of our society. Indeed, the daily development of novel-technologies directly 

contributes to increase the speed of communications, the accessibility to transportation, and the 

development of novel types of entertainment. On the other hand, they also contribute to facilitate 

the life of individuals as an ever-increasing number of smaller, faster, more efficient, convenient 

and easy-to-use devices are released, providing the user with higher connectivity and enabling to 

increase the volume of tasks achieved each day. A close look at the “top-10” charts of 

technological innovations published in the past years (e.g. CNN ranking of the best innovations in 

2013 [1]) shows that more than 80% of the top-inventions involved Optics, Photonics and/or Laser 

technologies. Nowadays, Optic and Laser technologies are the center piece of an extremely wide 

range of applications and represent a multi-billion dollars market industry. Applications include 

information technology for optical storage devices (CD and DVD players), telecommunications 

and internet, medicine (for micro-surgeries, non-invasive ablations, eye surgeries, tattoo removal, 

etc.), manufacturing for high precision cutting and welding, measurement and analysis (military 

long range detection, chemical analysis, etc.), stress and temperature sensors, research applications 

in the field of Nuclear physics and Astrophysics and much more. The major role played by Optics 

and Laser technologies in the development of our current society is the result of decades of 

fundamental and experimental research studies. In this context, one of the most recent 

technological breakthrough has occurred a few decades ago with the discovery of fast 
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telecommunications and internet. The enabling technology was a micro-sized rod made from 

Fused Silica glass which was demonstrated to transport optical signals along kilometer lengths 

with extremely low attenuation. This technology, called optical fibers, is the center piece of the 

work detailed in this dissertation. 

1.1 Historical milestones in the development of optical fibers 

In this paragraph, the context of the present study is presented in a chronological approach 

retracing the important historical milestones which have contributed to the development of high-

performances optical fibers. These events are illustrated on a time arrow presented in Figure 1-1. 

Events, from the Antiquity (~ 3500 BC) until nowadays, which contributed to the evolution of the 

field of specialty fibers, were sorted in three categories: laser development (blue), 

telecommunication burst (orange) and fiber fabrication techniques and designs (green). 

The foundation of optical fibers relies on knowledge in optical science including glass 

fabrication and purification. The glass work started centuries ago during the Antiquity where glass 

material was mainly used for arts and crafts, before transitioning to industrial production in the 

1900’s. The real “revolution” occurred during the 1960’s when Schawlow, Townes and Maiman 

invented the laser [2], [3]. While the impact of the laser discovery on the society had been 

recognized a few years later with a Nobel prize, Kao and Hockham, who predicted that Fused 

Silica optical fibers could transmit optical frequencies with low-attenuation, out-performing the 

copper wires used back then [4] where acknowledged about thirty years later in 1999. The critical 

attenuation value of 20 dB/km has been achieved a few years later in 1970 by researchers from 

Corning [5].



 

3 

 

 
Figure 1-1: Historical evolution of selected optical fiber discoveries including fabrication, laser and telecom applications.
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While the first fiber lasers using diode pumping and later end pumping schemes were 

demonstrated between 1970 and 1980, telecommunication companies successfully implemented 

optical fibers to transmit phone conversations along a 6 miles cable first, followed by a full 10,000 

miles network across USA. Further improving the fabrication process, such as the modified 

chemical vapor deposition (MCVD) demonstrated the first time in 1974 by MacChesnay et al. [6], 

and the purity of the Fused Silica glass considerably improved the performances of optical fibers, 

able to achieve low-attenuation, high bandwidths, good dimension control and strong mechanical 

properties. New applications emerged including the first Erbium doped fiber laser in 1987 [7] 

followed by the demonstration of the first double-clad fiber laser by Snitzer et al. in 1988 [8]. 

Low-attenuation and single-mode properties of Fused Silica enabled to achieve transmission of 

Tera-bite amounts of information in 1992, leading to what is called nowadays the internet.  

One of the most important milestone in the development of specialty fibers occurred at the 

beginning of the 21st century with the invention of a novel fabrication technique called “stack-and-

draw”. This multi-step, high-precision process allowed to control the fabrication of micro-elements 

on the order of (or smaller than) the optical wavelength inside the optical fiber [9]. This fabrication 

technique has been widely employed since then, opening the route towards the development of 

novel fiber designs e.g. single-mode Photonic Crystal Fiber (PCF) [10], Photonic Band-Gap (PBG) 

fibers [11] and Hollow Core Fibers (HCF) [12] and more. Meanwhile, another fabrication 

technique using the concept of extrusion (forcing a soft glass medium through a well-engineered 

casted proeform) was demonstrated around the year 2002 to fabricate soft micro-structured glass 

[13] preferred for supercontinuum generation and nonlinear effects-based applications. Finally, 

within the past couple of years, fiber lasers have benefitted from the improvements in glass purity, 
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fabrication techniques and high-precision micro-structured fiber designs, able to deliver scaled 

output performances as multi-kW output power levels were reported in 2009 [14]. 

1.2 Specialty optical fibers 

So-called conventional fibers are made of a core and a cladding layer arranged in a step-

index profile. They generally use high purity Fused Silica glass which is transparent for the optical 

wavelengths comprised between ~0.2 𝜇m to ~2.2 𝜇m. In particular, light wavelengths propagating 

at 𝜆 ≈ 1.33 𝜇m experience no second order dispersion in Fused Silica which is one of the main 

reason for using Fused Silica single-mode optical fibers in telecommunication applications. An 

image of the facet of a conventional step-index fiber is shown in Figure 1-2(a). 

So-called specialty fibers can be defined as cylindrical waveguides made of different 

material and different design compared to the conventional fibers. 

Specialty fibers using novel glass material such as Tellurite or Chalcogenide glass have 

been investigated for their extended transparency window (up to 10 𝜇m wavelength) and high non-

linear optical coefficient [15] suitable for supercontinuum generation. Phosphate glass fibers have 

been studied in the literature for their ability to sustain high doping concentrations making it a 

good candidate for single-frequency fiber lasers [16]. More recently, a novel type of fibers made 

from Photo-Thermo Refractive (PTR) glass, renowned for its high photosensitivity properties, 

were successfully fabricated [17]. Expected applications include all-fiber integration of optical 

systems. 

On the other hand, independently from the choice of the constituent material, a multitude 

of specialty fiber designs have been reported and it would be difficult to provide an extensive list 
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including all the cases (in particular since this field of research remains in constant evolution). 

Instead, microscope images of a few specialty fiber designs are represented in Figure 1-2(b) along 

with a brief description of their performances and (or) applications. 

 
Figure 1-2: Images of different fiber designs showing (a) a step-index profile and (b) examples of 

specialty fiber designs with (from left to right, top to bottom): a Hollow Core Fiber 

(HCF) [13], a small core Photonic Crystal Fiber (PCF) [14], a Large-Mode Area 

(LMA) PCF [15], a Large Pitch Fiber (LPF) [16], a Leakage Channel Fiber (LCF) 

[17], a 7-coupled-core fiber [18], a 12-cores array fiber [19] and a hole-assisted 

Multi-Core Fiber (MCF) [20]. 

From left to right, the first image shows a Hollow-Core Fiber (HCF) where light is guided via 

photonic band-gap effect [18], followed by a small core Photonic Crystal Fiber (PCF) (name arise 

from the periodicity of the cladding material), well suited for supercontinuum light generation 

[19]. The following fiber is a different type of PCF made with a Large-Mode Area (LMA) core 

[20] designed to scale the output power of fiber lasers. So is the Large-Pitch Fiber design [21] as 

well as the Leakage Channel Fiber (LCF) design [22]. Finally, Multi-Core Fiber (MCF) designs 

are shown starting with a 7-cores fiber [23] and a 12-cores fiber [24] designed for high-brightness 

laser applications. The last image shows a hole-assisted MCF [25] ensuring low-cross talk during 

light propagation and demonstrated for telecom applications. 
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1.3 Towards the development of novel fiber designs 

The increasing demand for novel specialty fiber can be related to the wish to integrate free-

space-based optical and laser devices in compact and cost-effective all-integrated systems 

delivering light with high performances. This section introduces the general steps of creating, 

designing and fabricating novel specialty fibers. The steps are illustrated with the concrete example 

of a specialty fiber designed and fabricated in CREOL to deliver a single-radially polarized (RP) 

mode. 

1.3.1 Fiber conception 

The process to create novel specialty fibers is initiated once potential applications are 

identified. Target applications must significantly benefit from the use of novel fiber designs, either 

to stabilize, amplify or improve the current performances. In this chapter, the example of RP 

beams, renowned for their unique focusing power particularly suitable in optical tweezers 

applications [26], [27], is used to illustrate each step. Since the material and design of a specialty 

fiber are tailored to influence the properties of the guided light, one can hope to achieve single-

mode RP beam delivery using a well-designed and fabricated specialty fiber.  

Once the requirements of the target application are identified, a compatible fiber concept 

in terms of size, material and structure is determined. In the case of RP beams, the specialty fiber 

must (a) be single-mode at the wavelength of operation and (b) deliver a ring-shaped beam with 

radial polarization orientation. 
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1.3.2 Fiber design 

In standard optical fibers, the first higher-order mode (𝐿𝑃11) is a linear superposition of 

three degenerated modes, labeled 𝑇𝐸01, 𝑇𝑀01 and 𝐻𝐸21 (2 orthogonal polarizations), and called 

azimuthally polarized mode, radially polarized mode and hybrid mode respectively. These modes 

are the solutions of the wave equation solved outside the paraxial approximation (see Chapter 2 

for more details). Thus, to achieve single RP mode delivery, the degeneracy between 𝑇𝐸01, 𝑇𝑀01 

and 𝐻𝐸21 must be lifted by the fiber design. To do so, the index contrast between the core and 

cladding regions must be large (>10−2). In practice, this can be achieved in a photonic crystal 

cladding structure with a high air-filling ratio. Then, in order to force the 𝑇𝑀01 mode to be the 

first and only guided mode, the core symmetry of the specialty fiber must be “broken” into a ring 

geometry in order to optimize the core overlap with the RP mode. The corresponding specialty 

fiber designed for single-mode, RP beam delivery is a ring-shaped core embedded in a photonic 

crystal cladding with high air-filling ratio. This specialty fiber has been named ring-PCF and is 

schematically presented in Figure 1-3(a). 

 
Figure 1-3: (a) Schematic of the specialty fiber designed for single-mode RP beam delivery. The 

steps used in the fiber fabrication process are indicted with arrows and further 

detailed in Section 1.3.3. (b) Definition of the parameter in the ring-PCF design used 

in the numerical model. 



 

9 

 

In order to determine the appropriate dimensions of the ring-PCF, the structure is simulated 

in a numerical mode solver using vectorial finite element method. The guided mode content is 

calculated while varying the parameters of the ring-PCF indicated in Figure 1-3(b) with Λ, the 

pitch of the photonic crystal cladding, the cladding ring inner diameter labeled 𝑑 and the thickness 

of the ring-shaped core 𝑡. In order to anticipate its future integration with existing fiber devices, 

index values of Fused Silica glass were used in the numerical model and the modes guided in the 

center core were solved at 𝜆 = 1.55 𝜇m. A range of fiber dimensions ensuring single radially 

polarized light emission was found from the mode-solver results and values are summarized in 

Table 1. 

Table 1: Calculated dimensions of the ring-PCF to deliver single RP mode 

Parameter Value 

Cladding pitch 𝚲 10 𝜇m 

d/𝚲 0.8 

Core thickness 𝒕 2.3 𝜇m 

 

The simulation results corresponding to the ring-PCF with the dimensions listed in Table 1 are 

presented in Figure 1-4(a) and (b) showing the intensity profile and the corresponding vector plot 

respectively of the lowest order guided mode. These results are compared with the theoretical 

intensity profile of the 𝑇𝑀01 mode. 

 
Figure 1-4: (a) Calculated intensity profile of the lowest order mode guided in the ring-PCF core 

and (b) corresponding vector plot showing the radial orientation of the polarization. 
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1.3.3 Fiber fabrication 

Three main techniques are currently used to fabricate optical fibers. The common method 

for step-index and graded index fibers is called Modified Chemical Vapor Deposition (MCVD) 

[28]. This method allows a high control of the chemical constituents of a glass material and thus 

of the refractive indices and doping levels of each glass layer. However, it is restricted to fabricate 

all-solid, circularly symmetric fiber designs. Soft glass specialty fibers designed with sub-

wavelength features, are generally fabricated using extrusion techniques through carefully-

engineered preforms [29]. In order to fabricate highly-controlled micro-structured Fused Silica 

glass specialty fibers, the most widely used technique is called stack-and-draw [30]. 

 
Figure 1-5: Stack-and-draw fabrication technique illustrated with the example of the ring-PCF. 

After stacking the ring-PCF (a), it is inserted in a glass tube to form the cane preform 

(b). Using a fiber drawing tower, the fiber can is obtained (c). A thick jacket tube is 

then used to form the fiber cladding and the second preform is drawn down to the 

final specialty fiber while finely tuning the drawing parameters (e). Measured fiber 

dimensions are indicated. Light at 1.55 𝜇m wavelength delivered by the ring-PCF 

after propagating several meters is measured with a CCD in (f). 
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The steps of the stack-and-draw process are illustrated in Figure 1-5 using the example of 

the ring-PCF. The procedure is initiated by assembling a macroscopic iteration of the fiber design 

respecting the size ratio between each structural element as previously determined with the 

numerical calculations (Figure 1-5(a)). This stack is assembled in a clean room environment and, 

as illustrated in Figure 1-5 (b), is inserted in a Fused Silica tube (generally 1 inch in diameter) to 

form the cane preform. This first preform is mounted on a fiber drawing tower which is a complex 

piece of equipment allowing to control the furnace temperature, the speed of the preform feed in 

the furnace, the speed of the fiber pulling and the gas pressure. The fiber parameters are adjusted 

according to the values in Table 1 during the fiber drawing and requires several operators. The 

result is called a fiber cane (Figure 1-5 (c)) with an outer diameter varying between 0.5 mm and 1 

mm. The cane is fitted into a thicker jacket tube that will be later forming the fiber cladding layer 

(Figure 1-5 (d)). The cane and jacket are then drawn down into the final fiber product. During this 

step, the drawing parameters must be highly controlled to accurately reproduce the targeted fiber 

parameters. A microscope image of the final ring-PCF is shown in Figure 1-5(e). The fiber 

dimensions, extracted after imaging the fiber facet with a microscope, are indicated showing a 

agreement with the target values from Table 1. The ring-PCF outer diameter was 230 𝜇m. The 

light at 𝜆 = 1.55 𝜇m delivered by the ring-PCF after propagating several meters was recorded with 

a CCD and is shown in Figure 1-5(f). Even though the measured intensity exhibits a ring-shaped 

profile, profile distortions were measured. This might be explained by the fact that the ring-PCF 

core was not sing-mode. In order to refine the specialty fiber design, an in-depth characterization 

must be performed on the ring-PCF. In most cases, several iterations of numerical designs and 

fiber draw are required before obtaining a final specialty fiber devices matching the targeted 

specifications. 
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1.4 Dissertation outline 

In this dissertation, the focus was set towards the development and the characterization of 

novel specialty fibers made from Fused Silica glass and their monolithic integration. 

The theoretical basis are set in Chapter 2 where the fundamental principles of light 

propagation in optical fibers are briefly introduced, including the phenomenon of Multi-Mode 

Interference (MMI) and the effect of fiber perturbations on the guided light. 

The body of this dissertation is divided into two main sections. The first topic covered in 

Chapter 3 and Chapter 4 is centered on the performances of mode analysis techniques which are 

powerful characterization tools for novel specialty fibers. In Chapter 3, after presenting a state-of-

the-art review of the existing mode analysis techniques, a first-of-a-kind experiment combining S2 

imaging and the correlation filter method, is introduced. Results including extended capabilities 

beyond the actual limits of modal decomposition are detailed. 

These findings are then used in Chapter 4 to demonstrate the first in-depth characterization 

of several prototypes specialty fibers. Measured performances include low-loss, broadband single-

mode operation in a specialty LCF followed by a comparison of the single-mode performances 

between different LMA specialty fibers in the 2 𝜇m wavelength range. 

The second part of this dissertation, detailed in Chapter 5 and Chapter 6, has been dedicated 

to assembling and characterizing novel monolithic fiber lasers employing specialty fibers. A novel 

approach to integrate “oversized” LMA gain specialty fibers in monolithic fiber laser cavities is 

presented in Chapter 5 using all-fiber Mode-Field Adapter (MFA) devices. Cavity improvements 

and performances are detailed.  
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Furthermore, lasing dynamics and temporal effects in novel monolithic fiber lasers 

employing a specialty gain MCF are investigated. Competition mechanisms between amplified 

supermodes have been extracted from the first supermode-resolved gain analysis experiment. In 

addition, the first self-mode-locking effects in a linear MCF fiber laser cavity are presented. 

Finally, Chapter 7 summarizes the highlights of this dissertation and gives a research 

outlook for the prospects of specialty optical fibers. 
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CHAPTER 2: PRINCIPLES OF LIGHT PROPAGATION  

IN SPECIALTY FIBERS 

This chapter provides the background knowledge and fundamental principles which are 

necessary to understand the body of the dissertation. The fundamental concepts of light 

propagation in dielectric waveguides are derived in Section 2.1 followed by a general presentation 

of single-mode and multi-mode fibers in Section 0. The concept of Multi-Mode Interference, 

widely used in the present research, is numerically introduced in Section 2.3. Finally, external 

methods to control the transverse mode content, i.e. excitation, suppression and conversion, are 

presented in Section 2.4. 

2.1 Theory of light propagation in optical fibers 

In this paragraph, the equations describing the properties of monochromatic light 

propagating in a given medium are derived. For simplicity, the simple case of a step-index fiber 

(SIF) made of a core surrounded by a cladding layer is considered. The transverse distribution of 

the refractive index 𝑛(𝑟) is defined by 

𝑛(𝑟) = 𝑛1 for 0 ≤ 𝑟 ≤ 𝑎 ( 1 )  

𝑛(𝑟) = 𝑛2 for 𝑟 > 𝑎 ( 2 ) 

where 𝑎 is the SIF core radius. In SIF, light is confined by internal reflection (TIR) which is 

achieved at the core/cladding boundary when 𝑛1 > 𝑛2. 
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2.1.1 The wave equation 

Optical fibers are a particular case of dielectric waveguide characterized with a cylindrical 

geometry. In the following, the equations introduced were directly inspired from the fundamental 

books by Saleh et al. [31], Marcuse [32], and Ghatak et al. [33]. The propagation of 

electromagnetic waves in a given medium is governed by the well-known Maxwell’s equations 

𝛻 × 𝑬 = −𝑖𝜔𝜇0𝑯 ( 3 ) 

𝛻 ×𝑯 = 𝑖𝜔휀0𝑛
2𝑬 ( 4 ) 

with 𝑬 and 𝑯 the electric and magnetic components of the field respectively. In conventional SIF, 

the wave equation satisfies the paraxial approximation, when the refractive index difference 

between the core and cladding glasses in small on the order of ~10-3. Under this assumption, each 

component of the electric and magnetic field must satisfy the paraxial approximation of the wave 

equation, well-known as the Helmholtz equation 

𝛻2𝛹 + 𝑛(𝑟)2𝑘0
2𝛹 = 0, ( 5 ) 

where ∇ is the Laplacian operator and 𝑘0 the wavevector defined by 

𝑘0 =
2𝜋

𝜆0
 ( 6 ) 

with 𝜆0 the light wavelength. This equation is verified at any point in space in the core and in the 

cladding regions of the SIF. Since optical fibers are cylindrical waveguides, the Helmholtz 

equation can be expressed in cylindrical coordinates, according to 

𝜕2𝛹

𝜕𝑟2
+
1

𝑟

𝜕𝛹

𝜕𝑟
+
1

𝑟2
𝜕2𝛹

𝜕𝜙2
+
𝜕2𝛹

𝜕𝑧2
+ 𝑛2𝑘0

2𝛹 = 0 ( 7 ) 
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with Ψ = Ψ(𝑟, 𝜙, 𝑧). Due to the radial dependence of the refractive index 𝑛(𝑟), under the paraxial 

approximation, for homogeneous and isotropic materials, solutions of Equation ( 7 ) can be written 

under the form 

𝛹(𝑟, 𝜙, 𝑧) = 𝜓(𝑟, 𝜙)𝑒−𝑗𝛽𝑧  ( 8 ) 

with 𝛽 the propagation constant of the propagating wave defined by  

𝛽(𝑟) =
2𝜋

𝜆0
𝑛(𝑟) =  

𝜔

𝑐
𝑛(𝑟).  ( 9 ) 

The scalar wave equation is obtained from substituting solutions ( 8 ) into Equation( 7 ) resulting 

in 

(𝛻𝑡
2 + 𝑛(𝑟, 𝜙)2𝑘0

2 − 𝛽2)𝜓(𝑟, 𝜙) = 0 ( 10 ) 

with ∇𝑡
2= ∇2 − 𝜕2 𝜕𝑧2⁄ . Solving this equation is an eigenvalue problem where only a finite 

number of solutions exist. These eigenfunctions ψ(r, φ) are also called transverse modes with 

eigenvalues β, the propagation constant of each transverse mode. Eigenfunctions solutions of 

equation ( 10 ), must satisfy (a) continuity at the interfaces and (b) infinity boundary conditions. 

Thus, each fiber region (core or cladding) carries a specific set of transverse modes. 

2.1.2 Introduction to transverse modes 

According to the boundary condition for which Equation ( 10 ) is solved, different types of 

eigenfunctions, i.e. transvers emodes, will be found. In the fiber core, i.e. the confinement region, 

eigenfunctions are oscillatory functions and Equation ( 10 ) satisfies the condition 

{𝑛(𝑟, 𝜙)2𝑘0
2 − 𝛽2} > 0. ( 11 ) 

In addition, the confined field must decay exponentially outside the core and at infinity. This 

condition on Equation ( 10 ) translates into 
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{𝑛(𝑟 = ∞, 𝜙) 2𝑘0
2 − 𝛽2} < 0. ( 12 ) 

As a result, different types of transverse modes propagating in optical fibers; 

 Guided modes are eigenfunctions characterized by an intensity distribution confined close 

to the center of the core which decays exponentially in the cladding region. Losses 

associated with light propagation are generally low. 

 Leaky modes are also concentrated around the core but with evanescent tails penetrating 

deeper in the cladding region resulting in less confinement and higher propagation losses. 

 Cladding modes are filling the cladding region of the optical fiber. They generally extend 

in the fiber core and outside the outer surface and suffer from significant propagation 

losses. 

Since the fiber boundaries are defined by a change in the refractive index and that the refractive 

index only depends on the radial coordinate, the transverse mode structure can be factorized using 

 𝜓𝑙𝑚(𝑟, 𝜙) = 𝜑𝑙𝑚(𝑟).𝛷(𝑙𝜙) ( 13 ) 

with 𝑙 an integer, Φ(𝑙𝜙) an oscillatory function defined by 

𝛷(𝑙𝜙) = {
𝑐𝑜𝑠(𝑙𝜙) 𝑓𝑜𝑟 "𝑒𝑣𝑒𝑛" 𝑚𝑜𝑑𝑒𝑠

𝑠𝑖𝑛(𝑙𝜙) 𝑓𝑜𝑟 "𝑜𝑑𝑑" 𝑚𝑜𝑑𝑒𝑠
 ( 14 ) 

and 𝜑𝑙𝑚(𝑟) solution of the second-order differential equation 

𝑑2𝜑𝑙𝑚
𝑑𝑟2

+
1

𝑟

𝑑𝜑𝑙𝑚
𝑑𝑟

+ (𝑛(𝑟)2𝑘0
2 − 𝛽𝑙𝑚

2 −
𝑙2

𝑟2
)𝜑𝑙𝑚 = 0. ( 15 ) 

Solutions of the Equation ( 15 ) are the well- known Bessel functions and the solutions are of the 

form 
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𝜑𝑙𝑚(𝑟) = 𝐶 ×

{
 
 

 
 𝐽𝑙(𝑈𝑟 𝑎)⁄

𝐽𝑙(𝑈)
 𝑟 ≤ 𝑎

𝐾𝑙(𝑊𝑟 𝑎)⁄

𝐾𝑙(𝑊)
 𝑟 > 𝑎

 ( 16 ) 

with 𝐽𝑙 the Bessel function of the first kind and 𝑙𝑡ℎ order, 𝐾𝑙 the modified Bessel function of the 

second kind and 𝑙𝑡ℎ order and C a normalization factor. The values for 𝑈 and 𝑊 are calculated 

from the characteristic equations 

𝑈
𝐽𝑙+1(𝑈)

𝐽𝑙(𝑈)
= 𝑊

𝐾𝑙+1(𝑊)

𝐾𝑙(𝑊)
 ( 17 ) 

and 

𝑈2 +𝑊2 = 𝑉2. ( 18 ) 

The variable V is the well-known fiber V-parameter defined by 

𝑉 =
2𝜋

𝜆
𝑎√𝑛1

2 − 𝑛2
2. ( 19 ) 

This equation can be simplified by introducing the numerical aperture (NA) of a SIF defined by 

𝑁𝐴 = √𝑛1
2 − 𝑛2

2. ( 20 ) 

The values of 𝑈 and 𝑊 are then expressed as 

𝑈 = 𝑎√𝑘0
2𝑛1

2 − 𝛽2 ( 21 ) 

𝑊 = 𝑎√𝛽2 − 𝑘0
2𝑛2

2. ( 22 ) 

In order to be guided in the fiber core, the propagation constant of each transverse mode must 

fulfill the condition 𝑛2
2𝑘0

2 < 𝛽2 < 𝑛1
2𝑘0

2 and the values of 𝑈 and 𝑊 must be real. The radial 

distribution of the transverse modes 𝜑𝑙𝑚(𝑟) in the fiber core depends on the order 𝑙 of the Bessel 

functions. The transverse modes cut-off correspond to the zeros of the Bessel functions of order 𝑙 
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and, for a given value of 𝑙, there is a finite number of transverse modes guided in the fiber core. 

Each solution is indexed with an integer 𝑚 (𝑚 ≥ 1) and is called a linearly polarized (𝐿𝑃𝑙𝑚) mode. 

For 𝑙 = 0 , modes are 𝜙 independent and two-fold polarization degenerated. If 𝑙 ≥ 1, modes are 

four-fold polarization degenerated.  

The guided modes cut-off values are summarized in Table 2. One can determine the 

number of guided modes in a fiber core using the fiber V-parameter defined in Equation ( 19 ). 

For example, the V-parameter of the standard telecommunication SIF labeled SMF28 with ~ 9 𝜇m 

core diameter and NA ~ 0.12 at 𝜆0 = 1.55 𝜇m light wavelength is V = 2.19. According to Table 2, 

only one mode is guided in the core of this fiber. The corresponding mode is labelled 𝐿𝑃01 and 

referred to as the fundamental mode (FM). The FM is always guided in optical fibers. 

Table 2: Cut-off values of the first guided 𝐿𝑃𝑙𝑚 modes 

V-parameter LP0,m LP1,m LP2,m LP3,m 

m = 1 0 2.4048  3.8317  5.1356 

m = 2 3.8317 5.5201  7.0156  8.4172 

m = 3 7.0156 8.6537 - - 

 

The calculated intensities of the first 𝐿𝑃𝑙,𝑚 modes are shown in Figure 2-1. Above the single-mode 

cut-off, defined with 𝑉 >2.405, additional 𝐿𝑃𝑙𝑚 modes (called higher-order modes or HOMs) are 

guided in the fiber core. The 𝑛𝑡ℎ guided modes propagates with a propagation constant 𝛽𝑛 (defined 

in Equation ( 9 )), corresponding to an effective index labeled 𝑛𝑒𝑓𝑓,𝑛. Two modes propagating with 

the same propagation constant are degenerated. During light propagation, the FM has the highest 

𝑛𝑒𝑓𝑓,𝑛 value while transverse modes for which 𝑛𝑒𝑓𝑓,𝑛 < 𝑛2 propagate in the cladding. 
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Figure 2-1: Calculated intensity profiles of the first 𝐿𝑃𝑙𝑚 modes. Whereas 𝐿𝑃0𝑚 modes exhibit 

circularly symmetric profiles, other 𝐿𝑃𝑙𝑚 modes have one or multiple radial phase 

singularities. 

Since the propagation constant 𝛽𝑛 is a function of the light frequency 𝜔, it can be 

decomposed in a Taylor expansion around the center frequency 𝜔0 such as 

𝛽𝑛(𝜔0 + 𝜔) ≈
𝛽𝑛(𝜔0)

𝜔
+
𝑑𝛽𝑛
𝑑𝜔

|
𝜔0

+
𝜔

2
.
𝑑2𝛽𝑛
𝑑𝜔2

|
𝜔0

+⋯. ( 23 ) 

Each term of the Taylor expansion can be identified as a physical quantity, characteristic of the 

propagation of the 𝑛𝑡ℎ transverse mode; 

 The phase velocity 𝑣𝑃, corresponds to the speed at which the phase of each 

frequency component travels: 

𝑣𝑃 =
𝜔

𝛽𝑛
. ( 24 ) 

 The group velocity 𝑣𝐺  defines the speed at which the envelope of a pulse propagates 

in a medium: 
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𝑣𝐺 = (
𝜕𝛽

𝜕𝜔
)
−1

. ( 25 ) 

 The group velocity dispersion 𝐺𝑉𝐷 describes the frequency (or wavelength) 

dependence of the group delay when the electromagnetic wave travels in a 

transparent medium: 

GVD =
∂

∂ω

1

vG
=
∂2β

∂ω2
. ( 26 ) 

The group delay of the 𝑛𝑡ℎ guided mode, labeled 𝜏𝑛, is defined as the time the mode takes to 

propagate along the fiber length 𝐿, and can be expressed as: 

𝜏𝑛 =
𝐿

𝑣𝑃
=
𝛽𝑛
𝜔
𝐿 =

1

𝑐
𝑛𝑒𝑓𝑓,𝑛𝐿. ( 27 ) 

As a result, two non-degenerated modes will propagate along the fiber with a Differential Group 

Delay (DGD) defined by 𝐷𝐺𝐷 = 𝜏1 − 𝜏2 (for two modes labeled 1 and 2 respectively) 

corresponding to: 

𝐷𝐺𝐷 =
𝐿

𝑐
(𝑛𝑒𝑓𝑓,1 − 𝑛𝑒𝑓𝑓,2). ( 28 ) 

2.2 Single-mode and multi-mode fibers 

Two SIF categories are distinguished according to the number of transverse modes guided 

in the core: Single-Mode Fibers and Multi-Mode Fibers. 

2.2.1 Single-mode fibers 

Single-mode fibers (SMF) are designed to fulfill the single mode cut-off condition 

corresponding to a V-parameter value < 2.405. This condition is reached at a particular light 
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wavelength by adjusting the core diameter and the relative core-cladding index difference. When 

the single-mode condition is satisfied, only the fundamental mode 𝐿𝑃01 is guided. SMFs are 

extremely popular for delivering beams with Gaussian-like intensity distribution with diffraction-

limited beam quality.  

The most common SMF (SMF28 fabricated and commercialized by Corning Inc.) is a cost-

effective device widely used in telecommunications applications and in fiber-integrated optical 

devices. However, the small value of its core diameter (~ 9 𝜇m), chosen to achieve single-mode 

beam delivery, limits the number its applications in particular in the development of fiber lasers 

delivering high performances beam [34]. 

According to the definition of the V-parameter in Equation ( 19 ), further increasing the 

core diameter leads to the apparition of multiple guided 𝐿𝑃𝑙𝑚 modes. It is possible to limit the 

number of guided HOMs by reducing the fiber NA. This concept has been applied to fabricate so-

called Large-Mode Area fibers. For example, single-mode operation can be obtained in step-index 

LMA fiber designs with core diameters up to 25 𝜇m in diameter and NA as low as ~ 0.06, to be 

used in fiber laser and amplifier systems [35]. However, there is a fundamental limitation in the 

smallest NA achievable in SIF designs. This is due to the smallest core-cladding refractive index 

difference that can be experimentally realized. This effect compromises the single-mode delivery 

when further scaling the fiber dimensions [36].  

In order to address this limitation, a promising alternative has been proposed using novel 

fiber designs with a micro-structured cladding to achieve single-mode guidance [37]. To date, 

Photonic Crystal Fibers (PCF) are the preferred designs to achieve single-mode from scaled core 

sizes. Endlessy single-mode operation in PCF was reported for the first time by Knights et al. [5], 

[6]. Since then, this field has drastically evolved, and PCF designs made with active cores as large 



 

23 

 

as 135 𝜇m in diameter were reported in fiber lasers emitting record power levels and good beam 

quality [38]. Other fiber designs have been proposed such as Photonic Band-Gap (PBG) fibers 

[12], ribbon fiber [23], and Chirally-Coupled Cores (CCC) fibers [24] (more details can be found 

in Chapter 4 and Chapter 5). 

A different approach to deliver single-mode beams in active LMA fibers is based on the 

technique of gain filtering which consists in a controlled engineering of the gain profile across the 

fiber core in order to ensure single-mode emission [41]. 

2.2.2 Multi-mode fibers 

On the other hand, Multi-Mode Fibers (MMF) correspond to any fiber design guiding more 

than the one transverse mode. The most common MMF designs are all-solid structures with step-

index profiles and graded index profiles [32]. This second type of MMF will be presented in details 

in Section 5.2.1. In this paragraph, rather than elaborating a list of all MMFs applications, the 

equations describing light propagation in MMFs are be provided. 

The total beam emerging a MMF supporting 𝑛 transverse modes, labeled 𝐸, is made of a 

linear superposition of the 𝑛𝑡ℎ guided transverse modes 𝜑𝑛(𝑟) and it can be expressed as 

𝐸(𝑟) = ∑ 𝑐𝑛𝜑𝑛(𝑟)

𝑛𝑚𝑎𝑥

𝑛=1

 ( 29 )  

where 𝑐𝑛 is the modal coefficients. The 𝐿𝑃 modes, eigensolutions of the wave equation (Equation 

( 10 )), are orthornormal and satisfy 

〈𝜑𝑛, 𝜑𝑝〉 = ∬𝜑𝑛
∗(𝑟)𝜑𝑝(𝑟)𝑑

2𝑟 = 𝛿𝑛𝑝. ( 30 ) 

In addition, the modal coefficients 𝑐𝑛 can be expressed by 
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𝑐𝑛 = 𝜌𝑛 𝑒𝑥𝑝(𝑖𝜙𝑛) = 〈𝜑𝑛, 𝐸〉 = ∬𝜑𝑛
∗(𝑟)𝐸(𝑟)𝑑2𝑟, ( 31 ) 

and satisfy the relation 

∑|𝑐𝑛|
2

=∑𝜌𝑛
2 = 1 ( 32 ) 

with 𝜌𝑛
2 introduced as the Mode Power (MP) carried by the 𝑛𝑡ℎ mode. 

2.3 The phenomenon of multi-mode interference and self-imaging 

In MMFs, several modes simultaneously propagate, each one at a specific propagation 

constants 𝛽𝑛. As a result, a characteristic phenomenon, called Multi-Mode Interference (MMI), 

occurs during light propagation. In this section, the simple case of two guided modes is chosen to 

describe MMI. The total field 𝐸(𝑟, 𝑧) emerging the two-modes optical fiber can be written as 

𝐸(𝑟, 𝑧) = 𝑒𝑖𝛽1𝑧{𝑐1𝜑1(𝑟) + 𝑐2𝜑2(𝑟)𝑒
𝑖(𝛽2−𝛽2)𝑧}, ( 33 ) 

the linear sum of the two guided modes, labeled 1 and 2. In practice, the measurable quantity is 

the intensity of the light delivered by the fiber. The intensity is defined by 𝐼(𝑟, 𝑧) = |𝐸(𝑟, 𝑧)|2 and, 

according to Equation ( 33 ), the argument of the second exponential exhibits an oscillatory 

behavior as function of the light wavelength 𝜆 and of the propagation distance 𝑧 along the fiber 

length. Calculation details can be found in Appendix A. This oscillatory effect is called MMI. In 

the case of a two-modes fiber, the result is a periodic behavior characterized with a period Δ𝜙 

defined by 

𝛥𝜙(𝜆) =
2𝜋

𝜆
(𝑛𝑒𝑓𝑓,2 − 𝑛𝑒𝑓𝑓,1)𝐿. ( 34 ) 

A specific property of MMI, called self-imaging, correspond to fiber locations at which the 

incident field is reconstructed [42]. After travelling a certain length along the fiber, called self-
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reproduction length (SRL), the initial phase relation between the transverse modes is reproduce 

and the initial field is retrieved. Self-imaging is achieved when the condition 

|𝐸(𝑟, 𝑧)| = |𝐸(𝑟, 0)| ( 35 ) 

is satisfied which imposes a condition on the argument of the exponent in ( 33 ) resulting in the 

equation defining the SRL, labeled 𝑧𝑚, to be 

𝑧𝑚(𝜆) =
𝑚/2

𝛽1(𝜆) − 𝛽2(𝜆)
 ( 36 ) 

with 𝑚 an integer. As a result, self-imaging occurs in MMF either at periodic length intervals (for 

a fixed fiber length) or periodic length intervals (for a fixed light wavelength). Several applications 

have been demonstrated using MMI and self-imaging in MMF including displacement sensors 

[43], temperature sensor [44], tunable spectral filters [45], bandpass filter [46], optical switches 

[47], all-fiber MFAs (details can be found in Chapter 4) [48] and more. 

2.4 External methods to control the guided mode content 

In practice, an optical fiber undergoes perturbations depending on their environment which 

might affect the propagating light, i.e. the guided mode content. Here, three approaches to 

externally control the guided mode content in optical fibers are presented starting with the incident 

mode-overlap and then followed by the influence of the fiber coiling. Finally, a recently 

demonstrated method control the guided mode content using holographic phase masks is briefly 

introduced. 



 

26 

 

2.4.1 Choice of the mode excitation 

Even though an optical fiber is designed to guide a certain number of 𝐿𝑃 modes, the 

combination of modes excited and propagating in the fiber depends on the overlap between the 

incident beam and the fiber core. An input SMF delivering a Gaussian beam 𝐸𝑖𝑛 of the form 

𝐸𝑖𝑛(𝑟, 𝑧) = 𝑒
−(

𝑟
𝜔0
)
2

𝑒−𝑖𝛽𝑍 ( 37 ) 

is considered. For such beams, the value of the waist 𝜔0 can be empirically determined [49] using 

the relation 

𝜔0 =
2𝑎

√2𝑙𝑛2
(0.65 + 1.619𝑉−1.5 + 2.879𝑉6). ( 38 ) 

When using the SMF to couple light in a second fiber with different core size, the coupling loss at 

the fiber interface are proportional to the waist mismatch between the two fibers [49]. This issue 

is addressed employing all-fiber mode-field adapters in Chapter 5 of this dissertation. 

Most interestingly, the coupling coefficient between the incident SMF and the 𝑛𝑡ℎ mode 

(𝐸𝑛(𝑟, 𝑧)) guided in a Few-Modes Fiber (FMF) is determined using the overlap integral 

𝑐𝑛 =
|∫ 𝐸𝑖𝑛(𝑟)𝐸𝑛(𝑟)𝑟𝑑𝑟
∞

0
|
2

∫ |𝐸𝑖𝑛(𝑟)|2𝑟𝑑𝑟
∞

0
∫ |𝐸𝑛(𝑟)|2𝑟𝑑𝑟
∞

0

. ( 39 ) 

In other words, the relative alignment between the SMF and the FMF influences the combination 

of modes excited in the FMF. This phenomenon has been experimentally measured after recording 

the beam emerging a FMF with a CCD while changing the coupling alignment. This situation is 

illustrated in Figure 2-2 (a). When the SMF and FMF cores overlap, the power transfer from the 

incident 𝐿𝑃01 mode only into the circularly symmetric modes labeled 𝐿𝑃0,𝑚. This is represented 

by the yellow dot in Figure 2-2(b). As the input SMF was misaligned from the FMF core center, 



 

27 

 

(red dots in Figure 2-2(b)), some fraction of the power was coupled in other overlapping HOM. 

These experimental observations can be completed by citing the work of Flamm et al. who 

quantified the impact of fiber-to-fiber coupling using an advanced mode analysis technique [50]. 

 
Figure 2-2: (a) Illustration of the coupling alignment between the SMF and a MMF. (b) Measured 

beam profile at the MMF output after changing the in-coupling alignment. Centered 

alignment resulted in a 𝐿𝑃01-like profile whereas HOM content was measured after 

perturbing the in-coupling alignment. 

As a result, the propagating mode content in an optical fiber, regarding guided mode 

content and relative mode powers, can be controlled by proper alignment of the FMF facet with 

respect to the input delivery fiber. 

2.4.2 Influence of coiling optical fibers on the guided modes 

Up to this point, straight pieces of fiber have been considered. However, coiling an optical 

fiber changes the boundary conditions used to solve the wave equation (Equation ( 10 )), resulting 

in a direct influence on the modes propagating in the fiber. Several analytical approaches have 

been proposed to characterize the effect of coiling [51], [52]. It has been demonstrated that, 
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bending the fiber not only induces distortions in the profile of the guided modes but also, cladding- 

coupling can occur for the 𝑛𝑡ℎ mode when the fiber is coiled under a limit radius labeled 𝑅𝑙𝑖𝑚,𝑛. 

As a result, the HOM is suppressed due to the large scattering loss at the cladding/outside interface.  

These concepts are both illustrated in Figure 2-3. Starting from a non-perturbed fiber with 

4 guided 𝐿𝑃 modes indicated by the bark blue lines (Figure 2-3(a)). The coil-induced changes in 

refractive index profile are illustrated in (b) resulting in 3 out of the 4 guided modes being coupled 

into leaky cladding modes. According to [34], 𝑅𝑙𝑖𝑚,𝑛 can be expressed as 

𝑅𝑙𝑖𝑚,𝑛 =
2𝑉

1 − 𝑏𝑛
, ( 40 ) 

with 𝑏𝑛 the normalized propagation constant of the 𝑛𝑡ℎ mode defined by the effective index 𝑛𝑒𝑓𝑓,𝑛 

such that 

𝑏𝑛 =
𝑛𝑒𝑓𝑓,𝑛
2 − 𝑛2

2

𝑛1
2 − 𝑛2

2 . ( 41 ) 

The influence of fiber coiling on the mode profile is also illustrated in Figure 2-3. 

Compared to the non-perturbed Gaussian mode field amplitude |𝐸| presented in (a), coiling the 

fiber results in spatial distortions which are schematically represented in (b). Detailed analysis of 

the beam distortions resulting from fiber coiling has been reported by Schermer et al. [52]. As a 

result, the depth of penetration of the evanescent tails of the field in the cladding influences the 

mode confinement and directly impacts the properties of the guided light. 

Thus, controlled coiling of an optical fiber is one of the most accessible method to suppress 

residual HOM content. It should be noticed that, in some cases, the bend-induced losses might 

have a significant impact on the overall propagation losses in the fiber. Also, coil-induced 

birefringence has been demonstrated in optical fibers to control the polarization orientation of 
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guided light [53]. On the other hand, some applications require coil-insensitive fibers which were 

obtained by tailoring the fiber design using, for example, trench-assisted fiber cores [54], [55]. The 

effect of fiber coiling on the guided HOM content is studied in details in Sections 4.1 and 4.2 of 

this dissertation. 

 
Figure 2-3: (a) Case of a non-perturbed multi-mode fiber (MMF): (top) index profile indicating 4 

𝐿𝑃 modes guided (dark blue lines) and the first cladding mode (light blue line) and 

the field amplitude |𝐸| of one of the guided mode (bottom). (b) Case of a perturbed 

MMF illustrating the coiling influence on the guided modes (1 guided and 4 leaky) 

and on the mode profile (spatial distortions appear). 

2.4.3 Mode conversion employing holographic phase masks 

This paragraph introduces a novel approach to manipulate the mode content guided in 

optical fibers via mode conversion. To date, mode conversion has been demonstrated using fiber 

Bragg gratings (FBG) [56]–[58], segments of MMF [59], microbend gratings [60] and pressure 

assisted mode conversion [61]. Here, we investigate the possibility to perform mode conversion in 

an all-fiber scheme using holographic phase mask (HPM) inscribed in Photo-Thermo Refractive 

(PTR) glass. PTR glass is a multicomponent, highly photosensitive glass which is well-known in 
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applications using inscribed binary phase elements [62] and volume Bragg gratings, in particular 

for wavelength stabilization of laser emission [63] and beam combining applications [64]. 

 
Figure 2-4: Proof-of-concept experiment to measured 𝐿𝑃 mode conversion using a four quadrants 

HPM in PTR glass. Light from a laser source is coupled in a SMF and incident on 

the SLM. Four 𝐿𝑃 modes can be modulated on the SLM via computer control: 𝐿𝑃01, 

𝐿𝑃11𝑒, 𝐿𝑃11𝑜 and 𝐿𝑃21.Under proper alignment on the HPM, the diffracted far-field 

is imaged using L3 on a CCD to record the converted beam. 

The following study was motived from the combination of two ideas: (a) the successful 

demonstration of the first step-index fiber made of PTR glass [17] in which local refractive index 

changes can be induces using beam a light beam, and (b) the ability to fabricate HPM devices in 

PTR substrates, used, to date, to achieve mode conversion between free-space TEM modes [65]. 

In order to determine if HPM could be used in PTR fibers to achieve in-fiber mode conversion, a 

proof-of-concept experimental setup has been assembled. Illustrated in Figure 2-4, a computer-

controlled Spatial Light Modulator (SLM) was used in order to generate individual 𝐿𝑃𝑙𝑚 modes 

(using the encoding technique from Arrizon et al. [66]). A laser emitting at 𝜆 = 1064 nm is coupled 

in a SMF to ensure Gaussian-shaped beam amplitude, collimated and incident on the SLM. 
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Generated 𝐿𝑃𝑙𝑚 modes are incident on the HPM to measure “up-conversion” (from 𝐿𝑃01 to HOMs) 

or “down-conversion” (from HOM to 𝐿𝑃01). A schematic of the four quadrants HPM used in this 

experiment is shown in Figure 2-4 along with a picture of the real device. Each quadrant is phase 

shifted by 𝜋. Under proper angular alignment on a selected section of the HPM, the incident beam 

is diffracted and converted. The mode conversion is measured after imaging the beam in the far 

field with a convex lens and recording the corresponding intensity with a CCD. This experiment 

and detailed results of the mode conversion analysis have been recently submitted for publication 

[67]. 

2.4.3.1 Up-conversion from 𝐿𝑃01 to HOMs. 

By properly aligning the incident 𝐿𝑃01 mode on the HPM, several mode conversion 

combinations could be achieved. The experimental situation corresponding to the conversion 

between 𝐿𝑃01 and 𝐿𝑃11𝑒, 𝐿𝑃01 and 𝐿𝑃11𝑜 and 𝐿𝑃01 and 𝐿𝑃21, are illustrated in Figure 2-5. The 

corresponding location on the HPM are indicated with (a), (b) and (c) respectively, corresponding 

to different phase jumps. 

 
Figure 2-5: Schematic of the HPM alignment to achieve (a) 𝐿𝑃01 to 𝐿𝑃11𝑒mode conversion, (b) 

𝐿𝑃01 and 𝐿𝑃11𝑜 and (c) 𝐿𝑃01 and 𝐿𝑃21. 
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The conversion from 𝐿𝑃01 into the HOMs 𝐿𝑃11𝑒, 𝐿𝑃11𝑜 and 𝐿𝑃21 has been recorded on the CCD 

and results are shown in Figure 2-6(a), (b) and (c) respectively. For each converted beam, a 

transverse cut of the intensity profile has been plotted along the dotted line. As a result, the 

measurement of the converted modes show is in good agreement with the theoretical mode profile 

expected. In addition, the intensity reaches zero at each phase singularity indicating a good quality 

of modal conversion. A first estimation of the conversion efficiencies was measured by comparing 

the power measured before the HPM to the power in the converted mode. Result are shown in 

Figure 2-6 indicating ~70% efficiency. It was demonstrated that these high efficiencies are in 

agreement with theoretical predictions [67]. 

 
Figure 2-6: Results of the up-conversion from 𝐿𝑃01to the HOMs 𝐿𝑃11𝑒, 𝐿𝑃11𝑜 and 𝐿𝑃21. The mode 

conversions are realized using a single HPM device while changing the alignment of 

the 𝐿𝑃01 mode according to the phase singularities. 

2.4.3.2 Down-conversion: example of 𝐿𝑃21 converted into 𝐿𝑃01 

Results from the down-conversion measurement are summarized in Figure 2-7. Following 

the same principle as the up-conversion experiment, the HOM 𝐿𝑃21 was generated with the SLM 
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and, after proper alignment with the center of the HPM (illustrated with the red dot in Figure 2-7), 

the converted beam was recorded with the CCD with up to 65% efficiency. One can notice the 

presence of side lobes on the converted 𝐿𝑃01 mode profile which can be minimized via further 

optimization of the HPM parameters and of the optical alignment. 

 
Figure 2-7: Results from down-conversion from 𝐿𝑃21 (generated with the SLM) to 𝐿𝑃01. 

In summary, the proof of concept has been verified since efficient 𝐿𝑃 mode conversion 

could be achieved with the HPM.As a result, it seems possible to achieve mode conversion in all-

fiber devices using PTR glass fibers in which a HPM could be inscribed opening the route towards 

all-integrated fiber-based mode converters. 

2.5 Summary 

The fundamental equations describing the properties of light propagation in single-mode 

and multi-mode optical fibers have been introduced, and will be properly referenced in the 

upcoming sections of this dissertation. In addition, practical considerations were discussed 

regarding the influence of external perturbations on the guided light. In particular, it was 



 

34 

 

demonstrated that the mode content excited and propagating in a MMF can be chosen by 

controlling (a) the in-coupling alignment (individual mode coefficients 𝑐𝑛 are defined by the 

overlap integral Equation ( 39 )) and (b) the fiber coil (limit radius 𝑅𝑙𝑖𝑚,𝑛 before attenuating HOM 

content by cladding-mode coupling). These results were analytically described and experimentally 

demonstrated. Finally, mode conversion with ~70% efficiency (in average) was measured for up 

and down conversion between the FM 𝐿𝑃01 and the HOMs 𝐿𝑃11𝑒, 𝐿𝑃11𝑜 and 𝐿𝑃21 employing a 

novel HPM device.  
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CHAPTER 3: ADVANCED TOOLS FOR MODE ANALYSIS 

IN OPTICAL FIBERS  

Diagnostic tools to characterize conventional step-index and gradded-index optical fibers 

are many and common. For example, microscopes, SEM and other imaging techniques are used to 

measure fiber facets and extract the shape and sizes of inner-structures. Light transmission 

experiments and cut-back methods are standard diagnostics to evaluate the spectral response and 

the attenuation in optical fibers. On the other hand, piece of equipment to measure more specific 

fiber parameters are commercially available such as fiber profilometer (Interfiber Analysis, 

introduced in details in Section 3.4.1), used to measure the refractive indices across a fiber cross-

section as well as stress distribution, optical backscatter reflectometer (LUMA Technologies), to 

locate scattering centers within tens of meters of fiber length, and more. In addition, it is possible 

to detect a single-mode beam from a highly multi-mode beam using a single CCD measurement 

since the speckle-like intensity pattern emerging MMF is unambiguous. 

Within the past few years, an increasing number and variety of specialty fibers have been 

demonstrated to satisfy targeted applications. In many cases, specialty fibers are designed to 

achieve very specific polarization, spatial or modal properties which cannot be accurately 

measured with existing characterization techniques. For example, it is particularly challenging to 

resolve weakly guided HOMs since their contribution to the beam emerging an optical fiber is less 

than a few percent. A good example is the case of the measurement of the M2 paremeter. This 

technique is by far the most common one to evaluate the quality of the total beam emerging an 
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optical fiber with 𝑀2 = 1 corresponding to an ideal Gaussian beam [68]. However, in the case of 

few-modes specialty fibers propagating a few weakly guided modes, it has been demonstrated that 

even beams with Gaussian-like intensity profiles can contain small fractions of HOMs [69]. This 

can be emphasized considering that the total field emerging an optical fiber is the weighted sum 

of all propagating modes (see Section 2.2.2) and the contribution from weakly guided modes is 

negligible. Thus, 𝑀2 measurements cannot be trusted when measuring the beam emerging from 

few-modes fibers since it is a measurement of the quality of the overall beam without access to 

individual transvers modes. 

In this context, this chapter is dedicated to a novel generation of advanced diagnostic tools 

called mode analysis. These techniques were introduced within the past few years, following the 

evolution of specialty fiber designs, and were demonstrated to decompose the total field 

propagating in an optical fiber into the sum of individual transverse mode. The first Section 3.1 

offers an overview the field of mode analysis techniques, providing a comprehensive overview of 

the techniques demonstrated to the date of this dissertation and their respective ability to measure 

individual field amplitude, phase distribution, state of polarization or mode fractional power. The 

accent is then put on the two mostly used methods: on one hand spatially and spectrally resolved 

imaging, also called S2 imaging (Section3.2), and on the other hand the correlation filter method, 

labeled CFM (Section 3.3). Furthermore, Section3.4 of this chapter presents the first experimental 

determination of the working range of S2 imaging and CFM analysis. As a result, the accuracy of 

each technique will be discussed after decomposing a wide variety of fiber beams. To the best of 

our knowledge, this is the first demonstration of the mode detection limit of S2 imaging and CFM. 

These results are expected to be used in the long run to drastically improve the accuracy of the 

mode evaluation.  
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3.1 Modal decomposition in optical fibers: state-of-the-art 

Several methods to perform mode analysis of optical fiber beams have been demonstrated 

in the past few years. This section presents a complete list of the techniques reported to the date of 

this dissertation, sorted in a chronological order, along with the relevant references which can be 

used to gain more insight on each method. 

One of the first method to decompose multi-mode beams in the sum of individual 𝐿𝑃 modes 

with access to their fractional modal weight was reported by Soh et al. in 2004 [70]. This numerical 

approach was directly inspired from the previous work of Gori et al. [71], [72] who demonstrated 

the first decomposition of multi-mode Hermite-Gauss beams using the orthogonally of the Fourier-

transformed modal intensity functions. The principle was based on an intensity measurement 

recorded after propagation of the fiber beam through a linear polarizer and a Fourier lens.  

The access to individual modes is often limited by the lack of information regarding the 

phase singularities, in particular when using intensity based measurement. To address this issue, 

Shapira et al. reported a method using polarization sensitive near-field and far-field measurements 

of a fiber beam [73]. The authors used an iterative algorithm to determine the modal phase [74], 

[75] which, in parallel to an intensity measurement, enabled to reconstruct the total beam emerging 

the optical fiber. 

Later on, Andermahr et al. demonstrated an experiment to resolve individual Mode Power 

(MP) values 𝜌𝑛
2 and state of polarization of 𝐿𝑃 modes. The concept was based on matching the 𝐿𝑃 

modes guided in the fiber with the Hermite-Gauss modes of a three-mirror ring resonator [76]. 

In 2008, Nicholson et al. introduced the spectrally and spatially resolved imaging, so-called 

S2 imaging technique [77]. The MP (𝜌𝑛
2) of individual 𝐿𝑃 modes could be resolved using a Fourier 
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treatment of the measured Multi-Mode Interference (MMI) in the fiber (see Section 2.3). In 

addition, this technique was the first experimental method enabling to reconstruct individual mode 

amplitude and phase profiles [78]. 

The correlation filter method (CFM), first introduced by Kaiser et al. [79] is a purely 

experimental and unambiguous method to decompose arbitrary mode contents, evaluate individual 

MP and reconstruct vector-valued beams. The center piece of CFM is a correlation filter, used in 

a simple imaging setup, which has been carefully design according to the fiber investigated [80], 

[81]. 

Low-coherence interferometry techniques, using an interferometric experiment and a 

Fourier analysis, were first introduced to measure the dispersion in optical fibers [82]. More 

recently low-coherence interferometry has been successfully implemented to measure the relative 

group delay, the amplitude and  phase profile of individual guided modes in optical fibers and fiber 

devices [83], [84]. The cross-correlated imaging technique (C2 imaging) is the most recent 

implementation of low-coherence interferometry, providing access to small intermodal delays 

without prior knowledge of the optical waveguide [85]. 

Finally, a method employing high speed cameras in parallel with the intensity measurement 

reported by Soh et al.[70] was demonstrated to investigate the particular phenomenon of mode 

instabilities occurring above certain lasing threshold in high power fiber lasers [86]. 

Each one of these mode analysis technique is based on unique procedures, using either 

numerical or experimental approaches (or both) to access modal properties such as individual MP 

values, modal amplitude and phase distribution, state of polarization, inter-modal delay, modal 

dispersion. In the two next paragraphs of this chapter, the accent is put on two of the most widely 

used techniques, namely S2 imaging and CFM. 
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3.2 Spatially and spectrally resolved imaging (S2 imaging) 

3.2.1 Introduction and principle of operation 

The S2 imaging technique is based on the measurement of MMI occurring during light 

propagation in few-modes fibers [77]. This phenomenon was introduced in Section 2.3, arising 

from the interference between transverse modes propagating simultaneously in a fiber with 

different propagation constants 𝛽𝑛. The results is an oscillatory behavior which can be spectrally 

resolved since the period of the oscillations, defined in Equation ( 34 ), is a function of the 

propagation length and the light wavelength. In S2 imaging, the fiber length is fixed while a 

broadband light source is used to measure the MMI. After measuring the spectral response from 

the few-modes fiber at several locations across the fiber beam, the Differential Group Delay 

(DGD), defined in Equation ( 28 ) and proportional to the MMI period (see Appendix B, Equation 

( 65 )), is extracted from a Fourier analysis of the experimental data. The modal amplitudes and 

phase profiles as well as the MP values 𝜌𝑛
2 are measured. 

Recent modal decomposition performed with the S2 imaging mode analysis include LMA 

fibers [77], [78], PCF [87], all-solid and hollow core PBG fibers [88], [89], LCFs [22], CCC fibers 

with core diameters > 50 𝜇m [90] as well as extended long tapers [91] and 2 𝜇m wide silicone 

waveguides [92]. The range of applications of S2 imaging has been extended to measure HOM 

bend-induced losses [93], efficient HOM suppression in scalable output fiber amplifiers [94]. It 

has also been used to understand increased performances of Q-switched 2 𝜇m fiber lasers [95] and 

to study the impact of fiber boundaries on leaky modes [96]. Due to the high demand for this 
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diagnostic tools, a S2 imaging measurement device has been commercially released using a tunable 

laser and a CCD to optimize cost and acquisition time [97]. 

3.2.2 Detailed experimental procedure 

The typical S2 imaging experiment is schematically represented in Figure 3-1. Since this 

technique is based on measuring spectral MMI, one of the key element is the use of a broadband 

source. There is not restriction on the light wavelength at which mode analysis can be performed 

as long as the wavelength range of the broadband source can be resolved by the OSA.  

 
Figure 3-1: S2 imaging experiment with DF: Delivery Fiber, FUT: Fiber Under Test; Mo: 

microscope objective aligned in a 4-f imaging system with the lens L; BS: Beam 

Splitter; PF: Probe Fiber; OSA: Optical Spectrum Analyzer. 

The light source is fiber-coupled in a delivery fiber (DF). The choice of the DF directly influences 

the performances of S2 imaging and is further discussed in Section 3.3.3. In Section 2.4, we 

discussed in details the factor which can influence the light guided in an optical fiber. In practice, 

these can be controlled using the in-coupling alignment between the DF and the fiber under test 

(FUT) and the coil diameter (indicated by the letter D in Figure 3-1). The DF can either be fusion 

spliced or butt-coupled to the FUT. The respective core alignment will determine the modal 

excitation in the FUT. Another possibility would be to use a focusing lens to image the DF field 

in the FUT core. However the introduction of a lens might induce spatial aberrations in the incident 
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beam, directly influencing the mode overlap between the DF and the FUT and thus the mode 

combination excited in the FUT. The light emerging the FUT is imaged using two lenses aligned 

in a 4-f imaging configuration. Using a 50/50 non-polarizing beam splitter (BS), the near-field is 

simultaneously imaged on the plane of a CCD and on the plane of a probe fiber (PF). On one side, 

the CCD allow to record an image of the FUT near-field in real-time i.e. when changing the in-

coupling alignment. On the other hand, the PF, fixed on a motorized 2D stage, collects the signal 

from the near-field image with a spatial resolution equal to its core diameter. The S2 imaging 

measurement is fully automatized using a Labview program to record transmission spectra at 

several locations across the entire near-field image. The duration of the measurement can vary 

from ~20 min to several hours depending on the size of the near-field image and the spatial and 

spectral resolution which are determined by the size of the steps during the PF motion (spatial 

resolution), and the wavelength range and the spectral resolution set on the OSA respectively. 

The measured spectra are further analyzed employing a Fourier-based numerical code 

created to extract the individual modal properties including MP values, mode profile and phase 

distribution. The main steps leading to the modal evaluation are illustrated in Figure 3-2. A fiber 

beam made of 60% of 𝐿𝑃01, 30% of 𝐿𝑃11 and 10% of 𝐿𝑃21 was numerically created and is shown 

in Figure 3-2(a). The white grid indicates the locations of the PF where transmission spectra were 

recorded. First, the Fourier transform of each measured spectrum is calculated and then summed 

resulting in a total Fourier spectrum illustrated in Figure 3-2(b). Interfering modes appear at 

Fourier maxima located at the specific DGD defined by their effective index difference (Equation 

( 28 )). In Figure 3-2(b), three maxima where represented: at zero DGD which corresponds to the 

DC component of the measured spectra, at Δ𝜏1 resulting from 𝐿𝑃01 interfering with 𝐿𝑃11 and at 

Δ𝜏2 from 𝐿𝑃01 and 𝐿𝑃21 interfering. 
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Figure 3-2: Schematic of the Fourier transform analysis performed after S2 imaging. (a) Total field 

calculated assuming 60% of 𝐿𝑃01, 30% of 𝐿𝑃11 and 10% of 𝐿𝑃21.The white grid 

indicate the locations covered by the PF to measure individual spectra. (b) Fourier 

spectra calculated from S2 imaging measurements. Each maxima correspond to two 

modes interfering at a specific DGD Δ𝜏𝑛. The Fourier peak amplitude is used to 

evaluate MP values 𝜌𝑛
2 and to reconstruct the amplitude profile (calculation details 

are provided in Appendix B). 

Since 𝐿𝑃01 is dominant in this particular example (carrying 60% of the total power), the 

interference between 𝐿𝑃11 and 𝐿𝑃21 can be neglected. Individual modal properties are extracted 

from the Fourier maxima: 

 The MP values 𝜌𝑛
2 are evaluated using the amplitude of the Fourier peak at the DGD where 

the HOM interfere with the FM. 

 The mode amplitude is reconstructed after recording the Fourier amplitude of each 

measured spectrum at the fixed DGD (Δ𝜏 value indicated in Figure 3-2(b)). The profiles 

corresponding to the interference between 60% of 𝐿𝑃01 with 30% of 𝐿𝑃11 and 60% of 𝐿𝑃01 

with 10% of 𝐿𝑃21 have been calculated to provide a visual example and are shown at Δ𝜏1 

and Δ𝜏2 respectively (the value of the relative phase remained fixed). From this 

reconstruction the guided mode in the FUT can be identified. This is a considerable 
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advantage when investigating specialty fiber with complex core shapes or carrying 

different sets of modes (such as the ring PCF introduced in Section 1.3. 

 The modal phase is measured by comparing the minima and maxima of the measured 

spectra at different locations across the near-field. 

More details regarding the mode evaluation procedure can be found in the references [30] and 

[31]. In addition, a complete numerical model has been developed in parallel to the S2 imaging 

experiment to evaluate the expected DGD resulting from two modes interfering and to reconstruct 

the total beam profile according the measured MP values and relative phases. To limit the length 

of this section, details on the analytical modeling of S2 imaging can be found in Appendix B. 

There are a few important experimental considerations to take into account when 

performing S2 imaging mode analysis: 

 The temporal scale of the Fourier spectra depends on the bandwidth and the spectral resolution 

used to record the MMI spectra. On the other hand, the period of the MMI depends on the 

length of FUT used for the measurement. The rule of thumb is that ~20 periods are necessary 

to calculate an accurate Fourier transform Thus, prior to S2 imaging, a trade-off must be found 

so that ~20 MMI periods can be measured in a bandwidth < 40 nm. 

 The choice of the PF determines the spatial resolution of S2 imaging. The pixel size increases 

with the core size. However, using a smaller core size (~10 𝜇m in diameter) limits the signal-

to-noise ratio (SNR) measured on the OSA. On the other hand, increasing the core size not 

only increases the SNR but also leads to the apparition of HOMs which is incompatible with 

an accurate S2 imaging measurement. Indeed, the MMI occurring in the PF will perturb the 

MMI measured in the FUT leading to incorrect mode analysis results. However, SIF with core 

sizes > 50 𝜇m are characterized with a “flat” spectral response, averaged between the very high 
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number of guided modes. Thus, it is possible to use either small core SMF or > 50 𝜇m core 

diameter SIF as PF depending on the SNR on the OSA.  

 Also, it has been experimentally determined that recording 40x40 = 1600 pixels results in a 

minimum of 4 hours measurement duration. An option to reduce the acquisition time could be 

to employ a PF with large core step-index design. A second trade off must be found to ensure 

proper spatial resolution while ensuring a reasonable acquisition time. 

As a result, the experimental conditions should be carefully selected prior to perform a 

series of S2 imaging analysis in order to guarantee accurate and trustable modal decomposition 

3.2.3 Discussion: current limitations 

S2 imaging can be performed without prior knowledge of the waveguide structure. There 

is also no restriction on the wavelength as long as the source and the OSA operates in the same 

spectral range. This mode analysis is particularly powerful to resolve weakly guided modes 

propagating in fibers attenuated up to ~40 dB which makes it particularly suitable to precisely 

evaluate the single-mode purity of a fiber beam (see Chapter 4). 

However, in some particular cases listed blow, S2 imaging does not provide accurate modal 

analysis results: 

 Since this measurement is based on measuring MMI, degenerated modes cannot be 

resolved i.e. modes with the same propagation constant 𝛽.  

 As the number of modes guided in a fiber increase, the complexity of the MMI 

pattern increases. An example is illustrated in Figure 3-3 where two typical 

transmission spectra measured after a MM fiber and a few-modes fiber are plotted 
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in (a) and (b) respectively. As a result of the MMI periodicity, the Fourier transform 

can become difficult to analyze.  

 To date, the numerical routine to evaluate MP 𝜌𝑛
2 from S2 imaging is based on the 

assumption that the FM is dominantly excited and result from the interference 

between two HOMs can be neglected. As a result, this mode analysis technique is 

in general restricted to few-modes fibers where small or no intermodal coupling 

occurs. However, the detection limit of S2 imaging regarding the power distribution 

in the FM compared to the HOM is not clearly defined. The measurement accuracy 

in such cases is also not known. This “grey zone” of S2 imaging measurement has 

been recently addressed and results will be presented in details in Section 3.4. 

 
Figure 3-3: Spectral response measured at the output of (a) a MMF and (b) a few-modes fiber. 
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3.3 The correlation filter method (CFM) 

3.3.1 Introduction and principle of operation 

The CFM has been first introduced by Golub et al. [26] who first demonstrated transverse 

modes separation using spatial filters followed by Soifer et al. who succeeded using Computer 

Generated Holograms (CGH) [81]. The ability to use computer encoded filters was suggested by 

Lee et al. [98]. This approach has been used since then to fabricate CGH using laser lithography. 

Figure 3-4 shows a picture of a silicon wafer where GCHs were inscribed (the size of the hologram 

filters is ~0.5 cm in diameter). The two CGHs indicated in Figure 3-4 have been calculated to 

decompose the modes in a LMA-SIF (Section 3.4) and in a MCF (Sections 6.3 & 6.4). 

 
Figure 3-4: Picture of the CGH device. Two correlation filters are indicated fabricated to analyze 

a LMA step-index fiber (SIF) and MCF. This particular CGH was employed in the 

experiments presented in Section 3.4 and Section 6.3 & 6.4 respectively. 

Using CGHs, the overlap integrals of the incident fiber near-field with the calculated modal 

transmission functions can be optically calculated. In addition, multiple channels (each one 

corresponding to a modal amplitude or relative modal phase) can be multiplexed in one filter using 
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different carrier frequencies. CGHs work in transmission and the diffracted light is analyzed in the 

Fourier plane using a CCD. 

This technique has been employed to perform complete modal decomposition in amplitude, 

phase and polarization of LMA fibers [99] and MCFs [100]. Recently, it has been demonstrated 

that SLMs can be used as correlation filters, enabling real-time switching of the digital hologram 

[101]. To date, CFM has been used to measure mode-resolved bend-losses in few-modes fibers 

[102] and to characterize beams with orbital angular momentum [103]. Additional applications 

have been recently reported such as fast M2 measurement [104], wavefront reconstruction [105], 

mode division multiplexing and de-multiplexing [106], [107] and characterization of fiber-to-fiber 

coupling [50].  

3.3.2 Experimental realization 

The classic experiment for CFM mode analysis is schematically represented in Figure 3-5. 

Compared to S2 imaging, CFM is a narrow line-width measurement where correlation filters are 

designed for one wavelength. After exciting the mode content guided in the FUT, the near-field of 

the emerging beam profile is imaged on the CGH using a 4-f imaging scheme made of a 

microscope objective (Mo) and a lens. The magnification factor 𝑚 = 𝑓𝐿 𝑓𝑀𝑜⁄  is carefully chosen 

to match the dimensions of the correlation filter. The diffracted far-field is then imaged on the 

CCD using a Fourier lens (𝐿𝐹) and contains direct information including the MP and intermodal 

phase differences for each transverse mode. 
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Figure 3-5: Typical CFM experiment with DF: Delivery Fiber, FUT: Fiber Under Test; Mo: 

microscope objective aligned in a 4-f imaging system with the lens L; P: Polarizer; 

CGH: Computer Generated Hologram; FL: Fourier Lens. 

Results of numerical simulations are shown in Figure 3-6(a) and (b) to illustrate the 

decomposition of a single-mode and a multi-mode beam respectively using an amplitude encoded 

CGH. The far-field of the diffracted beam is recorded on the CCD using the Fourier lens (𝐹𝐿) The 

blue arrows in Figure 3-6 indicate the exact location of each mode correlation answer, each one 

corresponding to a specific CCD pixel. These locations were chosen when calculating the CGH. 

Individual mode coefficients (MP values 𝜌𝑛
2 and (or) intermodal phases 𝜙𝑛

2) are recorded after 

measuring the intensity at the modal correlation answer. In Figure 3-6(a), results from the modal 

decomposition of the single-mode beam shown at the bottom left are plotted in a bar diagram 

indicating that the only non-zero correlation answer was recorded for 𝐿𝑃01 resulting in 𝜌2(𝐿𝑃01) 

= 1. On the other hand, Figure 3-6(b) shows the results from the CFM analysis of the same multi-

mode beam as the one previously used in Figure 3-2 for S2 imaging. In this case, several non-zero 

correlation answers can be measured as shown in the bar diagram indicating 𝜌2(𝐿𝑃01) = 0.6, 

𝜌2(𝐿𝑃11) = 0.3 and 𝜌2(𝐿𝑃21) = 0.1. 
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Figure 3-6: Simulated results of CFM mode decomposition of a single-mode beam (a) and a multi-

mode beam made of 60% of 𝐿𝑃01, 30% of 𝐿𝑃11 and 10% of 𝐿𝑃21 (b). The total near 

field emerging the fiber is represented in the bottom left of the picture. This figure 

was created by Daniel Flamm. 

3.3.3 Discussion: current limitations 

CFM mode analysis is particularly suitable to provide a real-time decomposition of multi-

mode beams and has been widely employed in various applications (Section 3.3.1). A linear 

polarizer can be used before the CGH to resolve polarization-degenerated beams. Along with the 

measurement of intermodal phase coefficients, vector-valued beams can be reconstructed and 

directly compared to the near-field emerging the optical fiber (using an additional BS and a CCD). 

However, a specifications when employing CFM can be mentioned: 

 The correlation filter is fiber-specific and wavelength-specific. As a result, one 

filter must be calculated and fabricated to investigate one fiber only at a particular 

wavelength resulting in a relatively expensive technique. However, this limitation 

has been overcame after proposing to use computer controlled SLM as correlation 

filters [101].  

 Prior knowledge of the guided mode content is necessary to calculate well-matched 

correlation filters. The reliability and accuracy of the mode decomposition depends 

on the veracity of the waveguide dimensions and refractive indices. In the case of 
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complex waveguides, these parameters might be difficult to access imposing a 

limitation on using CFM in such cases. 

 The resolution power of CFM when measuring low HOM contents is limited by the 

sensitivity of the CCD sensor at the measurement wavelength, by the ambient noise 

and depends on the number of channels encoded in a CGH. As a results, the lowest 

MP values accurately measured are on the order of a few percent. 

3.4 Novel combined experiment for advanced mode analysis 

Here, a novel experiment combining S2 imaging with CFM is detailed in Section 3.4.2. 

These results were recently published [108], [109]. The goal was to develop an advanced tool for 

in-depth characterization of optical fibers, reported in details in Section 3.4.3. Using the mode 

decomposition results of fourteen different fiber beams with the combined experiment, the modal 

detection limit of each mode analysis technique has been experimentally determined for the first 

time, to the best of our knowledge. The modal decomposition results are presented and discussed 

in Section 3.4.4 followed by the conclusion on the modal capabilities of S2 imaging and CFM. 

3.4.1 Presentation of the fiber under test 

The FUT used in this experiment is a standard step-index LMA fiber, labeled LMA20, 

commercialized by Fibercore with a core diameter of 20 𝜇m, 125 𝜇m cladding diameter and ~0.07 

NA according to the manufacturer specifications. It has been selected to conduct the combined 

experiment study for several reasons: (a) it is a standard fiber design in which dimensions and 

indices can be accurately measured (easy CGH fabrication) (b) and it is a Few-Modes Fiber (FMF) 
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where 4 non-degenerated 𝐿𝑃 modes are supported in the core at 𝜆 = 1064 nm, offering the ability 

to excite different modal combinations by changing the in-coupling excitement and coil conditions 

while avoiding uncontrolled inter-modal coupling (see details in Section 2.4). 

 
Figure 3-7: Profilometer measurement device (Interfiber Analysis) to measure the fiber refractive 

indices, dispersion and stress profile. The Fiber Under Test (FUT), indicated with 

the orange line, is located in one of the arm of the interferometer. 

Accurate measurement of the refractive indices in an optical fiber has been possible since 

the introduction of a novel piece of equipment called profilometer [110]. A picture of this 

diagnostic is shown in Figure 3-7. Using an interferometric setup, the path length difference 

between each fiber layer and the surrounding index matching oil is recorded across 1D or 2D of 

the fiber facet. Values of the refractive index profile are extracted using a de-convolution algorithm 

at several wavelength ranging from 600 nm up to 1 𝜇m. The fiber dispersion can be interpolated 

from the refractive index measurement using fitting functions such as the Sellmeier or the Cauchy 

equation [111]. In our applications, it is extremely useful to know the values of the refractive index 
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light wavelengths between 1 𝜇m and 2 𝜇m. Within this range, the Cauchy interpolation is known 

to be more accurate. Thus, the fitting function 

𝑛 = 𝐴 +
𝐵

𝜆2
+
𝐶

𝜆4
 ( 42 ) 

is used to measure 𝑛 at the measurement wavelength with A, B and C the fitting parameters. 

The 1D refractive index profile measured across the LMA20 is plotted as function of the 

fiber axial distance in Figure 3-8(a). The index values measured in the core and the cladding 

regions are plotted for different measurement wavelengths in Figure 3-8(b) along with the 

interpolated dispersion curve in the core and cladding layers in red and black respectively. 

According to the measured index values at 𝜆 = 1064 nm, the LMA20 fiber V-parameter is ~4.1 

corresponding to four guided modes: 𝐿𝑃01, 𝐿𝑃11, 𝐿𝑃21 and 𝐿𝑃02. Finally, the measured fiber 

indices and fiber dimensions are used in a mode solver to determine the propagation constants of 

the guided modes used to calculate and fabricate a perfectly matched CGH. 

 
Figure 3-8: (a) Measured index profile of the LMA20 fiber at 𝜆 = 1064 nm showing distinctly the 

core and cladding regions. (b) Measured indices at several wavelength (plotted using 

round markers) and Cauchy-interpolated dispersion curves in the core (red) and 

cladding (black). 
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3.4.2 Combined experiment 

The experiment combining S2 imaging and CFM is schematically represented in Figure 

3-9. Two sources with different bandwidth but emitting around the same wavelength are employed 

to satisfy S2 imaging and CFM requirements: a 60 nm broadband superluminescent diode (SLD) 

and a narrow linewidth laser respectively. Both sources, linearly polarized, are coupled in the DF, 

a SMF with cut-off wavelength at 𝜆 = 780 nm. A second piece of DF is mounted on a translation 

stage allowing the user to manually switch between the light sources only by changing the DF-to-

DF alignment.  

 
Figure 3-9: Experiment combining S² imaging and CFM mode analyses. DF: Delivery Fiber; FUT: 

Fiber Under Test; Mo: microscope objective; L: focusing lens; BS: non-polarizing 

50/50 Beam Splitter; P: linear Polarizer; CGH: Computer Generated Hologram; LF: 

Fourier lens; PF: Probe Fiber and OSA: Optical Spectrum Analyzer. 

The source is then coupled into the FUT via the DF using a two-dimension translation stage to 

control the modal excitation in the LMA20. The near-field is imaged using a microscope objective 

(MO) aligned in a 4-f configuration with a lens (L). Two 50/50 beam splitters (BS) split and direct 

the beam on CCD1 measuring the FUT near-field while the coupling/coiling conditions are 
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changed, on the probe fiber (PF) used for S2 imaging mode analysis and on the CGH to perform 

CFM. The orange box around the CCD1 indicate that it is the common detector between S2 imaging 

and CFT and serves as near-field measurement reference. 

To perform S2 imaging, the SLD light source is coupled in the FUT via the DF. Real-time 

CFM analysis is performed using the laser source. A picture of the dual-light source module 

implemented at the front end of the combined experiment is presented in Figure 3-10. The narrow 

line-width laser is highlighted in green while the SLD is in red. The state-of-polarization of both 

sources is aligned along the horizontal axis (using a half-wave plate for the laser and the 

polarization maintaining of the SLD. Since the DF is not a PM fiber, coil-induced birefringence is 

achieved in the experiment to preserve the state of polarization of the light coupled in the FUT. 

Using the combined experiment presented in Figure 3-9, a the beam emerging the FUT can be 

decomposed with S2 imaging and CFM without perturbing the in-coupling light alignment in the 

FUT and for fixed fiber coil. 

 
Figure 3-10: Dual light source module of the combined experiment used to control the modes 

content of the FUT (modal excitation box) and to select the light source depending 

on the mode analysis technique (light source excitation box). The laser is used for 

CFM and the SLD for S2 imaging. Particular attention was paid to create and 

maintain a horizontally state of polarization. 
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3.4.3 Advanced capabilities for mode analysis using the combined experiment 

In this paragraph, the procedure employed to analyze the LMA20 beams measured with 

the combined experiment is presented in details. The different steps are illustrated via two 

examples: a Quasi-Single-Mode (QSM) beam and a multi-mode beam. These two beams are 

obtained by changing the in-coupling DF-LMA20 alignment while monitoring the near-field on 

CCD1. A Gaussian-like intensity profile corresponds to a QSM beam (achieved for centered 

alignment of the DF-LMA20 cores and coiling radius < 5 cm) while spatial distortions indicate the 

contribution of HOMs. Once a FUT beam is selected, the experimental conditions are fixed and a 

first CFM analysis is performed (duration is only a few seconds). Then, the light source is switched 

and S2 imaging is performed on the same FUT beam for a total measurement duration of ~ 40 min. 

The combined experiment analysis in concluded by another CFM decomposition. After each FUT 

measurement and before further processing of the data, results from the two CFM analyses are 

compared and must show a perfect match. 

The Fourier spectra calculated after performing S2 imaging on the QSM and the multi-

mode beams are plotted as function of the DGD in Figure 3-11 and Figure 3-12 respectively 

according to the standard procedure for data analysis described in [77]. The peak at zero DGD, 

called DC-component, contains the contribution from all excited mode propagating in the LMA20. 

In Figure 3-11(a), the QSM beam profile is shown and the corresponding Fourier spectrum, 

calculated and plotted in Figure 3-11(b), showed two discrete maxima at DGD = 0.12 ps/m and 

0.26 ps/m. From the reconstructed modal amplitude, a residual amount of HOM 𝐿𝑃11 guided in 

the LMA20 could be resolved. In comparison, the Fourier spectrum of the multi-mode beam 

(intensity profile shown in Figure 3-12(a)), plotted and represented in Figure 3-12(b), exhibits 
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several maxima. The modal amplitude and phase profiles have been reconstructed at two selected 

DGDs (0.35 ps/m and 0.56 ps/m) showing evidence of guided 𝐿𝑃11 and 𝐿𝑃21 modes. 

 
Figure 3-11: (a) Reconstructed near-field of the QSM beam. (b) Calculated Fourier spectra after 

S2 imaging analysis. Two discrete DGD values, indicated with arrows, correspond to 

DGD where residual 𝐿𝑃11 mode has been measured. 

On the Fourier spectrum of the multi-mode beam in Figure 3-12(b), both sharp and broad 

maxima have been identified as guided HOMs. It has been already demonstrated [78] that broad 

Fourier maxima (red and blue areas in Figure 3-11(b)) are the result of distributed mode scattering 

along the fiber length and can be distinguished from discrete scattering (single peak indicated by 

the arrow). Distributed mode scattering is illustrated in Figure 3-12(c) where modal amplitudes 

have been reconstructed for several DGD values comprised in the 𝐿𝑃11 grey area in Figure 3-12(b). 

As a result, S2 imaging provided the powerful tool to determine whether the MP carried by HOMs 

is the result of (a) discrete HOM coupling at the DF/FUT interface or (b) distributed scattering 

along the fiber length. When evaluating 𝜌𝑛
2 values, both contributions (from discrete and 

distributed scattering) were considered (see Section 3.4.4). 
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Figure 3-12: (a) Reconstructed near-field of the multi-mode beam and calculated Fourier spectrum 

(b). Discrete and distributed mode features are highlighted with a dotted line and 

shaded areas respectively. The amplitude and phase profile of the measured HOMs 

have been reconstructed at DGD = 0.35 ps/m and 0.56 ps/m corresponding to 𝐿𝑃21 

and 𝐿𝑃11 respectively. (c) Amplitude profiles of the 𝐿𝑃11 mode were reconstructed 

across the Fourier filter of 𝐿𝑃11 (grey area in (b)) from 0.54 to 0.63 ps/m DGD values.  

The CFM section of the combined experiment completes the scalar modal field analysis 

from S2 imaging. The same QSM and multi-mode beams were decomposed using the CGH. The 

diffracted beam is imaged on CCD2 and results are shown in Figure 3-13(a) and (b) respectively. 

The CGH has been calculated to analyze 6 amplitude channels (correlation answers denoted with 

white crosses in Figure 3-13) and 10 intermodal phase channels (intentionally not represented in 

Figure 3-13 for clarity purposes). All the channels are spatially separated using different values of 

carrier frequencies. As detailed in Section 3.3.2, the intensity recorded at each correlation answer, 

corresponding to selected pixels on CCD2, is directly proportional to 𝜌𝑛
2 and 𝜙𝑛

2 values. The 

diffracted QSM beam is shown in Figure 3-13(a). In this case, the intensity measured at each 

correlation function is zero except for the 𝐿𝑃01 mode. On the other hand, the diffracted multi-mode 
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beam represented in Figure 3-13(b) shows a significantly different pattern where non-zero 

intensities can be measured at several correlation answers, indicating the presence of multiple 

HOMs. Along with the measurement of the intermodal phases, knowledge of individual MP was 

used to calculate the total vector-valued field for the QSM and multi-mode beams. Results are 

presented on top of Figure 3-13(a) and (b) respectively showing a very good agreement with the 

measurement recorded on CCD1. 

 
Figure 3-13: Diffraction patterns measured on CCD2 of the QSM (a) and the multi-mode (b) beams. 

White crosses indicate the location of correlation answer for each mode of the FUT. 

The top inset displays the calculated vector-values FUT field compared to the 

measurement on CCD1. 

In summary, the unique combined experiment presented here benefits from the 

complementarity between S2 imaging and CFM, enabling to perform an advanced characterization 

of optical fibers with access to individual scalar and vector-valued field components. 
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3.4.4 Mode Power evaluation 

To date, S2 imaging has been considered accurate when decomposing beams carrying one 

dominant mode. Recently, Nguyen et al. proposed a method to increase the accuracy of S2 imaging 

when decomposing beams carrying more than two modes by identifying so-called spurious modes 

in the Fourier spectrum [112]. Most interestingly, Otto et al numerically demonstrated that the 

accuracy of the MP evaluation with S2 imaging can be considerably improved employing general 

analytical mode evaluation algorithms [113]. In this paragraph, we experimentally investigate the 

limits of the S2 analysis when decomposing several different beams. 

3.4.4.1 Decomposition of a wide variety of beams using CFT 

Fourteen different mode combinations have been excited in the LMA20 and decomposed using 

the combined experiment. For each beam, the normalized 𝜌𝑛
2 values were first evaluated with CFM 

and results are presented in the bar diagram in Figure 3-14 where the measured beams are sorted 

from smaller to larger HOM content. The same FUT beams have been decomposed with S2 

imaging and results are presented and compared in the next Section 3.4.4.2. For 2-fold polarization 

degenerated HOMs, both polarization contributions measured with CFM e.g. 𝐿𝑃11,𝑒, 𝐿𝑃11,𝑜 and 

𝐿𝑃21,𝑒, 𝐿𝑃21,𝑜 were considered in the calculation of the MP values. In Figure 3-14, each LP mode 

is represented with a different color. For clarity purposes, four regimes, labeled from I to IV, were 

distinguished, corresponding to different mode mixtures. Regime I includes quasi-SM beams 

defined by 𝜌2(𝐿𝑃01) ≥ 95%. Regime II refers to beams carrying some HOM content but in which 

the FM still dominates such that 0.95 ≥ 𝜌2(𝐿𝑃01) ≥ 0.7. Regime III comprises MM beams where 

0.7 ≥ 𝜌2(𝐿𝑃01) ≥ 0.3 and finally, regime IV contains beams where the 𝐿𝑃11 mode is dominant 
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(corresponding to measurement 14). For each regime is indicated in Figure 3-14, a typical LMA20 

near-field profile is represented on the right hand side. One can clearly observe the beam 

distortions as the HOM content increases. 

 
Figure 3-14: CFT mode decomposition of fourteen selected FUT beams. Measurements are sorted 

from low to high HOM content and each color represents a guided LP mode. The 

fixed measurement error of ±2% is shown on the plot. Typical FUT beams are 

depicted on the right-hand for each modal regime. 

The accuracy of CFM mode evaluation mainly relies on the sensitivity of the CCD detector 

at the wavelength of measurement. In the present case, CCD2 exhibits low quantum efficiency at 

𝜆 = 1064 nm and certain weakly guided modes vanish in the background noise of the detector. 

Since the highest mode purity of the FM was measured around 98%, the resolution of CFM in the 

evaluation of the MP 𝜌𝑛
2 is fixed at ± 2% regardless of the modal regime. Corresponding error bars 

are indicated in Figure 3-14. 
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3.4.4.2 Direct comparison between MP evaluated using S2 imaging and CFM 

Results of the MPs evaluated in all fourteenLMA20 beams and reported in Figure 3-14 

have been also evaluated using S2 imaging measurements. To the best of our knowledge, this is 

the first time S2 imaging has been performed to decompose a wide variety of QSM and MM beams 

with the ability to directly compare the MP results with a different mode analysis technique. This 

paragraph focuses on determining the influence of the evaluation procedure on the measured 

values of 𝜌2 and furthermore determine the most suitable approach according to the type of beam 

decomposed. 

Two distinct analytical methods suggested in [113] have been applied to evaluate 𝜌𝑛
2. and the 

corresponding calculation details can be found in Appendix B. The first MP evaluation, called 

method 1 (Appendix B), relies on the strict assumption that most of the power is carried by one 

dominant mode. As a result, the value of 𝜌2(𝐿𝑃01) is approximately equal to the amplitude of the 

Fourier DC-component. This approach has been the general evaluation method employed in most 

S2 imaging measurements and applications listed in Section 3.2.1. The MP values obtained using 

method 1 are represented in Figure 3-15 using hollow circle markers. A second evaluation method, 

called method 2 (Appendix B), is an analytical expression defined from the general expression of 

𝑛-interfering modes. This approach is particularly suitable when the power is distributed among 

several HOMs. 𝜌𝑛
2 values obtained using method 2 are represented using plain diamond markers 

in Figure 3-15. 

Figure 3-15 summarizes the values of 𝜌𝑛
2 evaluated using method 1 and method 2 for each 

modal regime previously defined in Section 3.4.4.1 (regime I to IV corresponding to Figure 3-15(a) 

to (d)). For clarity purposes, the y-axis of each plot has been scaled separately. Guided modes are 
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represented with different colors: 𝐿𝑃01 in black, 𝐿𝑃11 in red and 𝐿𝑃21 in blue. The 𝜌𝑛
2 values 

previously evaluated from CFM (Figure 3-14) are represented using square markers and they offer 

a direct comparison with the S2 imaging evaluation results. 

In regime I, the approximation of one dominant mode applies and calculated values for 

𝜌2(𝐿𝑃01) and 𝜌2(𝐿𝑃11) using method 1 and 2 (circle and diamond markers) perfectly overlaps. It 

is noteworthy that HOM powers as low as 𝜌2(𝐿𝑃11) ≈ 0.006 can be calculated from S2 imaging 

measurements whereas, in this range, CFM only detects noise. This is also illustrated when 

evaluating 𝜌2(𝐿𝑃21) (blue lines in Figure 3-15(b)). 

 
Figure 3-15: Modal decomposition of fourteen FUT beams measured with the combined 

experiment (a) to (d). Normalized MP values 𝜌𝑛
2 are evaluated from CFT (squares) 

and from S2 imaging employing methods 1 (circle) and 2 (diamonds) [39] for 

individual guided modes. 

In regime II (Figure 3-15(b)), MP values evaluated with methods 1 and 2 differ. However, 

𝜌2(𝐿𝑃01) and 𝜌2(𝐿𝑃11) calculated with method 2 (diamonds) show a very good match with the 
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CFM evaluation (squares). In this regime, the strict approximation of a dominant mode does not 

apply and the values obtained using method 1are inaccurate.  

Reaching regime III (Figure 3-15(c)), 𝜌2(𝐿𝑃01) and 𝜌2(𝐿𝑃11) evaluated with method 2 

differ from CFT results as the HOM mixtures increase (in particular for measurement 12 and 13). 

In this regime, mode identification is difficult due to the complexity of the Fourier spectrum. 

Finally, regime IV (Figure 3-15(d)) is similar to regime II except that 𝐿𝑃11 carries most of 

the power. Evaluation results of 𝜌2(𝐿𝑃01) and 𝜌2(𝐿𝑃11) using method 2 are in agreement with 

CFM. In addition, S2 imaging evaluation of low HOM content (𝜌2(𝐿𝑃21)) provides an unmatched 

accuracy regardless of the method employed. 

3.4.4.3 Identification of the working range of S2 imaging 

Finally, the accuracy of S2 imaging mode evaluation has been quantified by considering 

𝜌2(𝐿𝑃11) values obtained for measurements 5 to 13. For these measurements, MP results from 

CFM can be considered as accurate (𝜌2(𝐿𝑃11) ≥ 0.04) and will be used as a reference. The relative 

difference between S2 imaging results employing methods 1 and 2 and CFM has been calculated 

using the relation 

1 −
𝜌2(𝐿𝑃11(𝑆

2))

𝜌2(𝐿𝑃11(𝐶𝐹𝑀))
. ( 43 ) 

Results are plotted as function of the HOM MPs evaluated from CFM (the reference) and 

represented in Figure 3-16 for both evaluation methods. Experimentally, the relative difference 

between method 1 and CFM was founds to be less than a few percent for 𝜌2(𝐿𝑃11) values below 

0.1. For HOMs carrying a higher amount of light (measurement 8 to 13), the relative difference of 

method 1 to CFM considerably increases indicating that the evaluation method of S2 imaging is 
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not accurate. In comparison, it is clear that, when evaluating 𝜌2(𝐿𝑃11) with method 2, the relative 

difference to CFT is less than a few percent up to 𝜌2(𝐿𝑃11) ≈ 0.3 which considerably increases the 

modal detection limit of S2 imaging. For larger mode mixing, S2 imaging evaluation fails due to 

the complexity of the Fourier analysis. 

 
Figure 3-16: Relative difference evaluated using Equation ( 43 ) between 𝜌𝑛

2 evaluated using 

methods 1 and 2, both compared to CFM values presented in Figure 3-14. Data points 

correspond to measurements 5 to 13 and show an increased S2 imaging accuracy 

when using method 2. 

3.5 Summary and outlook 

A novel experimental tool for mode analysis has been proposed combining, for the first 

time of our knowledge, two different and widely used mode analysis techniques. In addition to 

provide an advanced modal decomposition of optical fibers (with access to scalar and vector-

valued fields), the combined experiment offers the unique capability to simultaneously decompose 

one beam using CFM and S2 imaging. The direct comparison between 𝜌𝑛
2 values evaluated from 

CFM analysis and S2 imaging has led to experimentally confirm that S2 imaging modal evaluation 

accuracy is considerably improved when employing a generalized analytical numerical routine 
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(method 2 Appendix B [113]). To the best of our knowledge, this is the first demonstration that S2 

imaging can be used to accurately decompose beams where the FM carries as low as 70% of the 

guided light. A complete summary of the expertise of each mode analysis technique is presented 

in Table 3. The main differences between S2 imaging and CFM are highlighted as well as the 

strengths and current limitations determined from the combined experiment results. Some 

challenges currently remain when evaluating highly MM beams (measurement 12 and 13) with S2 

imaging due to the complexity of the Fourier spectrum analysis. In this regime, CFM analysis 

provides unmatched mode decomposition capabilities. 
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Table 3: Comparison between mode analysis techniques. 

 S2 imaging CFM 

Relying on a prior knowledge of internal fiber 

parameters 
No Yes 

Underlying mode analysis principle Spatially and spectrally resolved MMI 
Spatial correlation by means of a 

holographic filter 

Necessary spectral linewidth 
Broadband source (few tens of nm) [77]  

Narrow-line width tunable laser source [97] 
Narrow line-width source  (< 1 nm) 

Measurement and computation time Few minutes to few hours (*) 0.03 s(**) 

Real-time capability No Yes 

Detection and distinction between degenerated 

modes 
No Yes 

Reconstruction of guided modes amplitude 

and phase profiles 
Yes No 

Distinction between discrete and distributed 

mode scattering with unambiguous 

localization 

Yes No (FUT is treated as a black box) 

MPs (𝜌𝑛
2) evaluation Indirect (analytical method 1 or 2 [113]) Direct intensity measurement 

Upper HOM detection limit Up to 𝜌2≈ 0.3 using method 2 [113] 𝜌2≈ 0.98(**) 

Lower HOM detection limit 𝜌2≈ 0.006(***) 𝜌2≈ 0.02(**) 

Limitations 

- Complex mode identification when  

measuring MM beams 

- Tailored fiber length and source 

bandwidth 

Measurement accuracy depends on 

number of detected modes 

(*) considerably reduced when using a tunable laser source 
(**) with the employed camera and wavelength 
(***) in this particular FUT
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CHAPTER 4: IN-DEPTH CHARCACTERIZATION OF LIGHT PROPERTIES 

IN SPECIALTY FIBERS

This chapter introduces three different specialty Large-Mode Area (LMA) fibers, all made 

of high-purity Fused Silica glass but for which the inner design has been finely tuned to achieve 

single-mode operation. Using the S2 imaging mode analysis technique detailed in Chapter 3, the 

properties of light during propagation in a LMA Step-Index Fiber (SIF), a LMA Photonic Crystal 

Fiber (PCF) and a LMA Leakage Channel Fiber (LCF) were measured. In the following Sections 

4.1 and 4.2, results from of the in-depth characterization of these specialty fibers will be presented 

in details. In Section 4.1, the single-modedness of the beam delivered by the LCF design is studied 

across a broad wavelength range (1 𝜇m to 2 𝜇m). The results from a comparative study of the 

single-mode performances between different fiber designs at 2 𝜇m light wavelength are detailed 

in Section 4.2. This section is concluded with a discussion on the suitability of each fiber design 

to perform in a pre-specified field of application is concluding this chapter. The results detailed in 

this Section have been published in the literature [22]. 

4.1 Low-loss, broadband and single-mode propagation in  

leakage channel fiber (LCF) design 

LCF specialty designs belong to the category of micro-structured LMA fibers and have 

been introduced for the first time in 2005 by Wong et al. [37]. Compared to conventional LMA 

SIF, in which the light is confined in the core due to the TIR at the continuous core/cladding 
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interface, the “broken” core/cladding boundary of LCFs makes these waveguides leaky for all 

modes. Engineering the microscopic features of LCFs enables to control the properties of the 

guided light by creating large modal discrimination between the FM and HOMs resulting in low-

loss propagation of the FM whereas HOMs are leaky in the LCF cladding [114][115]. LCF are 

resonant waveguides due to their intrinsic design, in which conditions for inter-modal coupling 

can be achieved [116]. The all-solid structure of LCFs presents several advantages over 

comparable air-cladding PCF designs resulting in easy, reliable and mechanically stable tapering 

and splicing procedure without risk of environmental contamination.  

LMA LCF offering scaled core sizes have been designed towards power scalability 

applications of fiber lasers and have been successfully implemented in high-power fiber laser 

systems [117]. Compared to highly bend-sensitive LMA PCF rods and Large-Pitch Fiber (LPF) 

designs currently employed in the development of high power fiber laser systems [20], [21], [38], 

[118]–[120], LCFs offer an attractive alternative featuring enhanced flexibility and compactness. 

Also, in comparison to holey structures, requiring special handling and splicing equipment, LCF-

based systems have the potential to be monolithically integrated using standard cleaving and 

splicing equipment.  

The development of high power fiber laser sources has become a challenge with the 

apparition of modal instabilities [121], resulting in uncontrolled spatial beam distortions and 

unstable laser operation. Mode instabilities are a consequence of the formation of thermal gratings 

in the active core of the LMA fibers under high pumping levels [122], [123]. Several methods have 

been proposed in order to extend the mode instability threshold and mitigate their impact [124] 

such as extrinsic approach employing an acousto-optic deflector [124] and intrinsic methods 

involving a modification of the fiber design, in this case the use of a multi-core LMA PCF [125] 
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or with distributed mode filtering fibers [126]. In addition, a particular type of LCF designs called 

all-solid Photonic Band-Gap fibers (PBG) have been reported as one of the most promising 

alternative to enable further power scaling while maintaining stable and good-beam quality laser 

beams [88], [127]. However, to apply for these applications, LCF designs must deliver high purity 

single-mode beams. This property has been investigated in details and results are discussed in 

Section 4.1.2. 

4.1.1 Preliminary characterization of the LCF 

The LCF prototype presented here has been designed and fabricated by Nufern Inc. An 

image of the cross section of the LCF has been recorded with a microscope and is shown in Figure 

4-1(a). The micro-structured cladding layer contains Fluorine-doped rods (dark regions) which are 

periodically arranged in a solid Fused Silica matrix (light gray). The F-doped rods are made of a 

lower refractive index than the surrounding silica matrix. When designing LCF, several parameters 

can be modified including the diameter of the F-doped rods, the spacing between rods (defined as 

the fiber pitch Λ), the number of rings of F-dopded and the number of F-doped rocs missing on the 

fiber center which forms the core.   

 
Figure 4-1: Microscope images of: (a) The LCF cross section showing periodic arrangement of F-

doped rods and (b) a LCF taper made using standard fusion splicing equipment 

(GPX-3000 by Vytran Corp.) to reduce the LCF OD from 400 𝜇m to 160 𝜇m. 
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The LCF dimensions have been measured and values are summarized in Table 4. This prototype 

was made of a single cladding structure with outer diameter (OD) of 400 𝜇m and a core diameter 

of ~50 𝜇m offering a total available core area on the order of ~2000𝜇m2. Each F-doped rods is 

28 𝜇m in diameter separated by a 38 𝜇m pitch. 

Table 4: Measured dimensions of the LCF. The measurement error is ± 0.5 𝜇m 

Core diameter 49.1 𝝁m 

Cladding diameter 400 𝜇m 

F-doped rods diameter 27.8 𝜇m 

d/𝚲 0.74 

 

Furthermore, the refractive indices of the LCF have been measured using the profilometer 

described in Section 3.4.1. The fiber OD was reduced from 400 𝜇m to under 200 𝜇m, maximum 

size supported by the profilometer. A picture of the LCF taper, made using standard fusion splicing 

equipment (GPX-3000 by Vytran Corp.), is shown in Figure 4-1(b). It illustrates the advantage 

offered by solid fiber designs compared to holey fiber designs to be manipulated with standard 

equipment and integrated in all-fiber systems. Results of the 2D refractive index profile of the 

tapered LCF measured at 633 nm wavelength are shown in Figure 4-2(a) where each color indicate 

a different index value e.g. F-doped rods appear in blue. The 2D refractive index profile highlights 

structural features which are in accordance with the record LCF facet in Figure 4-1(a). The 1D 

refractive index profile across the fiber facet was measured with the profilometer using several 

light wavelength ranging from 600 nm up to 1 𝜇m. It is important to note that the accuracy of 1D 

index measurement decreases as the number of microstructures in the fiber increase. The 2D 

measurement and 1D measurement of the LCF indices at the same light wavelength of 633 nm 

show a good agreement which proves the accuracy of the 1D index measurements in this micro-

structured fiber design. The measured refractive indices of the fused silica matrix and of the F-
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doped robes in the LCF are plotted for several wavelength and results are indicated in Figure 4-2(b) 

using black and red markers respectively. The lines in Figure 4-2(b) represent the LCF dispersion 

interpolated from the index measurement following the procedure described in Section 3.4.1. 

 
Figure 4-2: (a) 2D measurement of the LCF refractive index profile at 625 nm light wavelength. 

Different colors stand for different index values. (b) Measured refractive index of the 

fused silica matrix and the F-doped rods, extracted from 1D measurements, at several 

wavelength (black and red markers respectively). The dispersion in each medium 

was interpolated and is plotted with a line. 

The LCF dimension and index values have been used in a mode solver (Fimmwave by 

PhotonDesign) to calculate the expected guided modes. Calculations were performed for light 

wavelength comprised between 𝜆 = 800 nm to 𝜆 = 2.4 m using the measured fiber dimensions 

and indices values. Results are presented in Figure 4-3 where the difference between the mode 

effective index and the cladding effective index, labeled Δn, is plotted as function of light 

wavelength. A positive value of Δn indicates a guided mode in the LCF core. Two modes 

propagating with the same value of Δn are degenerated. According to the results shown in Figure 

4-3, two non-degenerated guided modes are expected to be guided in the LCF, i.e. 𝐿𝑃01 and 𝐿𝑃11 

plotted in black and red respectively while the HOMs 𝐿𝑃21 and 𝐿𝑃02, are leaky in the LCF 

cladding. 
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Figure 4-3: Calculated difference between mode effective index and LCF cladding index for four 

first 𝐿𝑃 modes as function of wavelength (commercial software package from 

PhotonDesign). 

To complete the LCF characterization, the transmission of a supercontinuum white light source 

(400 < 𝜆 < 2.4 𝜇m), has been measured after propagating 10 meters in the fiber core. Results are 

presented in Figure 4-4(a) where the resulting attenuation was plotted across a broad wavelength 

range. An interesting results is that several light wavelengths are guided in the LCF with an 

attenuation of 1dB/m or less. This is the case for typical lasing wavelength 1.06 𝜇m, 1.55 𝜇m and 

2 𝜇m indicated in Figure 4-4(a) with black, red and green lines respectively. In addition, the near 

field of the beam emerging the LCF around 1 m has been recorded using a CCD and is shown in 

Figure 4-4(b). Even though numerical simulations (Figure 4-3) predict that 𝐿𝑃11 is guided in the 

LCF at this wavelength, the spatial beam uniformity measured in Figure 4-4(b) does not allow to 

predict any HOM content. As a result, in-depth characterization of this fiber design has been 

performed using S2 imaging in order to determine the accurate guided mode content in the LCF. 
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Figure 4-4: (a) Measured broadband attenuation in the LCF. (b) Measured near-field profile of the 

beam emerging the LCF at a wavelength of 1 𝜇m (represented on top of the LCF 

structure for visual aid). 

4.1.2 Measured guided transverse modes from 1 𝜇m to 2 𝜇m wavelength 

4.1.2.1 Results from S2 imaging analysis 

The mode content guided in the LCF has been measured using the S2 imaging technique. 

This choice was motivated by the ability to perform S2 imaging using broadband light source 

without restriction on the wavelength as long as it matched with the detection range of the OSA. 

For example, if CFM would be used to decompose the mode content, one correlation filter for each 

measured wavelength would have to be designed and fabricated resulting in a costly operation. In 

addition, the modes 𝐿𝑃01 and 𝐿𝑃11 guided in the LCF (Figure 4-3) are non-degenerated which is 

well suited to perform S2 imaging analysis. The same S2 imaging experiment presented in Section 

3.2.2 was used to investigate the LCF. Three broadband, fiber-coupled light sources emitting 

around 1.06 𝜇m, 1.55 𝜇m and 2 𝜇m wavelength respectively have been used to excite the modes 

in a 10 m long piece of the LCF resented in Section 4.1.1. The DF (SM980 with single-mode cut-

off at 𝜆 = 980 nm) and the LCF were fusion spliced using a standard Ericsson fusion splicer in 
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order to ensure a good and stable in-coupling alignment stability over the duration of the 

measurement. To limit the effect of external perturbations on the mode content, the fiber is coiled 

with a loose diameter (> 60 cm) and stands flat on the optical table. The Fourier spectra extracted 

from the S2 imaging analyses are plotted at the three selected wavelengths and results are shown 

in Figure 4-5(a). At each measured wavelength, a single DGD peak is measured resulting from the 

interference between two modes guided in the LCF core. The DGD values differ for different 

wavelength which is in agreement with the DGD definition in Equation ( 28 ). 

 
Figure 4-5: (a) Fourier spectra calculated from S2 imaging measurements of the LCF at light 

wavelength of 1.06 𝜇m, 1.55 𝜇m and 2 𝜇m in black, red and blue respectively. The 

HOM 𝐿𝑃11 was identified after reconstructing the intensity (b) and phase profile (c) 

of the mode interfering at the DGD values indicated with the grey lines. 

The intensity and phase distributions of the interfering mode have been reconstructed at 

the Fourier maxima (Figure 4-5(b) and (c) respectively) clearly indicating that 𝐿𝑃11 is guided in 

the LCF and interfere with 𝐿𝑃01 during propagation. 𝜌2(𝐿𝑃11) values were evaluated using the 

general analytical method described in Section 3.4.4.2 (corresponding to method 2 defined in 

Appendix B). Results are shown in Figure 4-5(a) indicating that 𝜌2(𝐿𝑃11) = 26% at the light 

wavelength 𝜆 = 1.55 𝜇m. On the other hand, 𝜌2(𝐿𝑃11) ≈ 10% for 𝜆 = 1.06 𝜇m and 2 𝜇m. As a 
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result, the numerical predictions presented in Section 4.1.1 were experimentally verified after 

decomposing two guided modes in the LCF design from 1𝜇m to 2 𝜇m.  

4.1.2.2 Coil-induced HOM suppression 

In this section, S2 imaging analyses were performed for various LCF coiling radii in order 

to determine if the HOM could be efficiently suppressed (by cladding mode coupling), leading to 

single-mode propagation. Results are displayed in Figure 4-6(a) where 𝜌2(𝐿𝑃11) is plotted as 

function of the LCF coiling radii. This study has been performed using 1.06 𝜇m light wavelength, 

1.55 𝜇m and 2 𝜇m corresponding to black, red and green markers respectively. The corresponding 

near-field profile of the beam emerging the LCF has been reconstructed and results are shown in 

Figure 4-6(b), (c) and (d) respectively for coiling radii > 30 cm. 

 
Figure 4-6: (a) Measured 𝜌2(𝐿𝑃11) in the LCF as function of coiling radius for the three 

wavelength investigated. Coiling conditions corresponding to resonant mode 

coupling (RMC) are indicated along with the corresponding intensity profile. The 

near-field intensity profiles emerging the fiber at each studied wavelength have been 

reconstructed under larger coiling condition (R=30 cm). 
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In comparison to the light propagating at 1.06 𝜇m and 2 𝜇m, measured with Gaussian-like 

intensity profile (confirmed by the MP values in Figure 4-5(a) on the order of 10%), the beam at 

1.55 𝜇m light wavelength was distorted (consistent with 𝜌2(𝐿𝑃11) = 26% calculated in Figure 

4-5(a)). As the coiling radius is reduced, the mode 𝐿𝑃11 was gradually suppressed. The values of 

the limit coiling radius to achieve efficient suppression of the HOM, labeled 𝑅𝑙𝑖𝑚 and defined by 

Equation ( 40 ), are summarized in Table 5. As expected, the value of 𝑅𝑙𝑖𝑚 depends on the light 

wavelength. Under specific coiling conditions, a sharp increase of 𝜌2(𝐿𝑃11) was measured. This 

phenomenon corresponds to resonant-mode coupling (RMC) between 𝐿𝑃01 and 𝐿𝑃11where the 

power transfers from 𝐿𝑃01 into 𝐿𝑃11, resulting in a dominant HOM. This effect has been previously 

observed in LCF designs [116]. The corresponding near-field profile reconstructed and show in 

inset of Figure 4-6(a) confirm the presence of a dominant HOM. 

Table 5:  Measured values of LCF radii to ensure coil-induced single-mode operation (𝑅𝑙𝑖𝑚) 

and resonant-mode coupling (𝑅𝑅𝑀𝐶) 

Wavelength (𝝁m) 𝑹𝒍𝒊𝒎 (cm) 𝑹𝑹𝑴𝑪 (cm) 

1.06 ~ 15 - 

1.55 ~ 10 ~ 20 

2 ~ 10 ~ 15 

4.1.2.3 Coil-induced losses in the FM 

Pure single-mode operation can be achieved in LCF under controlled coiling conditions. 

In this section, the coil-induced losses in 𝐿𝑃01 have been evaluated for different coiling conditions. 

To do so, 𝜌2(𝐿𝑃01) was calculated and bend-induced losses, labeled 𝛼𝐵𝑒𝑛𝑑, were calculated using 

𝛼𝐵𝑒𝑛𝑑 = 10 × 𝑙𝑜𝑔 (
𝜌2|𝑅𝑙𝑖𝑚

𝜌2|𝑅=30 𝑐𝑚
) ( 44 ) 
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where the value of 𝜌2(𝐿𝑃01) at 𝑅=30 cm is considered as the straight fiber reference. These values 

are summarized in Table 6 at 𝑅𝑙𝑖𝑚 ensuring single-mode beam delivery. Moreover, the overall 

losses 𝛼 suffered by 𝐿𝑃01 while propagating in 10 m of LCF were calculated by adding the fiber 

attenuation (labeled 𝛼𝐴𝑡𝑡) previously shown in Figure 4-4(a) with bend-induced losses following 

𝛼 = 𝛼𝐴𝑡𝑡 + 𝛼𝐵𝑒𝑛𝑑. ( 45 ) 

The overall loss values calculated under single-mode operation of the LCF, defined by 𝑅𝑙𝑖𝑚, are 

summarized in Table 6.  

Table 6:  Losses of 𝐿𝑃01 when propagating in the LCF including attenuation and bend-

induced losses which are provided at 𝑅𝑐, coiling condition determined from the 

mode analysis results in Figure 4-6(a) 

Wavelength 

(𝝁m) 

Measured 𝜶𝑨𝒕𝒕 
(dB/m) 

Measured 𝜶𝑩𝒆𝒏𝒅 

(dB/m) 

Measured 𝜶 (dB/m) in 

the FM 

1.06 1.07 0.24 1.31 

1.55 0.18 0.9 1.08 

2.00 1.67 0.06 1.73 

 

The overall loss experiences by 𝐿𝑃01 have been plotted as function of the coiling radii and are 

shown in Figure 4-7. Plain markers indicate the conditions for single-mode operation, i.e. for 

𝑅<𝑅𝑙𝑖𝑚,. In summary, coiling the LCF has a limited influence on the FM losses (variable 𝛼 in 

Table 6) while the HOM 𝐿𝑃11 is efficiently suppressed by cladding-mode. This results emphasizes 

the significant mode discrimination achieved in LCF structures as HOM can be efficiently 

suppressed while maintaining a low-loss guidance of the FM 
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Figure 4-7: Overall losses suffered by 𝐿𝑃01 after propagation in 10 m of coiled LCF for light at 

three different wavelengths. These values were calculated from the mode analysis 

experiments. Plain markers indicate conditions of single-mode propagation. 

4.1.3 LCF broadband performances summary 

Single-mode operation of the LCF was achieved for light wavelengths in the range of 1 𝜇m 

to 2 𝜇m under proper coiling conditions. Even though both simulations and experiments 

demonstrated that the core of this fiber supported two guided modes (𝐿𝑃01 and 𝐿𝑃11), the design-

induced large modal discrimination enabled to efficiently suppress 𝐿𝑃11 while maintaining 

reasonably low loss level in 𝐿𝑃11 with 𝛼 < 2 dB/m measured for the three wavelengths of interest. 

Considering laser and amplifier systems, which usually employ active fibers of a few meters long, 

as well as the high doping levels achieved in active fibers, the overall loses 𝛼 could be easily 

compensated by the high gain factors achieved during light amplification. 

In addition, these results are the first demonstration of the broadband single-modedness 

offered by LCF design [22]. Endlessy single-mode operation has already been measured in micro-

structured PCF [9]. This novel property of LCF designs could become a serious advantage during 
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large-scale manufacturing of laser systems where only one fiber design could be used to generate 

continuous single-mode laser emission between 1𝜇m and 2 𝜇m wavelengths. 

4.2 Comparative study of single-mode propagation between 

different large-mode area (LMA) fiber designs for 2 𝜇m applications 

The recent interest in light sources emitting in the 2 𝜇m wavelength range has been mainly 

motivated by the large number and wide range of applications which could benefit from using light 

at an eye-safe wavelength. Most popular applications include directed energy and long range 

atmospheric propagation, spectroscopy, LIDAR, medical surgery as well as pumping of mid-IR 

light sources [128]–[132]. To date, thulium(Tm)-doped optical fibers seems to be the preferred 

gain medium to generate high power and high efficiency laser light around 2 m [133]. 

During the development of 2 m fiber lasers emitting high power performances, special 

attention was maintain good beam qualities. To do so, several Tm-doped LMA fibers were 

designed for applications around 2 𝜇m light wavelength, such as Step-Index Fibers (SIF) [134], 

Photonic-Crystal Fibers (PCF) [135], [136], and large-pitch fibers [120]. However, it is common 

for extreme LMA fiber design to guide a small amount of weakly guided HOMs. Under high 

pumping levels, the HOM may significantly contribute to the laser emission, resulting in unstable 

laser performances and distorted beam profiles. As a result, performing a high-accuracy mode 

analysis in LMA specialty fiber designs would help to guarantee stable laser performance, power 

scalability and diffraction-limited beam quality. 

In this section, the performances of three different LMA fibers designed for 2 m 

applications are compared. After presenting the selected fibers in details in Section 4.2.1, the 
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expected guided mode content at 2 𝜇m has been calculated in order to predict the fiber 

performances. Section 4.2.2 presents the results for the guided mode content measured at 2 𝜇m 

with the S2 imaging technique for each of the selected LMA fibers designs. The influence of the 

coupling conditions and the coiling diameters on the fibers were measured and compared. Finally, 

in Section 4.2.3, the respective ability of each LMA fiber design to deliver ultra-pure single-mode 

beams is discussed, including the measured mode-field area. A conclusion on the measurements 

is given in Section 4.2.4. The results detailed in the rest of this section have been published in the 

literature [137]–[139]. 

4.2.1 Selected LMA fiber designs 

The selected LMA fiber are all passive designs primarily designed for power scaling applications 

of laser and amplifier systems emitting diffraction limited beam quality at wavelengths around 2 

𝜇m. A microscope image of each LMA fiber sample is shown in Figure 4-8. The first sample 

(Figure 4-8(a)) is a polarization maintaining SIF design with 25 m diameter core, 400 m 

diameter cladding, and ~0.08 numerical aperture (NA). This fiber has been fabricated by Nufern 

Inc. and similar designs using Tm-doped core have been successfully implemented in 2 m high 

power monolithic fiber laser [8,17]. The LMA SIF design is directly compared to a PM PCF made 

by NKT Photonics A/S with a 50 m diameter core, ~0.06 NA surrounded by a periodic array of 

air-holes and a pump cladding of 250 m diameter. Several studies have been reported using a 

Tm-doped version of this LMA PCF design in cw and Q-switched laser cavities [9,18]. The third 

design is the LCF previously presented in Section 4.1. Even though the selected LCF has not been 
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specifically designed for 2 m applications, promising performances at this wavelength have been 

recently reported [20]. A summary of the manufacturer-specifications can be found in Table 7.  

Table 7: Selected LMA fiber design specifications 

 

To calculate the guided modes, the refractive indices and dispersion curves for each LMA 

fiber have been extracted at 2 𝜇m after being measured with a profilometer (introduced in details 

in Section 3.4.1). Fiber dimensions and indices were used in a FEM mode solver to calculate the 

guided modes. From the mode list, the Mode-Field Diameters (MFD) of the FM 𝐿𝑃01 have been 

calculated and results are also given in Table 7. 

 
Figure 4-8: Microscope images of the facets of the LMA SIF (a) PCF (b) and LCF (c) with the 

corresponding emerging beam profiles imaged measured at 2 𝜇m on a CCD. (d) 

Results from calculation at 2 𝜇m of the difference between the guided modes 

effective index and the cladding index for the first LP modes in black, red and blue 

respectively. Empty markers indicate cladding modes. 

More results of the mode solver calculations are plotted in Figure 4-8(d), showing the 

effective n, the effective difference between modes and cladding indices for the first LP modes 

 SI LMA PCF LMA LCF LMA 

Core/cladding diameter (m) 25/400 50/250/550 50/440 

Core NA 0.08 0.06 0.07 

Fiber length (m) 3.1 2.3 9.0 

MFD (calculated at 2 m) 24 35 42 
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calculated with the mode solver. A positive n value indicates a core mode whereas a negative n 

corresponds to a cladding mode. As a result, five modes (𝐿𝑃01, 𝐿𝑃11, 𝐿𝑃21, 𝐿𝑃02 and 𝐿𝑃31) can be 

supported in the core of the SIF while only 𝐿𝑃01 and 𝐿𝑃11 are expected to be guided in the core of 

the PCF and LCF. 

4.2.2 Mode analysis performed at 2 m 

Light emitted by a 2 𝜇m ASE source fiber coupled in a SMF for delivery was used to excite 

the guided modes in these LMA fibers. After optimizing the SMF-to-LMA free space coupling 

alignment, the LMA fibers were loosely coiled on a plane surface to prevent any external 

perturbation of the guided light. After propagating through a given length of fiber (provided in 

Table 7), the emerging beam profile is imaged onto a CCD. The recorded profiles are shown in 

Figure 4-8(a), (b) and (c) for the SIF, PCF and LCF designs, respectively. Each profile shows a 

smooth and uniform Gaussian-like spatial distribution. 

To investigate the fields emerging from the LMA fibers (Figure 4-8(a), (b) and (c)) in 

greater detail, S2 imaging mode analysis has been performed to decompose the total fields into 

individual transverse modes [21]. The experimental setup is directly inspired from the original S2 

imaging experiment detailed in Section 3.2. The measurement was performed using light from a 

broadband Tm-doped fiber-coupled ASE source emitting between 1.92 and 1.96 𝜇m. The DF was 

mounted on a 3-axis stage and is butt-coupled to the LMA fiber under investigation. Using the z-

axis of the stage, the mode-field matching between the delivery SMF and the LMA fiber was 

adjusted to minimize coupling losses. Furthermore, the x and y-axis of the stage allow a precise 

control of the overlap between the SMF beam and the core of the LMA fiber.  
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4.2.2.1 Effect of in-coupling alignment on modal content 

Due to the significant dimension mismatch between LMA fibers and conventional fiber 

components, most LMA-based fiber lasers are assembled in cavity architectures using free-space 

optics. In such cases, imaging schemes are designed using specific lens combinations to optimize 

the coupling efficiency in the core of the LMA fibers. In addition, it is well known from the general 

waveguide theory that the mode combination excited in an optical fiber depends on the overlap 

between the incident field and the allowed guided modes. For example, for a centered alignment 

between the core of the SMF and the LMA, the power will be only coupled in circularly symmetric 

modes labeled 𝐿𝑃0,𝑛.  

In order to evaluate the effect of light coupling on mode excitation and propagation, the 

mode content in the three LMA fibers was measured for two coupling conditions while 

maintaining the fibers unperturbed (coil diameter > 60 cm). The measurement was initiated by 

finding the central alignment position. To do so, the in-coupling SMF position is adjusted with 

respect to the LMA fiber core by adjusting the x and y-axis of the stage while observing the near-

field on the CCD. Once the imaged beam exhibited a Gaussian-like profile, the lateral stage axis 

was translated by 2 𝜇m to create an intentional in-coupling offset. Results are presented in Figure 

4-9 for the LMA SIF. S2 imaging was performed and the corresponding Fourier spectra were 

plotted as function of the DGD. Results are shown in Figure 4-9(a) for centered excitation and 2 

𝜇m offset alignment (black and green curve respectively). The measured near-field profiles under 

each coupling alignment are shown in inset (top and bottom of Figure 4-9(a) respectively). In the 

Fourier spectrum, the DGD values corresponding to HOMs interfering with the FM are indicated 

using arrows. For centered in-coupling alignment, 𝜌2(𝐿𝑃01) = 73% while 𝜌2(𝐿𝑃02) = 20% 
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(corresponding MPI = -7 dB) and some residual amount of power was coupled in 𝐿𝑃11. In 

comparison, four HOMs could be resolved after creating a 2 𝜇m offset of the in-coupling 

alignment. 

 
Figure 4-9: (a) S2 imaging Fourier spectra of the LMA SIF measured at 2 𝜇m for two different in-

coupling alignments: centered (black) and 2 𝜇m lateral offset (green). The intensity 

of each corresponding beam emerging the SIF, measured on a CCD, are shown in 

inset. The measured guided HOM content is indicated with arrows. From (b) to (e), 

the modal amplitude 𝐸0,𝑛 and from (f) to (i) phase 𝜑n have been reconstructed for 

the measured 𝐿𝑃11, 𝐿𝑃21, 𝐿𝑃02 and 𝐿𝑃31 guided HOMs. The MPI values are plotted 

in (j) for centered and offset excitation in black and green respectively. 

From the S2 imaging analysis, the guided mode amplitude (𝐸0,𝑛) and phase (𝜑𝑛) profiles 

have been reconstructed and results are presented in Figure 4-9(b-e) and (f-i), respectively. The 

HOMs 𝐿𝑃11, 𝐿𝑃21, 𝐿𝑃02 and 𝐿𝑃31 were identified indicating a total of five modes, including the 

FM, propagating in the LMA SIF. These results show a good agreement with the mode solver 

results shown in Figure 4-8(d). The MP distribution has been calculated using the evaluation 

method 2 detailed in Appendix B. Here, the Multi-Path Interference (MPI) values were plotted for 

each guided mode in Figure 4-9(j) according to the definition 𝑀𝑃𝐼 = 10 × log (𝜌𝑛
2). Results for 
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the center (black) and off-center (green) alignments are provided. These measurements confirm 

that a small in-coupling offset alignment in the LMA fiber directly influences the combination of 

modes excited and propagating. As a result, lasing performances in terms of stability, efficiency 

and beam profile can be directly impacted. 

This in-coupling alignment investigation was repeated with the LMA PCF and LCF. From 

the mode analysis results, only the HOM 𝐿𝑃11 could be measured with S2 imaging which is again 

in agreement with the mode solver predictions. The measured MPI values are summarized in Table 

8. 

Table 8: MPI values (in dB) of 𝐿𝑃11 content measured by S2 imaging analyses 

Lateral offset PCF LMA LCF LMA 

0 m -18.4 -13.2 

2 m -16.1 -11.7 

 

As for the SIF, even at center excitation, considerable amount of power was carried by 𝐿𝑃11 with 

1.4% in the PCF (-18.4 dB) and 4.7% in the LCF (-13.2 dB), which can be attributed to 

imperfections in the launching conditions and finite mode coupling during propagation. In the off-

center excitation, the overlap between the incident beam and the HOM increases resulting in a 

small increase of the MPI value of 𝐿𝑃11. 

4.2.2.2 Coiling-induced HOM suppression 

In order to suppress the residual HOM content, fiber coiling was used to coupled HOMs to 

leaky cladding modes [51], [52]. Here, the guided mode contents have been measured while 

changing the coiling diameter under fixed coupling alignment fixed to the center position. The 

Fourier spectra after S2 imaging analysis of the LMA SIF, PCF, and LCF are presented in Figure 
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4-10(a), (b), and (c), respectively. In Figure 4-10(a), after coiling the LMA SIF down to 10 cm, 

the 𝐿𝑃02mode was strongly attenuated while 𝐿𝑃11 was still guided. This can be explained by an 

energy transferred from 𝐿𝑃02 to cladding modes while a small amount of power was still coupled 

to 𝐿𝑃11 during propagation. On the other hand, it was found that the PCF design could not be 

coiled with diameters smaller than 40 cm without inducing significant propagation losses resulting 

in signal-to-noise ratio too low to perform relevant S2 imaging analyses. From the Fourier spectra 

in Figure 4-10(b), the initially guided HOM 𝐿𝑃11 experiences losses as the fiber is coiled tighter.  

 
Figure 4-10: S2 imaging Fourier spectra of the LMA SIF (A), PCF (b), and LMA LCF (c) for 

various coiling diameters. The guided HOMs are indicated with an arrow and the 

corresponding reconstructed modal amplitude is shown in the respective inset. 

When the LMA PCF was coiled tighter, some amount of 𝐿𝑃11 was suppressed. However, a small 

amount of HOM remains indicated by the profile reconstructed and shown in Figure 4-10(b). 

Finally, the effect of coiling the LCF on the HOM 𝐿𝑃11 has been measured and results are 

presented in Figure 4-10(c). This fiber could be coiled down to 15 cm diameter without inducing 

major bend-induced losses indicating a good light confinement in the core. From the Fourier 
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analysis, the initially guided 𝐿𝑃11 mode could be very efficiently suppressed below 20 cm diameter 

coil. 

Results from these mode analysis measurements were summarized and the MPI values of each 

guided mode in each fiber design are plotted as function of fiber coil in Figure 4-11: SIF in black, 

PCF in red and LCF in blue. Unfilled symbols are used for MPI values of the 𝐿𝑃11 modes and 

solid symbols denote 𝐿𝑃02. Results show that the MPI of the single HOM guided in LMA PCF 

and LCF designs has been reduced by  5 and 18 dB after coiling the fiber around 40 cm and 15 cm 

diameter, respectively. As a result, values of 𝜌2(𝐿𝑃11) as low as 0.5 % and 0.07 %, respectively 

could be measured. In the SIF however, while 𝐿𝑃02 is efficiently suppressed (MPI reduced by ~ 

20 dB), coiling-induced mode coupling and power transfer occurs resulting in a slight increase of 

the power carried by 𝐿𝑃11. 

 
Figure 4-11: Measured MPI in the SIF (black), PCF (red) and LCF (blue) designs for various 

coiling diameters. For MPI of𝐿𝑃111, open symbols are used while filled symbols are 

data for the mode 𝐿𝑃02 (only measured in the SIF). Lines are shown for guidance of 

the eye. 
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4.2.3 Comparison of the single-mode performances between LMA fiber designs 

4.2.3.1 Single-mode purity 

The single-mode purity can be defined as the fraction of power that is carried by the FM 

during light propagation. Using the measured MPI and MP values, the single-mode purity can be 

calculated by subtracting the sum of the HOM 𝜌𝑛
2 from the total value of 1. Results are plotted in 

Figure 4-12 as function of coil diameter for the LMA SIF, PCF and LCF in black, red and blue 

respectively. From the single-mode purity results, the critical coiling diameter to ensure single-

mode propagation, labeled 𝐷𝑆𝑀 can be determined. From the S2 imaging mode analyses we 

demonstrate that ~100% single-mode purity can be achieved in the PCF and LCF designs at 𝐷𝑆𝑀 

= 40 cm and 20 cm, respectively. These locations are indicated by filled symbols in Figure 4-12. 

The corresponding overall bend-induced losses, arising from light being coupled in the cladding, 

has been measured after recording the total transmitted power (in the LMA fiber cores) before 

coiling (D > 60 cm) and at 𝐷𝑆𝑀, and are indicated in Figure 4-12. Light propagating in the PCF 

experiences higher bend-induced losses while reaching the single-mode regime compared to the 

LCF design. Furthermore, it was possible to reach an ultra-pure single-mode regime in the LCF 

where more than 99.9 % of the light was measured in the FM 𝐿𝑃01 for 𝐷𝑆𝑀 = 15 cm with limited 

bend-induced losses. As a result, both designs are able to deliver pure single-mode 2 𝜇m light with 

strong potential for high performances fiber laser applications. In comparison, only 90% single-

mode purity could be achieved in the SIF design indicating that, even after coiling the fiber around 

a tight loop of 10 cm in diameter, a residual amount of power was still carried, mainly by 𝐿𝑃11. As 

a result, pure single-mode propagation could not be reached. 
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Figure 4-12: Single mode purity of the 2 𝜇m beam emerging from the SIF (black), PCF (red), and 

LCF (blue) as function of coiling diameter. Single-mode regimes are indicated by 

plain markers. The values indicate the overall bend-induced losses measured at 

specific coil diameters. 

4.2.3.2 Mode effective area 

In addition to bend-induced losses, tight coiling of LMA fibers also influences the profiles 

of the emerging beam and the mode-field area (MFA) of the FM [52][115]. To measure and 

compare the MFA between the LMA fiber designs, our starting point was to image the near-field 

of the total beam emerging the LMA PCF and LCF on the CCD at the single-mode regime 

previously determined (smallest coiling diameter for the SIF). These profiles are shown in Figure 

4-13(a), (b) and (c), respectively. Transverse profiles have been extracted from the measured 2D 

profiles after D > 60 cm (representing the case of an unperturbed and straight fiber) and at 𝐷𝑆𝑀. 

After applying a Gaussian fitting function, the value of MFD, defined at 1 𝑒2⁄  from the maximum, 

has been extracted. As a result, the mode-field area (MFA) was calculated and the results are 

plotted in Fig. 6(d) for the SIF (black), PCF (red) and LCF (blue) designs. Filled symbols denote 

pure single-mode light propagation at 𝐷𝑆𝑀. In these cases (40 cm for the PCF and 15 cm for the 
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LCF), the coefficient of determination of the Gaussian fit, labelled R2, is shown in Figure 4-13(d) 

indicating a very good fitting quality.  The MFA of the beam emerging both LMA PCF and LCF 

designs experience a decrease as the single-mode regime is reached. This trend confirm the 

suppression of residual HOM content. 

 For comparison, the MFAs of the three LMA fibers have been calculated from the 

theoretical MFD values given in Table 7. These MFAs are plotted in Figure 4-13 as three solid 

lines with respective colors. For the PCF and LCF, measured MFA values show a very good 

agreement with numerical predictions once single-mode propagation has been achieved. It can be 

noted that the corresponding beam profiles measured and shown in Figure 4-13(a) and (b) show a 

good uniformity. In the SIF design however, as the coiling diameter decreases, significant beam 

distortions have been observed which is related to the increased of 𝐿𝑃11 MPI. As a result, the MFA 

value at 10 cm coil was determined by artificially fitting the distorted beam to a Gaussian 

distribution. Thus, this particular measurement value is not accurate as indicated with a large error 

bar. It should be also noted that, for this particular SIF, there might be a bending regime, perhaps 

in-between 10 cm and 60 cm, where a purer single-mode beam could be achieved due to reduced 

𝐿𝑃01-to-𝐿𝑃11 coupling at specific bending diameters. 
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Figure 4-13:Measured intensity profiles emerging LMA SIF (a), PCF (b) and LCF (c). (d) 

Measured mode-field area for different coiling diameters in black, red and blue, 

respectively. Filled symbols indicate single-mode beams. For comparison, MFAs (at 

2 m, without bending) have been calculated for each fiber. Values are indicated in 

(d) below the corresponding colored lines. 

4.2.4 Compared performances summary between LMA SIF, PCF and LCF 

In summary, S2 imaging was performed using a broadband light source emitting at 2 𝜇m 

to characterize and compare the performances of three LMA fibers in terms of single-mode 

delivery and available MFA. First, it was demonstrated that light guided and propagating in 

unperturbed LMA fiber designs is, slightly multi-mode in the case of the PCF and LCF (with a 

residual amount of power carried by the first HOM 𝐿𝑃11), or clearly multi-mode in the SIF. 

Efficient HOM suppression in the PCF and LCF designs was measured under proper coiing 

conditions.  

From the three samples investigated, it could be concluded that PCF and LCF designs 

appear to be the most promising candidate to ensure stable, single-mode, high efficiency and high 

quality 2 𝜇m laser emission. These LMA designs outperform the SIF, delivering single-mode beam 

purity higher than 98% after coiling PCF and LCF with diameters of 40 cm and 20 cm, 
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respectively, where the maximum single-mode purity achieved in the SIF was not exceeding 90% 

under coiling diameter as small as 10 cm due to residual inter-modal coupling. In addition, it is 

worth noting the good performances of the LCF design, originally not designed to perform in this 

wavelength range. For coiling diameters around 15 cm, ultra-pure single mode regime has been 

demonstrated corresponding to more than 99.9% of the light carried by the FM with an available 

mode-field area of ~ 1600 𝜇m2. The later results make this design a promising candidate for further 

power scaling applications of fiber lasers. 

It is important to note that other LMA fiber designs, different from the ones used in this 

study, have also been demonstrated for single-mode 2 𝜇m laser emission such as large-pitch fibers 

with MFD ~60 m [120]. Recently, novel Tm-doped PCF designs have been numerically 

demonstrated to deliver robust single-mode operation with ~80 m MFD [140].  

These recent studies illustrate the high interest of the scientific community in compact and 

high performances 2 𝜇m sources. The results presented in this study have demonstrated the 

significant influence of the design parameters on the performances of the delivered beam. It 

emphasizes the need for high-accuracy fiber fabrication procedures and in-depth diagnostic 

techniques able to accurately decompose the light. 
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CHAPTER 5: MONOLITHIC INTEGRATION OF SPECIALTY FIBERS 

IN ALL-FIBER LASER SYSTEMS 

Advances in the research field of optical fibers can be sorted in two distinct trends. On one 

hand, the demonstration of a wide variety of novel specialty fiber designs, tailored to deliver high-

optical performances, have significantly contributed to improve existing optical systems as well 

as to discover new applications (e.g. fiber lasers, supercontinuum generation, mode-division 

multiplexing, etc). This trend were highlighted in Chapters 3 and Chapter 4 of this dissertation. On 

the other hand, taking advantage of the success of fiber-based optical systems, a large variety of 

fiber-based optical components were demonstrated in the past two decades. Fiber-based devices 

have been generally fabricated using SIF designs such as directional coupler [141], polarization 

sensitive coupler and splitters [142], Faraday isolator and circulator [143], multi-channels pump 

combiners [144] and fiber Bragg gratings (FBG) [145]. They are robust, compact and cost-

effective, offering a wide range of possibilities to transfer free-space optical elements into efficient, 

all-fiber integrated systems. 

This Chapter of the dissertation is centered on the monolithic integration of specialty fibers 

into all-fiber systems. In practice, SIFs (used in conventional fiber devices) and novel specialty 

fiber designs are poorly compatible due to their different sizes and designs. As a result, their 

monolithic integration raises several challenges which are listed in Section 5.1. In Section 5.2, a 

novel all-fiber Mode-Field Adapter (MFA) device is demonstrated to efficiently couple the light 

between two fibers with different core sizes followed by Section 5.3 presenting the first 
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demonstration of efficient light transmission through a monolithic fiber chain made with a SMF 

and a LMA PCF is achieved using all-fiber MFA devices. The MFA concept is extended to 

assemble the first monolithic fiber laser combining a conventional FBG devices in SMF and an 

active LMA PCFT. Results are detailed in Section 5.4 and summarized in Section 5.5. 

5.1 Motivation and challenges 

All fiber architectures offer unique advantages compared to free-space based optical 

systems. However, their practical realization is often challenging due to the differences in fiber 

material, fiber structures and fiber sizes. 

5.1.1 Monolithic all-fiber systems 

Fiber-based optical systems outperform free-space architectures in terms of compactness 

(fibers are in essence flexible and can be bent), robustness (due to the reliability of fusion splicing 

techniques), stability (high purity Fused Silica glass have a low thermal expansion coefficient 

which makes them mechanically stable in addition of being chemically stable up to ~1000 °C) and 

efficiency (low-attenuation of light wavelengths ranging from the visible to the near-IR). In 

addition, a wide variety of cost-effective fiber-based devices are commercially available offering 

several alternatives to design all-fiber systems. 

However, the dimensions and design discrepancy between conventional fiber components 

using SIFs and specialty fibers limits their monolithic integration. As a result, even though tailored 

specialty fiber designs enable high optical performances, their implementation has been restricted, 

in most cases, to free-space architectures which are likely to deliver unstable performances due to 
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difficult and time-consuming optical alignments. To address this limitation, a few studies have 

been published in the literature to demonstrate specialty-fiber-based optical components such as 

FBGs [146][147], PCF couplers [148] and wavelength independent mode converters [149]. 

However, specialty fiber-based devices cannot be easily manufactured at large scales and are only 

applicable to optical systems using the same specific fiber design. 

5.1.2 Challenges related to efficient fiber-to-fiber light transmission 

When assembling fibers made of different material, designs and (or) dimensions, light 

transmission suffers from losses at the fibers interface related to parasitic reflection (e.g. Fresnel 

reflection), misalignment or mode-field mismatch. Losses related to Fresnel reflections can be 

mitigated using an appropriate index matching oil. The relative fiber misalignment can be 

minimized by performing active fiber alignment during fusion splicing. In comparison, mode-field 

mismatch depends on intrinsic properties of the optical fibers. The fraction of transmitted light 

after propagation through a junction between mode-mismatched single-mode fibers can be 

estimated using the relation demonstrated by Marcuse [49]: 

𝑇 =
4𝜔1

2𝜔2
2

(𝜔1
2 + 𝜔2

2)2
 ( 46 ) 

where  𝜔1 and 𝜔2 are the mode-field radii of the fundamental mode.  

The easiest and most commonly implemented method to reduce coupling losses between 

mode-field mismatched optical fibers is to use free-space imaging schemes made of lenses 

associations with appropriate magnification factor. However, the introduction of free-space optical 

elements increases the overall footprint of the optical system and introduces a higher degree of 
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complexity in the optical alignment, resulting in lower coupling efficiencies, and strongly 

influencing the laser output stability, performances and handling. 

A concrete example in which mode-field matching is crucial is in the development of 

monolithic fiber lasers. In the last decade, increased performances of fiber lasers in terms of power 

and energy scaling have been reported [150], [151], first employing LMA SIF [152] and later using 

LMA PCF [153]. The monolithic integration of fiber lasers present several advantages over 

systems based on free space elements: compactness, user-friendly and stability of laser emission 

is therefore easier to achieve. To date, several LMA SIF-based high-power laser systems 

presenting monolithic architectures have been demonstrated [154], [155]. However, LMA PCF-

based laser and amplifier systems typically employ several free space sections [156]–[158]. 

A typical example is the monolithic integration of LMA PCFs which is attractive and yet 

challenging due to the poor compatibility with SMF-based components in terms of design and 

dimensions. The complex nature of the inner structure of PCFs requires highly controlled splicing 

procedures to achieve low-loss SMF-PCF splices. Often, detrimental effects such as air-holes 

collapsing, stress formation at the splice and misalignment occur and need to be mitigated. In the 

case where the SMF and the PCF present similar MFDs, successful splices have been realized 

using controlled fusion splicing techniques [159],[160]–[162] and CO2 lasers [163]. Efficient light 

transmission with splice losses between ~ 0.5 up to ~ 2 dB/splice has been measured. On the other 

hand, PCF core dimensions, in particular LMA designs, differ from typical SMF. PCF-to-SMF 

coupling has been demonstrated using mode-field matching techniques involving tapering [164], 

[165] and pressure-assisted splicing [166]. Furthermore, a few mode-field matching techniques 

have been reported between large PCF-to-SMF. One of them involved a GRIN fiber lens 

surrounded by two coreless fiber segments to reproduce the typical scheme of free-space imaging 
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[167]. However, this approach is limited to passive PCFs with a maximum PCF-to-SMF mode-

field- mismatch on the order of four. Furthermore, thermal expansion of cores is a method 

commonly employed in industry to efficiently couple pump light from multi-mode SIF into double 

cladding LMA PCF-based high power fiber amplifiers [168]. The latter method requires rather 

bulky and expensive equipment resulting in complex realization. The permanent changes induced 

to the inner structure and size of the PCF which might affect the propagating light. As a result, the 

output performances of the system may be substantially modified. 

5.2 All-fiber mode-field adapters (MFA): concept and introduction 

In this section, a novel all-fiber approach to achieve mode-matching and mitigate coupling 

losses is presented in details. 

5.2.1 MFA using graded-index multi-mode fibers 

The novel mode-field matching approach demonstrated in this section uses the concept of Multi-

Mode Interference (MMI) previously described in Section 2.3 of this dissertation. MMI occurs in 

MMFs and the two most common designs are the Step-Index Multi-Mode Fibers (SIMF) and 

Graded-Index Multi-Mode fibers (GIMF). In these fibers, both dimensions and numerical aperture 

were chosen to guide multiple transverse modes as previously defined in Section 2.2.2. The typical 

index profiles of a SIMF and a GIMF made with the same core radius 𝑅 are schematically 

represented in Figure 5-1(a) and (b) respectively. The index profile of SIMFs is defined by 

Equations ( 1 ) and ( 2 ) with 𝑛1 and 𝑛2, the refractive index of the core and cladding layers 

respectively. On the other hand, the parabolic index profile of GIMFs is defined by [32] 
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n(r) = n0√1 − 2Δ (
r

R
)
2

 ( 47 ) 

 with 𝑛0 the index at the center of the core,  the fractional refractive index difference and 𝛼 ≈ 2 

in the fiber core characterizing the near-parabolic index profile (𝛼 ≈ 1 in the cladding).  

 
Figure 5-1: Schematic representation of the refractive index profile of (a) a Step-Index Multi-mode 

Fiber (SIMF) and (b) a Graded-Index Multi-mode Fiber (GIMF) with identical core 

radius labeled 𝑅. 

The concept of mode-field adaption using MMF is detailed using the example of two 

commercially available SIMF and a GIMF with 𝑅 = 25 𝜇m. After measuring the refractive index 

distribution in both fibers (procedure detailed in Section3.4.1), index values at 𝜆 = 1550 nm and 

fiber dimensions were used in a mode solver (Fimmwave from PhotonDesign) to numerically 

determine the propagation constant 𝛽𝑛 of the guided modes. Assuming that the light coupled in 

the MMFs is aligned with the center of the core, only the radially symmetric modes 𝐿𝑃0,𝑚 are 

excited due to the input mode overlap (detailed explanation can be found in Section 2.4.1). Results 

are plotted for the first 𝐿𝑃0,𝑚 in Figure 5-2 with unfilled markers and full markers in the case of 

the SIMF and the GIMF respectively. The results from the numerical mode solver indicate that the 

modes guided in SIMF and the GIMF follow different trends. In the SIMF, guided modes are 

propagating with decreasing propagation constants as the mode-order increases. In GIMF, a 

similar trend is obtained from the calculations, however, the decrease is linear (indicated by a 
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dashed line in Figure 5-2). As a result, the relative propagation constant difference Δ𝛽 (with 𝛽 =

𝑘0𝑛𝑒𝑓𝑓 according to Equation ( 9 )) between the guided 𝐿𝑃0,𝑚 modes, i.e. their relative effective 

index difference Δ𝑛𝑒𝑓𝑓, is constant. In terms of MMI, defined by Equation ( 34 ), this translates 

into a periodic oscillation during light propagation in the GIMF whereas the MMI in SIMF is the 

result of the superposition between several oscillatory functions with random periodicities. 

 
Figure 5-2: Calculated propagation constant 𝛽𝑛 of the first guided Bessel modes 𝐿𝑃0,𝑚 in the SIMF 

(unfilled markers) and in the GIMF (full markers) using a mode solver. The MMF 

are commercially available with a core radius 𝑅 = 25 𝜇m. Their refractive index were 

measured at 𝜆 = 1550 nm and the values were used in the mode solver. 

To illustrate this particular phenomenon, results of light propagation in the SIMF and the 

GIMF, calculated using a commercial software package called Fimmprop (by PhotoDesign), are 

presented in Figure 5-3(a) to (d) respectively. In both cases, the input fiber was assumed to be 

single-mode at the calculation wavelength 𝜆 = 1550 nm. Results of the calculated light intensity 

propagating in the core of a 10 cm long segment of SIMF and along a 1.2 mm long segment of 

GIMF are show in Figure 5-3(a) and (c) respectively. As expected from the results in Figure 5-2, 

the total light (i.e, the linear superposition of all the guided modes) propagating in the SIMF 

exhibits a chaotic behavior due to the complex MMI. In comparison, the intensity of light 
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propagating in the GIMF is periodic due to the constant Δ𝑛𝑒𝑓𝑓 between the guided modes which 

results in a periodic MMI pattern. For completion, the normalized transmission has been calculated 

using a second segment of SMF at the MMF outputs. Results are plotted as function of the MMF 

length and show Figure 5-3(b) and (d) corresponding to the SIMF and the GIMF respectively. The 

Self-Reproduction Length (SRL), corresponding to the propagation distance 𝑧  after which the 

initial phase relation between the guided modes is retrieved (previously defined in Section 2.3 with 

Equation ( 36 )) was calculated. Due to the high degree of randomness of the MMI occurring in 

the SIMF, 𝑆𝑅𝐿 > 10 cm compared to 𝑆𝑅𝐿 = 0.5 mm in the GIMF. As a result, results in Figure 

5-3(c) and (d) indicate that the length of the GIMF segment 𝑧 can be accurately chosen to achieve 

self-imaging (𝑧 = 500 𝜇m in the present case). Most interestingly, controlled length of GIMF can 

be used to act like a beam expander and deliver larger beams (for example at 𝑧 = 250 𝜇m). 

 
Figure 5-3: Calculated light propagation in a 50 𝜇m core diameter (a) SIMF and (c) GIMF. The 

in-coupling fiber is single-mode at the calculation wavelength 𝜆 = 1550 nm. The 

normalized transmission has been calculated as function of the fiber length when 

collecting with a SMF after the SIMF (b) and the GIMF (d). The red line indicates 

the Self-Reproduction Length (SRL) (defined in Section 2.3). 
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5.2.2 MFA between mismatched step-index fibers 

The concept of using selected lengths of GIMFs to control the beam expansion has been 

successfully implemented in analytical and experimental studies to mitigate losses at the coupling 

between two mode-mismatched single-mode Step-Index Fibers (SIF) [48], [169]. In the following, 

important results regarding mode-field matching achievements, previously published in the 

literature, are highlighted as an introduction to the upcoming Sections 5.3 and 5.4. The system 

presented in Figure 5-4 has been demonstrated by Hofmann et al.at the University of Central 

Florida [169]. Light transmission at the wavelength 𝜆 = 1550 nm was studied through a fiber chain 

made of two single-mode SIFs presenting an initial mode-field area mismatch of a factor 4. A 

Single-Mode Fiber (SMF) with core diameter of 10 𝜇m and a Large-Mode Area (LMA) fiber with 

20 𝜇m core in diameter are illustrated in Figure 5-4(a). According to Equation ( 46 ), only 60% of 

the light is transmitted. 

 
Figure 5-4: (a) Illustration of the direct coupling between a Large-Mode Area (LMA) with 20 𝜇m 

core and a 10 𝜇m core Single-Mode Fiber (SMF) resulting in 60% of the light being 

transmitted. (b) Schematic of the mode-matched fiber chain using a Mode-Field 

Adapter made of a GIMF segment. Light transmission varies according to the 

selected length of GIMF employed. 
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Experimentally, after introducing a 275 𝜇m long piece of GIMF with 50 𝜇m core diameter 

between the SMF and the LMA fiber, as shown in Figure 5-4(b), the initial coupling losses have 

been reduced from 40% down to less than a few percent [169]. The selected segment of GIMF is 

called Mode-Filed Adapter (MFA) and is determined according to the initial mode-field mismatch 

between two fibers. Besides being extremely compact, GIMF-based MFA devices were 

demonstrated to be robust, stable and reciprocal devices, achieving high mode-matching 

perfoemances under large temperature gradients (under 100°C) and across spectral bandwidth of 

several hundreds of nm. 

5.3 MFA between a LMA photonic crystal fiber and conventional fiber 

Most of the fiber lasers employing LMA PCF are built incorporating free-space optical 

elements. The main reason arising from the high structural and dimension mismatch with 

conventional fiber-based devices. In the following section, the ability to mode-match an active 

LMA PCF with a SMF using GIMF MFAs is numerically and experimentally studied. Results 

presented in Sections 5.3 and 5.4 have been published in the literature [170]–[172]. 

5.3.1 Motivation 

The two fibers detailed in this section are illustrated in Figure 5-5. First of all, the 

conventional SMF (Fibercore SM980 shown in Figure 5-5(a)) had a single-mode cutoff at 𝜆 = 980 

nm and a core diameter of 5.8 𝜇m. This fiber is commonly employed in fiber-based optical devices 

operating around 𝜆 = 1060 nm. The second fiber is an active (Yb-doped core) double-clad LMA 

PCF (fabricated by NKT Photonics) with a 40 𝜇m core diameter and a 200 𝜇m diameter pump 
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cladding (Figure 5-5(b)). This specialty fiber was developed for amplifier and laser applications 

including power scaling [157], [158]. Due to its large dimensions and complex design, the LMA 

PCF was implemented in free-space laser architectures. Images of the SMF and LMA PCF facets 

were recorded with a microscope and are shown in Figure 5-5(a) and (b) respectively. The size 

ratio between these structures is respected to emphasize their relative size and structural 

differences. Results of the calculated mode profile (𝜆 = 1060 nm ) guided in each fiber core are 

shown in Figure 5-5(c). The Mode-Field Diameter (MFD), defined at 1 𝑒2⁄  from the intensity 

maxima, was calculated to be 27 𝜇m in the LMA PCF compared to 6.3 𝜇m in the SMF resulting 

in a factor ~18 mismatch between the two mode-field areas. As a reminder, to the date of this 

dissertation, only a factor 4 mismatch between the mode-field area of two different fibers has been 

successfully demonstrated [167], [169]. 

 
Figure 5-5: Microscope image of the fibers facets: (a) a conventional SMF and (b) a double-clad, 

active LMA PCF. The dimensions of images (a) and (b) have been scaled to represent 

the realistic size mismatch between the SMF and the LMA PCF. (c) Calculated mode 

profile (𝜆 = 1064 nm) guided in the core of the SMF (black) and the LMA PCF (blue). 

The Mode-Field Diameter (MFD) values measured at 1/e2 (indicated with two 

arrows). 
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5.3.2 Numerical calculation of optimized mode-field matching 

During light propagation from the LMA PCF directly coupled to the SMF, only 20% of the light 

is expected to be transmitted (estimated using Equation ( 46 ) and the calculated MFD values in 

Figure 5-5(c)). In order to predict the optimum conditions for mode-field matching GIMF-based 

MFA devices, numerical simulations have been performed at 𝜆 = 1064 nm (wavelength in the 

absorption band of the Yb-dopants in the core of the LMA PCF). The light transmission has been 

calculated through the SMF-MFA-PCF chain schematically presented in Figure 5-6(a). Several 

GIMFs with core diameters of 50 𝜇m, 62.5 𝜇m and 100 𝜇m, labeled GIMF50, GIMF62.5 and 

GIMF100 respectively, were investigated. The calculated light transmission in the LMA PCF core, 

plotted as function of the GIMF segment length, are presented in Figure 5-6(b). As a result, the 

beam expander capabilities of GIMFs are confirmed as it appears that the overall transmission 

through the fiber chain can be improved by using segments of GIMFs between the SMF and the 

LMA PCF. In particular, the highest transmission was calculated when using a MFA device made 

with a 250 𝜇m long segment of GIMF50, corresponding to the SRL of the MMI. In this case, it 

was found that the transmission increased from 23% (without MFA which is in agreement with 

the predicted values using Equation ( 46 )) up to 95.8 %. This increase was due to the mode-overlap 

achieved between the SMF and the LMA PCF using the GIMF50 MFA. In comparison, the overall 

transmission could also be improved using segments of GIMF62.5 and GIMF100 but did not 

outperform the transmission levels reached with GIMF50. This can be explained by the fact that 

mode-matching capabilities of a GIMF do not only depend on the size of the core, but it also 

depends on the refractive index profile and on the number of guided modes. In addition, an overall 
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transmission of 100% could not be achieved with any of the GIMF commercially available. 

However, it could be possible to tailor a GIMF design to achieve higher transmission values. 

 
Figure 5-6: (a) Schematic representation of the mode-matched SMF-MFA-LMA PCF chain. (b) 

Calculation results of light transmission through the chain shown in (a) as function 

of GIMF length considering three different GIMFs with different core sizes. (The 

red, green and black markers will be used in the Section 5.4.2). 

To complete this numerical approach, a complete chain made of two SMF-LMA PCF 

junctions has been modeled. The system is illustrated in Figure 5-7(a) and (b) where the direct 

coupling case between the SMF and the LMA PCF is compared to the mode-matched chain using 

the MFAs previously determined. The overall light transmission collected in the output SMF was 

calculated at 𝜆 = 1064 nm. The low light transmission of 5.5% (corresponding overall loss = -12.5 

dB) measured in the SMF-PCF-SMF chain has been (Figure 5-7(a)) has been significantly 

improved using two MFAs made of 250 𝜇m long segments of GIMF50 to 92% (Figure 5-7(b)). 
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Up to 92% of the overall light was transmitted (corresponding overall loss = -0.4 dB) when using 

appropriate MFAs corresponding to an overall improvement of 12 dB. 

 
Figure 5-7: Calculated light transmission (𝜆 = 1064 nm) through two complete monolithic fiber 

chains. (a) Case of direct coupling case SMF-PCF-SMF resulting in 5.5% of light 

being transmitted. (b) Using two MFAs made of 250 𝜇m segments of GIMF50 at the 

SMF-PCF junction increases the overall transmission to 92% (corresponding to 12 

dB improvement). 

5.3.3 Experimental realization and characterization 

An easy, robust and reproducible assembly procedure to fabricate the two fiber chains 

simulated in Figure 5-7, has been elaborated and individual steps are presented in this section. The 

procedure is initiated by fusion splicing a piece of SMF to a piece of GIMF using a standard arc-

based splicer (FSU 995 by Ericsson). Then, high-precision cleaving of the selected GIMF segment 

is achieved with micrometric resolution using a fiber cleaver (FK 11 by PK Technology) fixed on 

a translation stage with micrometer steps increments and imaged with a 20x microscope objective. 

After imaging the splicing point between the SMF and the GIMF, the diamond blade is translated 

by the desired GIMF length and then cleaved with an established accuracy of ± 5 𝜇m. In the final 

step, the SMF-GIMF chain is fusion splices with the active LMA PCF. To simplify this procedure, 

the PCF outer diameter was chemically etched down from 440 𝜇 to 240 𝜇m, decreasing the 
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difference with the SMF outer diameter of 125 𝜇m. A filament-based splicing system (GPX-3000, 

Vytran), which allows to actively control the splicing parameters, was used to achieve 

mechanically strong SIF-to-PCF splices without altering the original air-hole structure of the PCF 

cladding. A microscope image of a complete chain SMF-MFA-PCF-MFA-SMF fabricated 

following these steps is shown in Figure 5-8(a).  

 
Figure 5-8: (a) Microscope image of a monolithic chain SMF-MFA-PCF-MFA-SMF where each 

MFAs is a 250 𝜇m long pieces of GIMF50. The splicing points between the SMF the 

GIMF are indicated with red arrows. (b) Measured light transmission through two 

fiber chains without (grey) and with MFAs (blue) showing 11 dB of improvement in 

the overall transmission at 𝜆 = 1064 nm. 

To measure the transmission through the two fabricated chains, a superluminescent diode 

(Thorlabs), emitting a bandwidth of 60 nm centered around 1050 nm, was used as the light source 

and was coupled into the core of one of the SMF. The transmission was recorded at the second 

SMF end using an OSA (Yokogawa). Results of measured light transmission are shown in Figure 

5-8(b), comparing the transmission through SMF-PCF-SMF (grey line) with the transmission 

through the mode-matched chain SMF-MFA-PCF-MFA-SMF (blue line). The transmission 

recorded after the mode-matched fiber chain has improved by ~11 across the full spanning range. 

These results confirm the finding of Hofmann et al. who demonstrated that short MFA segments 
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perform across hundreds of nm of spectral bandwidth [169]. In particular, the transmission 

measured after the chain SMF-PCF-SMF increased from -20 dB to -8 dB when using MFAs 

designed at 𝜆 = 1064 nm. These experimental results are in agreement with the ~12 dB 

improvement predicted with the numerical simulations in Figure 5-7. Thus, the significant increase 

in transmission has been experimentally confirmed using appropriate GIMFS MFAs between two 

fibers presenting an intrinsic mode-field area mismatched of a factor 18 [170]–[172]. 

In both chains, the remaining ~10 dB losses can be attributed to residual splicing losses 

between the SIF and the PCF. In practice, it has been particularly challenging to achieve reliable 

and good quality cleaves of the PCF facet. However, it is possible to achieve reasonably low 

splicing losses using highly controlled techniques (e.g. CO2 splicers)  and splice loss under 2 dB 

have been demonstrated between SIF and PCF [159],[160]–[162]. 

5.4 Novel all-fiber laser employing an active LMA PCF and  

conventional fiber Bragg gratings 

In this section, the GIMF MFA approach is extended to assemble monolithic fiber lasers 

utilizing FBGs written SMF to provide the cavity feedback and active LMA PCF as the gain 

medium. Two different fiber lasers have been assembled and results of the characterization are 

presented and discussed.  

5.4.1 First experiment: monolithic laser using one MFA 

The first monolithic laser is illustrated in Figure 5-9. A Multi-Mode Laser Diode (MMLD) 

emitting at 𝜆 = 974 nm wavelength was fiber-coupled to a SIMF with 105 m core and 125 m 
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cladding diameter. The SIMF was fusion spliced to the SMF in which a high reflector (HR) FBG 

has been inscribed to reflect 99% at the Bragg wavelength 𝜆 = 1064 nm with 14 nm FWHM 

bandwidth. The FBG SMF segment was uncoated and the length kept under 2 cm to prevent pump 

scattering losses. The PCF cladding absorption was measured around ~15 dB/m at 974 nm pump 

wavelength. Thus, the length of active PCF used in the cavity for efficient pump absorption was 

~1.1 m to ensure high pump absorption. The monolithic laser cavity was terminated by the flat 

cleaved output facet of the active PCF providing ~ 4% feedback from the Fresnel reflection. Two 

chains have been fabricated, one including a MFA (250 𝜇m (± 5 𝜇m) long segment of GIMF) 

between the FBG SMF and the LMA PCF, and one by fusion splicing the FBG SMF directly to 

the PCF. In the mode-matched chain, the ~2 cm long SMF-GIMF section was packaged robustly 

mounted on microscope slides to ensure mechanical strength and stability as well as low pump 

scattering loss. 

 
Figure 5-9: Schematic of the monolithic fiber laser cavity including a 99% high reflector fiber 

Bragg grating at 1064 nm (Δ𝜆=14 nm) and ~ 4% reflective output coupler. 

The emission spectrum at the output of the direct-coupling chain and the mode-matched 

chain has been measured above threshold with an OSA (Yokogawa) and results are presented in 

Figure 5-10(a). The direct-coupling chain SMF(HR FBG)-PCF, plotted in grey in Figure 5-10(a), 

emits a free-running laser line centered at 1030 nm, wavelength corresponding with the maximum 
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gain of the Yb-atoms. Since no mode-field matching section was used in this case, this laser 

emission arises from parasitic reflections at the SMF-to-PCF interface which has been previously 

characterized with considerable losses (Figure 5-8(b)). In comparison, when pumping the mode-

matched chain SMF(HR FBG)-MFA-PCF above threshold, a laser line centered at 1058 nm with 

~ 30 dB signal-to-background ratio was recorded (blue line in Figure 5-10(a)). This laser emission 

was generated from the cavity formed between the HR FBG (14 nm FWHM bandwidth is visually 

indicated in Figure 5-10(a)) and the 4% reflection at the PCF output. The output power measured 

emitted from the mode-matched laser cavity was measured while varying the launched pump 

power and results are presented in Figure 5-10(b) showing a 60% of laser slope efficiency. The 

maximum measured output power of ~8 W was limited by the available pump power and by the 

high splicing loss. However, in this configuration, the laser line-width could not be accurately 

controlled due to the large HR FBG bandwidth. 

 
Figure 5-10: (a) Measured emission spectrum above lasing threshold through two monolithic fiber 

cavities with (blue) and without (grey) MFA between the HR FBR and the LMA 

PCF. (b) Output power measured at the 𝜆 = 1058 nm laser line emitted by the mode-

field matched laser cavity as function of the launched pump power. 
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5.4.2 Second experiment: all-fiber laser using two MFAs 

A second monolithic fiber laser configuration was fabricated and characterized. Figure 

5-11 shows a schematic representation of the all-fiber monolithic laser cavity which is similar to 

the system presented in Figure 5-9 with the addition of a narrowband low reflector (LR) FBG (30% 

reflective at 1063.7 nm with 0.2 nm FWHM bandwidth) written in an identical SMF (O/E land). 

The LR FBG is spliced to the output facet of the PCF with the goal to improve the laser spectral 

stability over time. 

 
Figure 5-11: Schematic of the second monolithic fiber laser cavity including a pair of matched 

FBGs in SMF which are fusion spliced to both ends of the active LMA PCF. 

Locations of the two identical MFAs are indicated in red. The line-width of the laser 

emission is controlled using a narrow band LR FBG at the fiber laser output. 

The output power has been measured for three fiber laser cavities using different SMF-to-

PCF coupling configurations. Results obtained from the first configuration employing two 

identical MFAs made of the optimized GIMF50 length (250 𝜇m) are presented in Figure 5-12. As 

the pump level increases, laser emission was characterized with a smaller slope efficiency than the 

previous configuration reported in Figure 5-10(a). The measured laser emission spectrum, 

displayed in Figure 5-12(b) shows a spectrally stabilized narrow-line laser emission at 1063.7 nm 

wavelength with an estimated 200 pm FWHM bandwidth, clearly indicating that the laser is 

initiated by the LR FBG feedback. 
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Figure 5-12: (a) Measured laser output power as function of launched pump power and (b) output 

spectrum measured from an all-fiber laser cavity employing two optimized MFA 

made of 250 𝜇m of GIMF50. 

These results were directly compared with two different monolithic fiber laser cavities: one 

directly splicing the FBGs to the PCF (no use of MFA) and one employing two identical but non-

optimized MFAs made of 200 𝜇m long segments of GIMF50. The power emerging these two 

cavities was recorded for various launched pump powers and results are summarized in Figure 

5-13 in black and green respectively. When pumping the directly-coupled cavity, no hint of laser 

emission could be recorded indicating that losses (expected at the PCF interface) dominate, 

inhibiting any laser emission even at high pumping levels. On the other hand, when using non-

optimized MFAs, a laser emission was recorded and characterized with a lower slope efficiency 

compared to the results obtained from the first “optimized” laser chain in Figure 5-12. A qualitative 

explanation is proposed to understand this trend using the findings presented in Figure 5-6(b). On 

this plot, the three chains previously mentioned are indicated with matching colored markers, i.e. 

red corresponding to 250 𝜇m long segment of GIMF50, green to 200 𝜇m and black attributed to 

direct-coupling. In the optimized MFA case, up to 92% overall transmission was predicted (in the 

ideal case of zero splice losses). In comparison, in the non-optimized case (200 𝜇m long GIMF50), 
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the maximum obtainable transmission was 56% indicating significant coupling losses due to the 

mode-field mismatch. Without MFAs, only 5% of the light was expected to be transmitted. In 

other words, the light lost due to the mode-mismatch between the PCF and the SMF adds to the 

splicing losses at this junction. As a result, both effects contribute to inhibit the low (non-existent) 

laser performances shown in Figure 5-13. From a relative point of view, the MFA-optimized chain 

delivered the laser beam with the highest performances. 

 
Figure 5-13: Measured laser output power as the pump light increases for a monolithic fiber cavity 

made with a pair of two identical 205 𝜇m long GIMF50 MFAs (green) and without 

any MFAs (black). 

5.5 Summary and outlook 

After motivating the need for all-fiber integrated optical systems, novel MFA devices, 

using the periodic MMI propagating in GIMFs, were introduced as an attractive approach to 

mitigate the coupling losses arising from mode-mismatched optical fibers. The concept has been 

successfully demonstrated using the case of two mismatched SIFs and was further extended to 

mitigate the coupling losses between SMF and LMA PCF (estimated around 80%), presenting an 

initial eighteen-fold mode-field area mismatch. Results from numerical simulations enabled to 
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determine the optimum length of GIMF required to improve the chain transmission, predicting an 

overall transmission around 92% when using 250 𝜇m segments of GIMF with 50 𝜇m core in 

diameter. These numerical predictions were experimentally confirmed after measuring the 

transmission through a SMF-MFA-PCF-MFA-SMF resulting in ~11 dB improvement compared 

to the non-matched fiber chain across more than 100 nm bandwidth. This robust approach has been 

implemented to assemble the first monolithic fiber laser combining FBGs in SMF and active LMA 

PCF using all-fiber MFA devices. A few laser cavities have been assembled using different MFA 

configurations and their performances were compared. In each case, fiber lasers using MFAs 

outperformed lasers with direct SMF-to-PCF coupling. These results were recently published in 

peer-reviewed journal article [170]. 

This study opens the route towards the integration of LMA PCF in all monolithic fiber 

lasers using simple, robust scalable and cost-effective all-fiber devices compared to other complex 

and expensive methods. To give an outlook, several aspects could contribute to improve the 

measured laser performances. For example, by operating the laser at the gain maximum at 1030 

nm, instead of forcing the laser emission at the FBG Bragg wavelength 𝜆 = 1065 nm which limited 

the obtainable slope efficiency and output power. In addition, cavity losses can be further mitigated 

by reducing the intra-cavity splicing loss. In particular, laser output performances could be further 

improved through better engineering of the cleaving process. Finally, it could be possible to tailor 

the GIMF design to scale the mode-field between the SMF and the LMA PCF, eventually reaching 

a “perfect” match with 100% light transmission.  
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CHAPTER 6: GAIN DYNAMICS AND TEMPORAL EFFECTS 

IN FIBER LASERS UTILIZING 

AN ACTIVE SPECIALTY MULTICORE FIBER 

The last chapter of this dissertation is focused on developing a novel generation of 

monolithic fiber laser employing specialty gain fibers made of seven active cores. The motivation 

behind this study follows the growing interest of the scientific community in multicore waveguide 

structures which started a few decades ago with the first introduction of fiber bundles in the 80’s 

Offering unmatched performances in terms of spatial and spectral resolution, fiber bundles were 

widely used in biomedical applications using confocal imaging [173] and multispectral imaging 

[174]. At the dawn of the 20th century, the evolution of the fiber fabrication techniques, enabling 

to create highly-controlled micro-structured fiber designs, strongly contributed to revive the 

research interest in Multi-Core Fibers (MCF). Since then, several MCF’s have been demonstrated 

made of different designs and different material. One advantage of these structures compared to 

conventional single-core, step-index fibers is their high modularity resulting from the multiple 

configurations of core arrays achievable. Among the MCF designs, two main categories can be 

distinguished labeled isolated core MCF (IC-MCF) and coupled-core MCF (CC-MCF). 

On one hand, isolated-cores IC-MCF designs were developed for applications requiring 

low-cross talk between the multiple cores forcing the light to propagate in each core independently 

from its neighbors. IC-MCF designs are preferred for efficient data transmission [89], [176], mode-

division multiplexing [177], multi-channel amplification in fiber amplifier [178] and recently 

power scaling in fiber lasers beyond the current onset of modal instability [125].  
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On the other hand, in CC-MCFs designed with small pitch values Λ, light guided in one 

core evanescently couples back and forth with the neighboring cores resulting in the formation and 

propagation of eigensolutions called supermodes. Each guided supermode is a linear  superposition 

of the 𝐿𝑃 modes guided in individual cores. A direct analogy can be done between CC-MCFs and 

MMFs as several transverse modes exist and propagate simultaneously. In both fibers, the 

phenomenon of Multi-Mode Interference (MMI), introduced in Section 2.3, occur during light 

propagation. MMI in MMFs has found many applications to date including the MMI-based fiber 

devices previously listed in Section 2.3 [43]–[47] as well as recent emerging such as mode-division 

multiplexing [179], tunable lasers [180] and power scaling of fiber laser [181]. 

To date, the concept of MMI has been widely studied in step-index and graded index Multi-

Mode Fibers (MMF). In comparison, CC-MCFs, which are also MMI devices, offer a significant 

flexibility in terms of inner fiber design. By controlling the number of coupled-core, their sizes 

and relative organization, the variety of achievable configurations is considerably expanded. As a 

direct consequence, tailoring the design of CC-MCF is a resourceful field of research with the 

unique potential to outperform existing MMFs used in current MMI-based fiber devices and the 

ability to further discover novel applications. 

Output beams from MM fiber laser generally suffer from spatial and temporal instabilities 

due to the propagation and amplification of several transverse mode.  

CC-MCF have been used as a few-modes devices in mode-division multiplexing [177], 

[182] multiplexing. Also, a very recent study demonstrated that CC-MCFs can be used as sensing 

devices with enhanced sensitivity [183]. But the core of the research to develop novel CC-MCF 

relies on the ability to access information on the guided supermode content, related propagation 

properties and dependence on the inter-core coupling. Several numerical studies were reported to 
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study for example the supermode formation in multi-core PCFs [184] and the mode-coupling 

analysis when designing trench-assisted MCF [175]. One particularly interesting property has been 

widely studied in CC-MCF. Due to the self-organization in two-dimensions arrays [185], the 

lowest order supermode propagating is called the in-phase supermode and exhibits a characteristic 

diffraction limited far-field profile. This discovery and the potential to generate high brightness 

beams [24], [186]  has motivated the scientific interest to study methods to select the in-phase 

supermode such as phase-locking [187], Talbot cavities in MCF lasers [188], [189], structured 

output couplers [190], external waveguides [191], [192] and self-Fourier resonators [193]. 

Additional applications such as beam shaping [190] were also demonstrated. Also, modal selection 

and phase control have been the most successful approach demonstrated to stabilize the output of 

MMF laser cavities [194], [195]. One of the main drawbacks is the use of external free-space 

elements to achieve efficient mode selection in CC-MCFs. In this case, not only the monolithic 

advantage of using a single fiber device containing multiple cores is lost but the overall stability 

of the systems suffers from the very complex optical alignment with several micro-sized cores. 

However, the major consequence of achieving strict supermode selection is that the real 

potential offered by CC-MCF lasers remains currently unknown. Even though a few numerical 

studies have been reported aiming to uncover the physics behind multi-supermode 

amplification[196], [197] and coupled-mode theory in laser systems [198], [199], the lack of 

experimental demonstration is currently the main bottle-neck for the further development of MCF 

lasers since complex inter-mode coupling and competition mechanisms during light amplification 

are, to date, not fully understood. 

Here, the results of the complete characterization of a multi-supermode CC-MCF laser 

including mode competition, lasing dynamics and temporal effects are presented in details. First 



 

118 

 

of all, the active 7-coupled-cores fiber is introduced in Section 6.1. An analytical model to predict 

light transmission in this CC-MCF is detailed in Section 6.2.  Then, an experiment is presented in 

Section 6.3 to measure (a) the supermode content in the CC-MCF and (b) the gain of individual 

supermodes amplified in the CC-MCF. These results are discussed in details in this dissertation 

and represent, to date, the first experimental demonstration of gain competition between 

supermodes. In Section 6.4, an experiment to measure the laser dynamics in the CC-MCF is 

introduced using a fully monolithic fiber laser cavity. Finally, the first observation of self-mode 

locking generated in a linear MCF laser cavity is demonstrated in Section 6.5. This chapter in 

concluded in Section 6.6 summarizing the main findings and give future outlook.  

6.1 Introduction and characterization of the active multi-core fiber (MCF) 

The fiber used in this chapter is the product of a collaboration with the Institute of Photonics 

Technology (IPHT) in Jena, Germany who designed and fabricated the CC-MCF. It is important 

to note that the REPUSIL fabrication technique, recently introduced, has been used to fabricate 

this fiber [200]. This approach is based on the sintering and vitrification of doped powders and has 

been demonstrated to overpass the current limitations of MCVD when fabricating very Large-

Mode-Area fibers. In the following, the label CC-MCF will be changed to MCF for simplicity. 

The MCF is made of 7-cores uniformly doped with Ytterbium (Yb) atoms (~4.5.1025 

Yb3+/m3) embedded in an all-solid Fused Silica matrix. The dimensions of the micro-structures 

have been extracted using an image of the MCF facet recorded with a microscope and illustrated 

in Figure 6-1(a). The diameter of each Yb-doped core (light grey) was measured to be 5.9 𝜇m (± 

0.1) in average and the core-to-core separation, also called pitch Λ, was 9.3 𝜇m (± 0.2) in average. 

The hexagonal cladding geometry has been intentionally designed to improve the pump absorption 
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during cladding pumping. The MCF outer diameter (OD) is 125 𝜇m (along the long diagonal of 

the hexagon) offering a good compatibility for fusion splicing with conventional fibers with same 

OD. Also, reproducible and reliable cleaving and splicing can be achieved with standard fiber 

equipment due to the all-solid fiber geometry. 

 
Figure 6-1: (a) Microscope image of the active 7-cores fiber (b) 2D measurement of the MCF 

refractive index profile. 

The refractive index distribution across the MCF facet has been measured with the 

profilometer introduced in Section 3.4.1 (from Interfiber Analysis) and results are presented in 

Figure 6-1(b) using light at 𝜆 = 633 nm wavelength. The 7 Yb-doped cores (red) and the solid 

fused silica cladding (blue) show a good material uniformity. In addition, the refractive index 

differences between each fiber layer and the surrounding (green) were measured to be Δn ~3.10-3 

and Δn ~2.10-3 in the core and cladding respectively. This measurement has been repeated for 

several light wavelength ranging from 0.5 𝜇m to 1 𝜇m. The measured values of core and cladding 

refractive indices are plotted as function of the measurement wavelength in Figure 6-2 using red 

and black markers respectively. Following the procedure described in Section 3.4.1, the fiber 

dispersion in the core and cladding has been interpolated and plotted using red and black curve in 

Figure 6-2 respectively. The numerical aperture of each individual cores has been calculated using 
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equation ( 20 ) and is also represented in Figure 6-2 using the blue line indicating an almost 

constant value around ~0.095. 

 
Figure 6-2: Measured refractive indices in the core and cladding layers of the MCF (red and black 

markers respectively) and extrapolation of the core and cladding dispersion relation 

after applying a Cauchy fitting function. The blue line corresponds to the calculated 

numerical aperture of individual cores. 

The measured MCF dimensions and indices are imported in a fiber mode solver (Fimmwave by 

Photon Design) which solves the guided modes using a vectorial finite element method. 

Calculations were carried at the wavelength corresponding to the maximum gain of the Yb atoms, 

i.e. 𝜆 = 1.03 𝜇m. Results are presented in Figure 6-3(a) to (g) showing the field distribution of 7 

supermodes, labeled 𝑆𝑀𝑖, with 𝑛 = 1,…,7. The value of the fiber V-parameter (Equation ( 19 )) 

can be calculated using the measured MCF core diameter and the NA measured in Figure 6-2. The 

measured MCF V-parameter is ~1.67 indicating that the condition for single-mode guidance is 

achieved in each core of the MCF which confirms the existence of 7 non-degenerated supermodes. 

The first supermode (𝑆𝑀1 in Figure 6-3(a)) is the so-called in-phase supermode where all the cores 

emit in-phase. The corresponding far-field profile is diffraction limited. 
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Figure 6-3: Normalized field distributions of the supermodes guided in the 7-cores MCF calculated 

at a light wavelength of 𝜆 = 1.03 𝜇m. 

During light propagation in the MCF, several supermodes are guided leading to the 

formation of MMI. This phenomenon has been introduced in details in Section 2.3 and is 

characterized by an oscillatory response with periodicity defined in Equation ( 34 ). The 

wavelength and length dependence of the MMI period has been measured in the MCF using a 

straightforward light transmission experiment. A monolithic fiber chain including a Single-Mode 

Fiber (SMF), a piece of MCF and a second segment SMF has been assembled using standard 

fusion splicing techniques (Ericsson). The selected SMF is a single-core, step-index fiber with 5.8 

𝜇m core diameter and 125 𝜇m OD. It was chosen (a) to be single-mode at the wavelength of 

interest i.e. 𝜆 = 1.03 𝜇m, (b) to be well-matched to individual cores of the MCF, and (c) because 

it is used in most fiber-based components. Robust fusion splices SMF-to-MCF were achieved with 

less than 0.5 dB insertion losses. Before recording the light transmitted by the fiber chain SMF-

MCF-SMF, particular attention must be paid regarding the in-coupling mode overlap between the 

SMF and the MCF which will determine the combination of guided supermodes (see Section 

2.4.1). Thus, in order to obtain reproducible performances of MCF-based systems, the alignment 

in SMF-to-MCF splices must be achieved very carefully and must be systematically reproducible. 



 

122 

 

Several fusion spliced SMF-to-MCF segments have been measured with the profilometer around 

the splice location. An example is presented in Figure 6-4 showing a microscope view of the SMF-

MCF fiber chain (the interference fringes are used to measure the refractive indices) and 2D index 

profiles measured at several locations along the splice (separated by 10 𝜇m). The result is a unique 

3D measurement of the refractive index profile across a fiber splice.  

 
Figure 6-4: Profilometer measurement through a SMF-to-MCF fusion splice. To facilitate the 

comparison, a MCF with circular cladding geometry was employed. Both circular 

and hexagonal MCF geometries have been fabricated using the exact same material 

components. 

Two main information can be extracted: (a) the spatial evolution of the refractive index profiles 

through a splice and (b) the relative fiber alignment after splicing. The 3D profilometer 

measurement shows a good overlap between the SMF core and the MCF center core within an 

accuracy of ± 2.𝜇𝑚 (limited by the transverse resolution of the profilometer) which confirms the 

reproducibility of the SMF-to-MCF alignment during splicing. In addition, two relevant comments 

can be done regarding Figure 6-4. First, the color scale differs between each 2D profile and can 
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only be considered for esthetic purposes. Second, the same procedure was employed to validate 

center and robust splicing between the SMF and the hexagonal MCF of interest. 

A fiber-coupled broadband light source emitting around 1.06 𝜇m wavelength 

(superluminescent diode by Thorlabs) was used to excite the modes in the MCF. The transmission 

of the chain SMF-MCF-SMF was measured with an OSA. Results are presented in Figure 6-5(a) 

for different length of the MCF varying between 1m long to few cm long. As expected, a periodic 

and contrasted spectral modulation (average depth is ~10 dB), characteristic of the MMI between 

the transverse modes, was measured. The overall envelope of the transmission measurement is 

dictated by the emission spectrum of the source. The MMI period has been measured and plotted 

for several MCF lengths. Results are represented in Figure 6-4(b) (blue dots) and compared with 

calculation results (grey line) obtained after simulating the fiber chain using different length of 

MCF with Fimmwave (PhotonDesign). The good agreement between experiment and simulation 

emphasizes the accuracy of the measured fiber inner dimensions and refractive indices and shows 

a good understanding of the SMF-to-MCF coupling. 

To complete the characterization of the MCF, the absorption during cladding pumping has 

been measured using a multi-mode pump diode emitting at 976 nm light wavelength. The cladding 

absorption was found to be 1.6 m-1 (± 0.1m-1) corresponding to a minimum length of MCF around 

L ~60 cm to guaranty an efficient absorption of the pump light towards laser emission. 
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Figure 6-5: (a) measured MMI transmission through a SMF-MCF-SMF fusion spliced chain for 

several MCF lengths. (b) Measured MMI period as function of MCF length (blue) 

compared to simulation results (grey line). Results are plotted using a dB scale for 

clarity purposes and show a good overlap. 

6.2 Light transmission in MCF: analytical model 

The periodic oscillation of the MMI pattern measured in Figure 6-4 indicates that only a 

few supermodes are excited and propagate in the MCF (see details in Appendix A & B). In order 

to predict the corresponding combination of guided supermodes, an analytical model based on the 

coupled mode theory [201] is presented in details in this section. Details regarding the calculation 

steps can be found in Appendix C while only the main results are presented in the following. 

Assuming that the incident light is coupled in the center core of the MCF using a perfectly 

matched SMF, only supermodes with non-zero intensity in the center core i.e. the supermodes 

overlapping with the SMF core, can be excited. When collecting the light emerging the MCF with 

a segment of SMF, the total transmission was be calculated to be (Appendix C): 

T(ν) = 1 − 4P1P6sin
2(ϕ0 + 2πτ0ν) ( 48 ) 

with 𝜈 the light frequency, 𝜙0 the phase term and 𝜏0 the intermodal delay which can be expressed 

as 
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𝜙0 = 2√7�̃�(𝜈0)𝐿 − 2√7𝑐1̃𝜈0𝐿 ( 49 ) 

𝜏0 =
√7

𝜋
𝑐1̃𝐿. ( 50 ) 

In addition, 𝑃1 and 𝑃6 correspond to the intensity in 𝑆𝑀1 and 𝑆𝑀6 respectively, the two supermodes 

in the MCF with non-zero intensity in the center core (profiles (a) and (f) shown in Figure 6-3). 

According to the model (Appendix C), values of 𝑃1 and 𝑃6 were calculated to be ~30% and ~70% 

respectively. In Equation ( 49 ) and ( 50 ), �̃� stands for the overall coupling coefficient in the MCF 

while the coefficient 𝑐1̃, with units of time over length, can be assigned as the Differential Group 

Delay (DGD) between the two guided supermodes 𝑆𝑀1 and 𝑆𝑀6. Also, 𝑐1̃ can be directly 

calculated from the derivative of �̃� with respect to the frequency 𝜈. Results from calculations 

performed at 𝜆 = 1.06 𝜇m light wavelength (corresponds to a frequency of 𝜈0 = 281.76 THz) are 

shown later in Figure 6-7. 

The coefficient 𝑐1̃ can be experimentally evaluated. To do so, the transmission through a 

90 cm long segment of MCF, fusion spliced with two pieces of SMF, has been recorded using the 

SLD and results are shown in Figure 6-6(a), plotted as function of the light frequency. The Fourier 

transform of the periodic transmission has been calculated and results are presented in Figure 

6-6(b) as function of the 𝐷𝐺𝐷 also labeled 𝑐1̃. In the Fourier transform, a peak can be resolved at 

2.2 ps/m < 𝑐1̃ < 2.5 ps/m, interval defined at the FWHM of the peak. The fact that only one peak 

could be measured in the Fourier spectrum indicate that only two supermodes are in practice 

guided in the MCF.  
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Figure 6-6 (a) Light transmission measured after a chain SMF-MCF-SMF showing the periodic 

MMI response. (b) Fourier transform calculated from the measured transmission and 

plotted as function of the intermodal coupling coefficient 𝑐1̃. The maxima 

corresponding to the two interfering supermodes is indicated by the red interval at 

the peak FWHM. 

Experimentally measured values of the coefficient 𝑐1̃ are directly compared with analytical 

calculations in Figure 6-7. In the plot showing the values of 𝑐1̃ for various fiber pitch, the grey-

shaded area corresponds to the range of the experiment i.e. MCF pitch values Λ = 9.3 𝜇m (± 0.2) 

from Section 6.1 and 2.2 ps/m < 𝑐1̃ < 2.5 ps/m, previously determined in Figure 6-6. Results in 

Figure 6-7 show a good overlap between experimental and analytical values of the coefficient 𝑐1̃. 

As a result, around 𝜆 = 1.06 𝜇m light wavelength, 𝑆𝑀1 and 𝑆𝑀6 are expected to propagate in the 

MCF with both ends spliced to SMF.  
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Figure 6-7: Comparison between analytical calculations and experimental determination of the 

coefficient 𝑐1̃, also called Differential Group Delay (DGD). 

However, it is important to moderate these finding since, in the real experimental world, 

optical systems are subject to environmental fluctuations which are generally not considered when 

developing an analytical model based on perfect conditions. For example, a second peak appears 

on the Fourier spectrum in Figure 6-6(b) for 𝑐1̃ ≈ 3.1 ps/m, indicating that a third residual 

supermodes is most likely guided in the MCF. There are several potential explanations to the 

discrepancy with the analytical model predicting only 2 supermodes; 

 The fact that the input coupling between the SMF and the MCF center core 

depends not only on the alignment during splicing, but also on the fact that the 

relative size and NA between the two fibers which slightly differ which might 

result in a small amount of light being coupled in additional supermodes. 

 The very long interaction length of the MCF (~90 cm), increases the probability 

that external perturbations such as coil, twist or air fluctuation might perturb the 

guided light in the MCF. As a result, residual inter-mode coupling may occur. 
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6.3 Mode-resolved gain analysis and lasing operation in monolithic MCF lasers 

The goal of the following Sections 6.3 and 6.4 was to utilize the multi-mode system in the 

MCF to investigate the dynamic mechanisms during multi-supermode lasing operation. Compared 

to analog standard MMF systems [181], [194], [195], using MCFs in laser systems gives access to 

more degrees of freedom, allowing a better control on the combinations of guided modes. 

However, mechanisms of intermodal coupling between supermodes and mode competition are 

complex in MCF and not fully characterized, currently limiting the potential of these MMI 

systems. 

6.3.1 Experimental setup 

An experiment to achieve gain-resolved mode analysis is schematically presented in Figure 

6-8. The selected decomposition technique was the Correlation Filter Method (CFM), previously 

detailed in Section 3.3. In the present experiment, CFM has been selected among other mode 

analysis techniques (listed in Section 3.1) for its ability to spatially decompose the transmission 

functions of each guided modes with a Computer Generated Hologram (CGH) and for its 

capabilities to decompose highly multi-mode beams in real-time. For the present investigation, a 

CGH device, well-matched to the active MCF, previously characterized (Section 6.1), was 

fabricated and provided by D. Flamm and M. Duparré (FSU, Jena, Germany). This CGH was 

designed to decomposed the modal amplitude of the 7-guided supermodes in the MCF around 𝜆 = 

1060 nm. The corresponding theoretical mode profiles were presented in Figure 6-3. 



 

129 

 

 
Figure 6-8: (a) Mode-resolved gain experiment with PC: pump combiner; DC SMF: double-clad 

single-mode fiber, L1 and L2 aligned in a 4f-system with magnification factor of 75; 

BPF: band-pass filter; BS: beam splitter; CGH: computer generated hologram; L3 the 

imaging lens. Two diagnostics were used: (b) L3 in combination with CCD2 to 

perform CFM and (c) L3 followed by a pinhole with 200 m diameter and PD: 

photodetector to perform mode-resolved gain analysis. 

A fiber-based multi-mode pump combiner (PC) is employed to couple either or both seed 

light (a narrow-line laser emitting at 1064 nm) and pump light (a multi-mode laser diode at 976 

nm). The seed light is coupled via the signal port made from a matching SMF (core diameter of 

5.8 m) with double-cladding geometry (1st cladding is 105 𝜇m in diameter and OD is 125 𝜇m) 

while the pump light is delivered in a MMF with 105 m core diameter and 125 𝜇m OD. The DC 

SMF is fusion spliced to the 90 cm long active MCF segment characterized in Sections 6.1 and 

6.2. The MCF has been previously uncoated to avoid pump scattering and has been inserted in a 

fused silica capillary to be kept straight and isolated from external fluctuations. The output end of 

the MCF is flat cleaved and the emerging near-field is imaged on the plane of the CGH and of the 

CCD using a beam splitter (BS). The 4f-imaging scheme has been carefully chosen (L1 is a 40x 

microscope objective and L2 has 300 mm focal length) to ensure the proper magnification factor 

(𝑀 = 75) between the MCF and the CGH. The CFM diagnostic assembled on the right hand side 

of Figure 6-8 to perform mode decomposition has been introduced in details in Section 3.3. A few 

modifications from the original measurement have been made here; 
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 A bandpass filter for wavelengths around 𝜆 = 1064 nm (Δ𝜆  10 nm) has been inserted in 

the beam before the CGH in order to select the seed light and to block the residual pump. 

 In the original CFM, the far-field from the CGH is imaged on a CCD which records all the 

correlation answers imaged on different pixels (Figure 3-13). Here, a pinhole is used after 

the CGH in parallel with a photodetector (PD) to measure the amplitude of the signal at 

selected correlation answers (the pinhole acts as a CCD pixel). 

6.3.2 Mode-resolved gain analysis 

Two cases are investigated in this section starting with the unperturbed MCF followed by 

the analysis of the perturbed MCF via coil and transverse stress. 

6.3.2.1 Unperturbed MCF 

The experiment was initiated by performing an analysis of the supermodes guided in the MCF 

using the light from the seed laser (pump off). To do so, the diagnostic shown in Figure 6-8(b), 

using a CCD to record the correlation answers, following the conventional scheme used for CFM 

(Section 3.3) was used.CFM was performed and the mode power (MP) values 𝜌𝑛
2 of each 

supermode 𝑆𝑀𝑛 propagating through the 90 cm segment of MCF were measured and results are 

plotted in Figure 6-9. As a result, the mode power values 𝜌2(𝑆𝑀1) = 26% and 𝜌2(𝑆𝑀6) = 31% 

were extracted. Even though these values differ from the analytical predictions Section 6.2, two 

guided supermodes could clearly be identified. The corresponding MCF near field has been 

recorded with the CCD1 and is shown in Figure 6-9. For each CFM measurement performed in 

this section, the standard deviation has been calculated by comparing an average of 20 
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measurement with 200 measurements (total recording time was ~1 min). The result gives an 

indication of the measurement stability over time and is represented by the black line in each of 

the following bar-diagram. Even though the measurement presented an overall good stability 

(Figure 6-9), it is important to note that a non-negligible amount of power, was measured in other 

supermodes with 𝜌2(𝑆𝑀5) = 10% and 𝜌2(𝑆𝑀7) = 15 %. These findings confirm the observations 

made in Section 6.2, where a hint of additional propagating supermodes, other than 𝑆𝑀1 and 𝑆𝑀6, 

was measured around 𝑐1̃ ≈ 3.1 ps/m on the Fourier spectrum in Figure 6-6(b). 

 
Figure 6-9: Modal decomposition after propagation of the seed laser (𝜆 = 1064 nm) and 

corresponding near-field emerging the MCF. The pump is OFF during this 

measurement. The standard deviation is represented using the black line. 

Then, the second part of this experiment consists in the measurement of the optical gain 

carried by individual supermopdes. To do so, a pinhole (200 m in diameter) was inserted after 

the far-field imaging lens 𝐿3 (Figure 6-8(c)) and carefully aligned on one modal correlation answer 

while monitoring with the CCD. Using a PD, the power was measured at a selected correlation 

answer was measured for increasing pump power (while remaining below the laser threshold) 

while the seed power remained constant. From this measurement, the gain factor 𝛾𝑛 of the 
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amplified supermode 𝑆𝑀𝑛, defined as the ratio of the seed power between pump ON (𝑃𝑂𝑁) and 

pump OFF (𝑃𝑂𝐹𝐹) such that 

𝛾 = 10 × 𝑙𝑜𝑔 (
𝑃𝑂𝑁

𝑃𝑂𝐹𝐹
) ( 51 ) 

were measured. Results are shown in Figure 6-10 where 𝛾1 and 𝛾6 (the mode-resolved gain factor 

measured after filtering the correlation answer of 𝑆𝑀1 and 𝑆𝑀6 respectively) were measured as 

function of the pump power. According to the measurements, 𝛾1 ≠ 𝛾6 indicating that, under the 

same pumping conditions, 𝑆𝑀1 is preferably amplified compared to 𝑆𝑀6, even though 𝜌2(𝑆𝑀6) 

>𝜌2(𝑆𝑀1) when passive light (𝜆 = 1064 nm) propagates in the MCF (see Figure 6-9). At 3.3 W 

pumping level, 𝛾1= 12 dB and the gain factor of 𝑆𝑀1 is 2 dB higher than𝑆𝑀6. 

 
Figure 6-10: Measured gain factor 𝛾𝑛 of individual supermodes 𝑆𝑀𝑛as function of the pump 

power. 

To confirm this measurement, a second CFM analysis was performed (using the far-field 

imaged on the CDD Figure 6-8(b)) at a fixed pump power of 3.3 W. Results are plotted in Figure 

6-11 showing that 𝜌2(𝑆𝑀1)> 𝜌
2(𝑆𝑀6). This confirms that 𝑆𝑀1 has a higher gain factor compared 

to 𝑆𝑀6 with 𝜌2(𝑆𝑀1) = 40 % while 𝜌2(𝑆𝑀6) = 25% The corresponding amplified seed profile 
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recorded at 3.3W pump level with CCD1 is shown in Figure 6-11. The good radial uniformity is 

consistent with the dominant 𝑆𝑀1. This procedure can easily be extended to investigate gain 

dynamics during amplification in most multi-mode fiber amplifiers. 

 
Figure 6-11: Mode analysis of the seed when amplified using 3.3. W of pump power. The ear-field 

of the beam emerging the MCF and measured with CCD1 is included. 

6.3.2.2 Perturbed MCF 

The relative values of 𝜌2(𝑆𝑀5) and 𝜌2(𝑆𝑀7) shown in Figure 6-11 did not change 

considerably under pump amplification. However, their relatively low MP values (𝜌2 ~10%) did 

not allow to accurately align the pinhole at the correlation answer and no gain factor could be 

measured. In this paragraph, the MCF has been intentionally perturbed in order to excite different 

combinations of supermodes. The goal was to evaluate the influence of the external environment, 

critical source of fluctuations in multi-mode fiber amplifiers, on the gain distribution and later on 

the stability of the emission. 

The gain factor measurement has been repeated after inducing first localized bending and 

then transverse stress on the 90 cm long MCF segment. In each case, the supermodes have been 
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decomposed (pump OFF using the CFM method shown in Figure 6-8(b)) and the beam emerging 

the MCF was monitored on CCD1. Results are summarized in Figure 6-12(a) and (b) respectively. 

The distortions visible on the measured beam profiles indicate a higher supermode mixture guided 

in the MCF due to the external perturbations. This is verified with the MP measurements showing 

that 𝜌2(𝑆𝑀7) = 25% is dominant when a coil perturbation is applied to the MCF while ~40% of 

the remaining power is distributed among 𝑆𝑀1 and 𝑆𝑀6 (Figure 6-12(a)). 

 
Figure 6-12: (a)&(b): Mode analysis of the seed laser propagating in the MCF (pump OFF) which 

is first bent and then experiences transverse stress respectively. (c)&(d): Measured 

gain factor in the excited supermodes as function of pump power corresponding to 

the cases where the MCF is first bent and then experiences transverse stress. 
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Further perturbing the MCF applying transverse stress (Figure 6-12(b)) results in a relatively 

uniform distribution of the power among several supermodes (apparition of SM5).The overall 

measurement stability is worth noting even after perturbation. Grey bars indicate supermodes 

carrying a MP too low to allow gain factor measurement. 

In each MCF situation, the gain factor 𝛾𝑛 was measured for the supermodes represented by 

the colored bars in Figure 6-12(a) and (b) and plotted as function of pump power. Results are 

shown in Figure 6-12(c) and (d) using a matching color code. According to the measurement, 𝑆𝑀1 

has the highest gain factor (𝛾1 = 7.6 dB and 8.7 dB) followed by 𝑆𝑀6 (𝛾6 = 7.4 dB and 8.5 dB), 

regardless of the external perturbation applied to the MCF. Furthermore, it can be noted that, as 

the pump power increases, no gain-crossing was measured between the supermodes. As a result, 

two main observations can be done: 

 The measured amplified mode content significantly differs from the passive mode 

combination guided in a multi-mode fiber device.  

 The gain distribution among the supermodes is not influenced by the external 

perturbations applied on the MCF (𝛾1 > 𝛾6). 

These results indicate that the combination of amplified modes is defined by the gain profile of the 

MCF. In comparison, the combination of guided modes (passive light propagation) depends on the 

physical core-cladding boundaries. 

In conclusion, using a first-of-a-kind experiment, the gain factor in individual supermodes 

was measured. From the results, it is clear that, in order to investigate fiber laser dynamics, the 

mode analysis should be performed not only in an active fiber (taking into account the gain profile), 

but most importantly during laser emission (or light amplification) since the gain distribution in a 

multi-mode system might be mode-dependent.  
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However, to date, even though the number of published studies reporting modal 

decomposition in specialty fibers keeps increasing, most mode analysis have been performed in 

passive fibers [87], [89], [92], [116] or in active fiber using passive seeding light sources [202]. 

The following section provides more details on the current limitation and proposes the first results 

of supermode analysis during laser emission of a monolithic MCF laser.   

6.4 Real-time decomposition of lasing supermodes 

The design of active specialty fibers used as gain medium in laser cavities is tailored 

according to the targeted output performances. One striking example is the use of LMA fiber 

designs to achieve power scaling [90], [120], [203]. When developing novel specialty fibers, tools 

to measure individual lasing modes and their dynamics during laser operation could directly 

contribute to finely tune the fiber design to improve the output performances and uncover the 

lasing modes dynamics in few-modes fiber lasers. 

However, to date, only a few approaches to measure the transverse modes during laser 

emission were reported. For example, a method using a fiber Bragg grating inscribed in an active 

few-modes fiber in combination with a spectral grating to disperse the transverse modes has been 

demonstrated [204]. However, this approach is limited to active fibers guiding only a few non-

degenerated modes. In addition, it does not allow for a direct reading of the individual MP values 

and provides no information regarding the modal phases. A second method required the use of 

high speed cameras which represent a considerable financial investment [86]. In addition, most of 

the mode analysis techniques detailed in Section 3.1 cannot be implemented to study lasing modes. 

For example, S2 imaging can only measure the modes in laser beams of few tens of nanometers of 
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bandwidth [77] or emitting narrow line-width and tunable emission [93] and requires a time 

consuming post-data processing. 

The most promising technique is CFM, capable to accurately decompose a wide variety of 

narrow line-width laser beams including highly multi-mode beams and offering a real-time reading 

of the MP values 𝜌𝑛
2, of the intermodal phases 𝜙𝑛 and the ability to reconstruct the total beam in 

real-time [79]. In the following section, results of the first supermode decomposition during laser 

emission in a monolithic MCF laser cavity are presented using CFM analysis. This approach can 

be generalized to evaluate any multi-mode fiber laser beam. 

6.4.1 Experimental setup and in-depth laser characterization 

A schematic of the complete experiment is presented in Figure 6-13. It can be decomposed in two 

main sections: the MCF laser and the mode analysis diagnostic. The monolithic fiber laser is 

similar to the amplifier system previously detailed in Figure 6-8 except that the PC was replaced 

by a fusion spliced fiber chain made with the MMF delivering the pump light, a fiber Bragg grating 

(FBG) written in SMF, and the 90 cm long segment of Yb-doped 7-cores fiber. The FBG is highly-

reflective (HR FBG with R = 99.7%) at the Bragg wavelength 𝜆 = 1029.65 nm across a spectral 

bandwidth of =162 pm. Also, a residual pump (RP) filter (long pass at 𝜆 = 1 𝜇m) was used to 

block more than 98% of the residual pump. The cavity was formed between the HR FBG and the 

flat cleaved MCF. While the HR FBG provides a selective feedback to the MCF center core, and 

the Fresnel reflection at the MCF flat cleave is uniform among all the cores. 
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Figure 6-13: Schematic of the monolithic MCF laser formed by a HR FBG in SMF and the flat 

cleaved MCF facet in a cladding pumped configuration using a MMLD. The CFM 

diagnostic is identical to Figure 6-8(a) and (b). A residual pump (RP) filter replaced 

the BP. 

Prior to discuss the lasing modes analysis results, the laser cavity is qualitatively described using 

the passive characterization of the MCF presented in Section 6.1. A zoomed-in section of the 

passive transmission measurement presented in Figure 6-5(a) is shown in Figure 6-14. After 

propagation through the 90 cm long segment of MCF fusion spliced with the SMF, the period of 

the MMI pattern is Δ𝜆 = 1 nm ± 0.1. At specific wavelength, called Self-Reproduction Wavelength 

(SRW), light transmission from the MCF into the SMF is maximum. This periodic phenomenon 

is also known as self-imaging, previously presented in Section 2.3, indicating that, for certain light 

wavelengths, the initial phase relation between the supermodes is retrieved after propagating along 

the 90 cm long MCF segment. The periodicity of the SRW, indicated in Figure 6-14, is identical 

to the MMI period of Δ𝜆 = 1 nm ± 0.1. In the MCF laser cavity (Figure 6-13), this translates into 

maximum FBG feedback for lasing wavelength corresponding to SRW. As a result of the MMI in 

the MCF, tuning the laser wavelength is expected to impact the cavity feedback and thus influence 

the laser performances. In practice, tuning the MCF laser emission has been achieved by 

temperature tuning the HR FBG after fixing it on a hot plate. 
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Figure 6-14: Zoom-in from Figure 6-5(a) showing the MMI pattern in the 90 cm long segment of 

MCF as a function of the light wavelength. Two Self-Reproduction Wavelength 

(SRW) at which in initial phase relation between the supermodes is reproduced are 

indicated. This phenomenon is periodic with Δ𝜆 = 1.1 nm. 

 
Figure 6-15: (a) Stabilization unit around the MCF laser cavity. The red arrow indicates the 

direction of the laser emission. (b) Hot plate used for FBG temperature tuning. 

In addition, a stabilization unit has been fabricated to isolate the MCF laser from external 

fluctuations and to ensure stable and reproducible laser performances while tuning the emission 

wavelength. A laboratory picture of the experiment is presented in Figure 6-15. The MCF is 
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inserted in a Fused Silica capillary and placed on a thermally isolated holder (white rail in Figure 

6-15). 

The laser emission wavelength was tuned by temperature tuning the HR FBG from room 

temperature, up to 220°C. For several tuning conditions, the laser threshold and slope efficiency 

have been recorded for various pumping levels. The results are plotted in Figure 6-16 in black and 

blue respectively. The SRW values previously determined from the MCF transmission 

measurement in Figure 6-14 are indicated using grey lines in Figure 6-16 for visual aid. While 

tuning the emission wavelength of the MCF laser, the measured values of the laser thresholds and 

slope efficiencies vary following a quasi-periodic behavior. 

 
Figure 6-16: Measured MCF laser output performances including lasing threshold (blue) and slope 

efficiency (black). 

The lowest lasing threshold (𝑃𝑃𝑢𝑚𝑝 = 3.65 W) and slope efficiency (~10%) were achieved when 

the MCF laser emission was tuned to 𝜆 = 1030.37 nm (red markers in Figure 6-16) which 

corresponds to one of the SRW value previously determined in Figure 6-14. This result is in good 

agreement with the maximum of transmission in the SMF resulting in an efficient selective FBG 
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feedback in the MCF center core. On the other hand, within the laser tuning range, two lasing 

wavelengths corresponding to 𝜆 = 1029.70 nm and 𝜆 = 1030.87 nm were characterized with the 

lowest efficiency and highest threshold levels. Indicated using green markers in Figure 6-16, these 

two lasing wavelengths are located at half the SRW values. At these wavelengths, (transmission 

minima in Figure 6-14), the cavity feedback is distributed among all the cores at the MCF flat 

cleave whereas only the center core experiences feedback at the other MCF end which results in 

lower laser performances. As a result, a periodic behavior of the MCF laser output performances 

was measured indicating preferred emission wavelengths with low lasing threshold and high slope 

efficiency reproduced at intervals of Δ𝜆 ~1 nm ± 0.1 corresponding to the MMI measured in Figure 

6-14. It is important to note that the tuning range of laser emission wavelengths presented in Figure 

6-16 was limited by the temperature sustained by the HR FBG (maximum around 240°C). 

As a result, the ability to reach distinct MCF lasing regimes by simply controlling the 

wavelength tuning of the laser emission offers a particularly attractive platform to perform 

decomposition of lasing supermodes. 

6.4.2 Lasing modes analysis: results and discussion 

The MCF laser beam has been decomposed for different tuning conditions while 

maintaining a fixed output power above lasing threshold. First, lasing mode analyses results have 

been compared after tuning the laser at two wavelengths separated by half the MMI period. Results 

of the distribution of the MP values 𝜌𝑛
2 among the 7 supermodes in the MCF laser are summarized 

in the bar diagram in Figure 6-17 in red and green respectively (corresponding to the colored 

markers in Figure 6-16). The standard deviation, represented with the black line, shows a good 
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measurement stability over time. The high efficiency and low lasing threshold laser beam emitting 

at 𝜆 = 1030.37 nm (shown in red in Figure 6-16 and Figure 6-17) contains a significantly higher 

contribution of 𝑆𝑀1 and 𝑆𝑀6, the two supermodes with non-zero intensity in the center core (see 

Figure 6-3), than the other supermodes with 𝜌2(𝑆𝑀1) = 22% and 𝜌2(𝑆𝑀6) = 41%. On the other 

hand, when emitting at a wavelength interval of half the MMI period (𝜆 = 1030.87 nm shown in 

green), the total MCF laser power is distributed more evenly between all the 7 supermodes, each 

one being responsible for ~20% of the laser power. More interestingly, the laser beam profiles 

corresponding to each modal decomposition have been recorded with CCD1 and are presented in 

the inset. The differences between the measured laser intensity profiles already indicate that 

different combinations of modes are simultaneously lasing. The differences between the laser 

power distributions at SRW (red) and half SRW (green) arise from the different cavity feedbacks. 

 
Figure 6-17: Decomposed MCF laser power among the 7 supermodes at two tuning wavelengths: 

𝜆 = 1030.37 nm (in red), corresponding to a low lasing threshold, and at a highly 

efficient laser wavelength 𝜆 = 1030.87 nm (in green) located at half the MMI period 

(see Figure 6-16). For each tuning wavelength, the MCF beam profiles recorded with 

CCD1.are presented in inset. 
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To complete this study, a second measurement of the laser emitting at half the SRW was 

performed after further tuning the FBG temperature. In this case, the decomposition of two MCF 

laser beams characterized with low efficiency and high threshold (indicated with the two green 

markers in Figure 6-16) are compared in Figure 6-18. For each tuning condition, the MCF laser 

beam was recoded with CCD1 and is presented in inset. Both laser beams present comparable 

profiles indicating that similar laser power distribution among the supermodes can be expected. 

This is confirmed from the CFM measurement presenting strong similarities between the two 

beams, both containing a relatively well distributed MP in all the 7 supermodes. 

 
Figure 6-18: Decomposed MCF laser power among the 7 supermodes at two tuning wavelengths 

located at half the SRW: 𝜆 = 1029.70 nm (green) and 𝜆 = 1030.37 nm (striped green) 

corresponding to high lasing threshold and low efficiency lasers (green markers in 

Figure 6-16). For each tuning wavelength, the MCF beam profiles measured with 

CCD1 are presented in inset. 

To conclude, an experiment to perform lasing mode decomposition in real time was 

demonstrated and several regimes of the MCF laser were investigated. This technique shows a 

high potential to be extended to investigate multi-mode fiber lasers in general. In addition, it offers 

the possibility to measure the lasing modes while increasing the pump power. This would be of 
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particular interest to characterize and eventually prevent modal instabilities which are currently 

limiting the output power level of fiber lasers [121], [123], [150]. 

6.5 Outlook: temporal effects in monolithic MCF lasers 

Pulsed fiber laser sources delivering ultra-short pulses, high peak power in Q-switched or 

mode-locked regimes delivering pulse durations as short as femtosecond are nowadays common 

tools in industry and research environments [205]. While several techniques have been 

successfully employed to generate mode-locking from fiber lasers, they use external devices and 

sometime free-space equipment such as active amplitude or phase modulators, semiconductor 

saturable absorbed mirrors (SESAMs), carbons nanotubes, grapheme, etc… which can 

considerably increase the complexity and the cost of the laser cavity.  

Non-linear (NL) effects in optical fibers have been studied for several decades [206]. The 

long propagation length and small core sizes characteristics of fiber-based systems are favorable 

to the creation of NL effects such as stimulated Raman Scattering (SRS), Stimulated Brillouin 

Scattering (SBS), Self-Phase modulation (SPM), Cross-Phase Modulation (XPM) and Four-Wave 

Mixing (FWM) when using intense light beams. The goal of this section is not to provide an 

extensive overview of all NL effects in fibers and their applications but rather to focus on a 

particular phenomenon called Self-Mode Locking (SML). The first demonstration of self-

modulation effect in Q-switched fiber laser has been reported in 1993 by Myslinski et al. [207] 

where stable Q-switch operation was obtained as a result of inter-mode beating and SPM. SML 

has been demonstrated in all-fiber Fabry Perot cavities [208]. More recently, the interest in SML 

fiber lasers has significantly increased, motivated by the ability to generate stable trains of 

ultrashort pulses in a monolithically integrated all-fiber system. Luo et al. demonstrated a SML 
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Raman fiber laser [209] and Liu et al. presented a SML fiber laser emitting at 2 𝜇m wavelength 

from a simple linear cavity [210]. Moreover, numerical studies predicted that NL effects occurring 

in MMFs such as GIMF and MCF offer attractive switching and saturable absorption capabilities 

to be used in mode-locked fiber lasers [211], [212]. 

Motivated by the interest in SML fiber lasers, the next section presents the first observation 

of self-pulsing, pulse breaking and mode-locking in a linear MCF laser cavity. 

6.5.1 Presentation of the monolithic MCF laser 

The all-fiber MCF laser cavity used in this experiment is schematically presented in Figure 6-19. 

It uses the same components as the cavity in Figure 6-13 with the addition of a low reflector (LR) 

FBG written in SMF providing 21 % feedback at =1029.95 nm (Δ𝜆 = 0.05 nm). In this 

configuration, both FBGs are fixed on hot plates in order to temperature tune the laser wavelength 

across a total bandwidth of 1.4 nm (corresponding to a temperature change from room 23°C to 

220°C), resolving over one MMI period (Δ𝜆 = 1 nm ± 0.1).  

 
Figure 6-19: Schematic of the monolithic MCF laser with: MMLD: Multi-Mode Laser Diode; HR: 

High Reflector; LR: Low Reflector FBGs. 

The following results are similar to the previous section focused on the study of a MCF 

laser with HR FBG and flat cleaved output. The reason behind this measurement is due to the fact 

that, while the MMI period remains constant, repositioning the MCF (for example after splicing 

with the HR FBG), results in a change in the SRW values. Thus, the lasing threshold of the new 
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monolithic MCF cavity has been recorded at the SMF output for various tuning conditions. Results 

are plotted as function of the tuned laser emission wavelength (blue line) and shown in Figure 

6-20. The emission spectrum from the MCF laser operating above threshold at 𝜆 = 1031.27 nm 

has been recorded with an OSA. Results are shown in inset of Figure 6-20 resulting a 3 dB 

bandwidth of 52 pm, dictated by the bandwidth of the LR FBG. For visual comparison, the 

transmission through the new laser chain has been plotted on the same scale (black line), showing 

a transverse shift of the SRW values due to the repositioning of the laser chain. For examples, 

previous MMI maxima at 𝜆 = 1030.37 nm has shifted to 𝜆 = 1031.27 nm. As expected, results on 

Figure 6-20 indicate a periodic behavior of the lasing threshold with a direct correspondence 

between threshold minima and MMI maxima (indicating that, at the interface between MCF and 

SMFs, the light is mainly in the MCF center core). The higher uniformity of the lasing threshold 

and the increased modulation depth compared to the results in Figure 6-16 are related to the highly 

selective feedback imposed by both FBGs. 

 
Figure 6-20: Measured laser threshold plotted against the laser emission wavelength (blue line) 

compared with the MMI pattern (black line). The laser emission spectrum measured 

at 𝜆 = 1031.22 nm is shown in inset with a 3 dB bandwidth of 52 pm. 
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6.5.2 Towards self-mode locked monolithic MCF laser cavity 

The temporal response of the MCF laser has been measured directly from the SMF output 

using a fast photodiode (PD) as well as a powermeter and an OSA. The Free Spectral Range (FSR) 

of an optical resonator Δ𝜈, is defined by 

𝛥𝜈 =
𝑐

2𝑛𝐿
 ( 52 ) 

with 𝐿 the cavity length, 𝑛 the refractive index of the propagation medium and 𝑐 the speed of light. 

The FSR corresponds to the frequency spacing of the longitudinal modes. The cavity round-trip 

time 𝜏𝑐 can be defined as 𝜏𝑐 = 1/𝐹𝑆𝑅. The MCF cavity length is approximately 4 meters. 

Assuming 𝑛 = 1.45 for the refractive index of Fused Silica, the corresponding cavity roundtrip 

time is expected to be 𝜏𝑐 ~40 ns. In this section, the MCF laser emission wavelength was fixed to 

𝜆 = 1031.27 nm corresponding to a MMI maxima. 

 
Figure 6-21: (a)-(d) Temporal response measured at the output of the 4 m long MCF laser cavity 

as the pump power increases from 6 W to 7.4 W. 
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The PD connected to an oscilloscope were used to record the temporal response from the 

MCF laser as the pump power was increased. Results are presented in Figure 6-21(a) to (d). While 

no hint of self-pulsing was measured below lasing threshold (𝑃𝑃𝑢𝑚𝑝 = 3.05 W), clear pulse trains 

could be recorded above lasing threshold from 6 W (a) to 7.4 W (d). However, the measured pulse 

trains was also characterized by a fast jittering (on the order, or less than the 𝜇s scale). In order to 

identify the temporal effect responsible for this behavior, the pulse repetition rate as well as their 

FWHM were extracted from the measurements Figure 6-21(a) to (d) and results are plotted as 

function of the pump power and are presented in Figure 6-22(a) and (b) respectively. 

 
Figure 6-22: Measured FWHM pulse width and repetition rate for various pump powers after the 

4m long MCF laser cavity. 

As the pump power increased, the pulse FWHM decreased from 2.95 𝜇s to less than 2 𝜇s. On the 

other hand, the repetition rate, or FSR, increased from 54 kHz to ~80 kHz (corresponding to a 

cavity round trip time of 12.5 𝜇s and cavity length of 1.3 meter). These observations indicate that 

a phenomenon of saturable absorption occurred in the laser cavity resulting in the apparition of 
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unstable Q-switching regimes [210]. However, the high jittering of the pulse train and the 

mismatch in the measured cavity length indicate non-controlled and unstable pulsed regime. 

In order to stabilize and control the self-pulsing, the amount of NL in the laser cavity has 

been increased using 10 additional meters of SMF fusion spliced between the output end of the 

MCF and the LR FBG as shown in Figure 6-23. The front end of the laser as well as the MCF 

position remained unchanged. The total cavity length is now around 14 m corresponding to a cavity 

round-trip time of 𝜏𝑐 ~135 ns estimated using Equation ( 52 ). 

 
Figure 6-23: Monolithic MCF laser cavity with increased nonlinearities. 

The pulse train emerging the 14 m long laser cavity has been measured for various pump 

powers. Results measured at 𝑃𝑃𝑢𝑚𝑝 = 7.4 W and shown in Figure 6-24(a) can be directly compared 

to the temporal behavior of measured after the 4 m long cavity in Figure 6-21(d). As the cavity 

length increases from 4 to 14 m, the initial pulse train tends to look more chaotic. However, after 

zooming in the temporal response (shown in Figure 6-24(b)), one can see that the initial pulses 

(𝜏𝑐~12.5 𝜇s) break down into shorter pulses separated by 138 ns. According to the definition of 

the FSR in Equation ( 52 ), the corresponding cavity length was calculated to be 𝐿 = 14.3 meters, 

which is in good agreement with the experiment. As a result, pulse breaking with durations on the 

order of the cavity round trip time was measured after increasing the amount of nonlinearities in 

the MCF laser cavity by increasing to overall length. This pulse-breaking effect has been observed 
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in similar fiber laser cavities and is characteristic of the regime of unstable Q-switched mode-

locking [210]  

 
Figure 6-24: (a) Pulse train measured after the 14 m long MCF laser at pump powers of 7.4 W. (b) 

Zoom-in the pulse train measured in (a) showing the pulse break up and the 

establishment of unstable Q-switch mode-locking. 

The laser spectra emitted from the 4 meters long and 14 meters long MCF cavities were 

recorded with an OSA, limited by a 20 pm spectral resolution at fixed pump power of 7.4 W. 

Results are shown in Figure 6-25 in blue and red respectively. Even though the measured linewidth 

is on the order of the OSA resolution, which does not allow to make any assumption regarding the 

pulse duration, a small broadening of the peak FWHM could be measured (from 48 to 58 pm 

width). Similar effect was reported by Liu et al. in monolithic fiber laser cavities and is consistent 

with an increase of the nonlinearities in the laser cavity [210]. Finally, to complete the 

characterization of the Q-switched mode-locked regime, the laser average output power 𝑃𝑎𝑣 and 

corresponding pulse energy 𝐸𝑃 were calculated according to 

𝐸𝑝 =
𝑃𝑎𝑣
𝑓𝑟𝑒𝑝

 ( 53 ) 
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with 𝑓𝑟𝑒𝑝, the repetition rate. Results presented in Figure 6-26 correspond to the Q-switched mode-

locked regime in Figure 6-24 and indicate that pulse energies up to 10 nJ were achieved. 

 
Figure 6-25: Measured laser emission spectrum at fixed pump power for two different cavities 

lengths showing a hint of spectral broadening. 

 
Figure 6-26: Measured average output power and calculated pulse energy from the 14m long laser 

cavity. 

In summary, the first hints towards self-mode-locked operation of a linear MCF laser cavity 

have been presented. To discuss regarding future outlooks, several steps can be followed in order 

to generate and characterize a well-established and stable SML regime such as: 
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 Increasing the fiber laser cavity length, e.g. by increments of 10 meters, and 

characterize the pulse train. 

 Accurately measure the pulse duration using typical autocorrelator experiment. 

In addition, it should not be forgotten that results from the temporal characterization of this MCF 

laser have only been recorded at the MMI maximum. A similar study could be performed at MMI 

minimum in order to compare and evaluate the influence of the transverse lasing modes on the 

temporal dynamics of the system. As a result, by wavelength tuning of the laser emission, one 

could also tune the temporal dynamics emitted by the MCF laser. 

6.6 Summary and outlook 

In this Chapter, the mechanisms of light propagation, supermodes formation, mode 

competition, laser dynamics and temporal effects were investigated in a novel specialty fiber 

design made with 7 single-mode Yb-doped cores.  

Due to the small pitch values (Λ = 9.3 𝜇m), the light coupled in the center core evanescently 

couples into the neighboring cores leading to the formation of supermodes. Analytical and 

experimental results demonstrated that, using an input fiber matched to the center core of the MCF, 

most of the light was distributed among 𝑆𝑀1 and 𝑆𝑀6, the only two supermodes with non-zero 

intensity in the center core. 

Furthermore, three monolithic fiber laser cavities have been fabricated in order to 

investigate (a) the gain distribution among individual supermodes during light amplification, (b) 

the dynamics associated with multi-supermode lasing and (c) self-pulsing and Q-switched mode 

locking effects. 
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The CFM technique (see Section 3.3) was used to measure mode-resolved gain coefficients 

using a monolithic MCF amplifier scheme. Results demonstrated a non-uniform distribution of the 

gain factor among the amplified supermodes where the contribution of 𝑆𝑀1 dominates, followed 

by 𝑆𝑀6. Furthermore, applying external coil and stress on the MCF, i.e. changing the boundary 

conditions, did not perturb the relative gain distribution indicating that, in multi-mode doped 

fibers, the amplified supermode content in the MCF seems to be mainly dictated by the gain profile 

of the Yb atoms across the 7-cores (not perturbed by external coil and stress). [23] 

Then, the first CFM analysis of a multi-mode laser during operation has been demonstrated. 

Using this technique, the dynamics of the lasing supermode in the MCF could be measured by 

changing the feedback conditions of the laser cavity via tuning of the laser center wavelength of 

the laser emission. Two laser regimes were recorded and the fraction of laser light carried by each 

supermode was measured. Within this study reported in Section 6.4, two main results were 

reported for the first time with (a) the demonstration of lasing mode decomposition using CFM 

and (b) the in-depth characterization of lasing dynamics in coupled-cores active MCF [213].  

Finally, Section 6.5 provides an outlook on temporal effects in monolithic MCF lasers with 

the first demonstration of self-pulsing and Q-switched-mode-locking, delivering pulse energies 

estimated on the order of ~10 nJ at ~ 10 kHz. 

To give an outlook, further increasing the amount of non-linearities in the monolithic MCF 

laser cavity could be an approach employed to obtain controlled and stabilize self-mode-locking. 

In addition, since this MCF laser was demonstrated to be a few-transverse modes system, it would 

be of interest to determine the influence of the multi-mode lasing on the temporal effects. 
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CHAPTER 7: DISSERTATION SUMMARY AND OUTLOOK 

The research work presented in this dissertation has directly contributed to several branches 

of the field of optical fibers, in particular, to specialty designed optical fibers. In this chapter, 

striking results in the area of fiber design, fiber fabrication, fiber characterization and fiber lasers 

are summarized and outlook is given. 

The driving force behind the development of novel fiber designs, tailored to enable the 

delivery (or the generation) of specific light properties for targeted applications was presented in 

details in Chapter 1 and Chapter 2, experimentally and numerically respectively. In Chapter 1, a 

concrete example of novel fiber design, the ring-PCF, realized in CREOL, was used to illustrate 

the general steps of (a) fiber creation, (b) fiber design and (c) fiber fabrication, resulting in the 

introduction of novel micro-structured specialty fibers. Chapter 2 provided the numerical tools 

used to describe the impact of the fiber design as well as the effect of external perturbations (e.g. 

coiling, coupling alignment, etc) on the propagating light and on the guided transverse mode. 

Delivering specific properties of light using specialty fiber design stands for controlling 

the guided mode content. Thus, to accurately characterize specialty fiber designs, experimental 

diagnostics able to access individual guided modes, such as the S2 imaging technique and the 

Correlation Filter Method (CFM), were introduced in Chapter 3. In this context, extended mode 

decomposition capabilities beyond the limits set by the actual mode analysis techniques were 

reported, enabling to reconstruct the amplitude and phase profiles of individual guided modes, to 

calculate total vector-beams. In addition, it has been demonstrated that, individual transverse 



 

155 

 

modes carrying between ~0.01% and ~30% of the light can be resolved with unmatched accuracy 

when employing S2 imaging [108][109].  

These techniques have been applied in Chapter 4. In Section 4.1, a prototype LCF design 

was demonstrated to satisfy the single-mode purity and beam quality requirements for fiber laser 

applications. In addition, it was possible to demonstrate, for the first time, that the LCF operates 

in the single-mode regime for wavelengths comprised between 1 and 2 𝜇m. [22]. On the other 

hand, a second mode analysis study, reported in Section 4.2, was conducted to experimentally 

demonstrate, for the first time, the influence of the inner fiber design as well as the effect of 

external fluctuations on individual guided modes propagating at 𝜆 = 2 𝜇m. To do so, the guided 

modes in three different LMA fibers designs, a SIF, a PCF and a LCF were resolved and compared 

[137]–[139]. As a result, tailored PCF and LCF designs delivered pure single-mode beam, 

outperforming the SIF design. In particular, the LCF delivered 𝜆 = 2 𝜇m light beams with > 99.9% 

single-mode purity within a mode-field area of ~ 1600 𝜇m2. with. To give an outlook, the methods 

employed in Chapter 3 and 4 can be further used to perform in-depth characterization of novel 

specialty fiber designs and characterize specific light properties. . 

Chapter 5 and Chapter 6 of this dissertation, were oriented towards the development of 

monolithic fiber laser systems, often limited by the poor compatibility between conventional fiber 

devices and specialty fiber designs. In Chapter 5, an all-fiber device, using selected length of multi-

mode graded index fiber, was demonstrated to perform as a beam expander. Striking results, 

including the ability to improve light transmission by a factor of 11 dB between two fibers, a 

single-mode fiber and a LMA PCF, mismatched by a factor 18, were reported. The MFA devices 

were furthermore used to assemble the first monolithic fiber lasers employing FBGs in SMF, to 

provide the cavity feedback, and an active LMA PCF, used as the gain medium. Mode-matched 
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fiber lasers outperformed the directly-coupled cavities. [170]–[172]. This all-fiber MFA approach 

offers a simple, robust, cost-effective and scalable alternative towards the systematic integration 

of specialty fibers in monolithic fiber lasers. 

The second type of monolithic fiber laser system studied in Chapter 6 of this dissertation 

utilized a specialty gain fiber made with 7 single-mode, Yb-doped, cores in which two out of seven 

supermodes were excited. This multi-supermode MCF laser system was used, for the first time, to 

investigate novel laser output performances as well as mechanisms related to lasing dynamics, 

transverse mode competition and temporal effects in details. The CFM mode analysis technique 

presented in Chapter 3 was employed to demonstrate (a) the first mode-resolved gain analysis in a 

two-mode MCF amplifier [23] and (b) the dynamics associated with multi-supermode lasing [213]. 

Both of these approached can be used to investigate any gain competition mechanism of lasing 

dynamics in few-modes fiber lasers. The outlook on this novel monolithic MCF laser cavity would 

be to further investigate temporal effects leading, for example, to a novel laser source for self-

mode locking. 

  



 

157 

 

APPENDIX A: 

ANALYTICAL MODEL OF MULTIMODE INTERFERENCE 

IN OPTICAL FIBERS
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The S2 imaging mode analysis technique is the spatially resolved measurement of the 

spectral interference in few-modes fibers. According to the The electromagnetic field 𝐸(𝑟, 𝑧) 

emerging from an optical fiber is the sum of the individual contributions of the 𝑛 guided modes 

𝐸(𝑟, 𝑧) =  ∑ 𝛹𝑛(𝑟, 𝑧)

𝑛𝑚𝑎𝑥

𝑛=1

 ( 54 ) 

with Ψn(r, z) the complex amplitude of the nth transverse mode expressed as 

𝛹𝑛(𝑟, 𝑧) = 𝑐𝑛𝜑𝑛(𝑟)𝑒
𝑖𝛽𝑛𝑧 ( 55 ) 

with 𝛽𝑛 the propagation constant of the 𝑛𝑡ℎ mode, z the propagation length, 𝜓𝑛(𝑟) the mode 

amplitude and 𝑐𝑛, the field excitation coefficient defined by the overlap integral relation 

𝑐𝑛 =
∫𝐸(𝑟, 𝑧). 𝜑𝑛(𝑟)𝑑𝑟

√∫𝜑𝑛(𝑟)2𝑑𝑟
 ( 56 ) 

When performing S2 imaging, the light intensity at different locations across the near-field 

plane is measured using an optical spectrum analyzer. The intensity of the light delivered by the 

few-mode fiber of length L can be expressed by 

𝐼(𝑟) = |𝐸(𝑟, 𝐿)|2 = |∑ 𝛹𝑛(𝑟, 𝐿)

𝑛𝑚𝑎𝑥

𝑛=1

|

2

 ( 57 ) 

For simplicity, let’s consider a fiber guiding only two transverse modes. It is however important 

to mention that the following mathematical developpment can be generalized to n guided modes. 

The total field of the beam emerginf the fiber can be written using the following expression 

𝐸(𝑟, 𝑧) = {𝜓0,1(𝑟)𝑒
𝑖𝛽1𝑧 + 𝜓0,2(𝑟)𝑒

𝑖(𝛽2)𝑧} ( 58 ) 

The equation describing the measurable beam intensity is then 

𝐼(𝑟) = |𝐸1(𝑟, 𝑧) + 𝐸2(𝑟, 𝑧)|
2 ( 59 ) 
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𝐼(𝑟) = 𝐼1(𝑟) + 𝐼2(𝑟) + 2√𝐼1(𝑟)𝐼2(𝑟) 𝑐𝑜𝑠(𝛥𝜙). ( 60 ) 

Similar to a two beam interference, √𝐼1𝐼2 = 𝐶 represents the fringe contrast and Δ𝜙 is the period 

of the cosine oscillatory function. According to Equation ( 58 ), the argument of the cosine function 

is a function of the light wavelength 𝜆 and of the fiber length 𝑧 = 𝐿 expressed with 

𝛥𝜙 = (𝛽2 − 𝛽1)𝐿 ( 61 ) 

𝛥𝜙(𝜆) =
2𝜋

𝜆
(𝑛𝑒𝑓𝑓,2 − 𝑛𝑒𝑓𝑓,1)𝐿 ( 62 ) 

This periodic behavior is called Multi-Mode Interference (MMI). Each combination of two 

modes interfering will results in a MMI pattern with different periodicity since it depends on the 

effective mode indices. The MMI can be experimentally measured after recording the intensity of 

light carrying more than one transverse mode. MMI can be observed after measuring the light 

intensity after propagating various length of fiber at a fixed wavelength or by measuring the 

spectrum of light propagating in a fixed fiber length. This last principle is used in S2 imaging mode 

analysis technique. As a result, the total intensity profile 𝐼(𝑟) of the light emerging a few-modes 

fiber can be numerically reconstructed. To do so, the MMI periodicity Δϕ can be measured using 

an OSA or a spectrometer. On the other hand, the intensities of each transverse modes 𝐼1 and 𝐼2 

can be also recognized as the values of the normalized mode power 𝜌1
2 and 𝜌2

2 which are extracted 

from S2 imaging measurements. As a result, the measured values of Δϕ and C can be used to 

reconstruct the total intensity profile of the two interfering modes (or 𝑛 interfering modes) and 

predict or verify the total beam profile measured with a CCD. Two examples are shown in Figure 

A- 1 illustrating the case of where the FM 𝐿𝑃01and the first HOM 𝐿𝑃11interfere. In Figure A- 1(a), 

the mode powers are assumed equal with 𝐼1 = 𝐼2 = 0.5 while the value of the intermodal phase 

Δ𝜙 varies. On the other hand, Δ𝜙 is fixed to the value of 𝜋/2 in In Figure A- 1(b) while the ration 
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between 𝐼1 and 𝐼2 is changed. This powerful calculation tool can be used as a reference, in 

particular when measuring beams made of complex mode mixtures exhibiting a complex intensity 

profile. 

 
Figure A- 1: Calculated intensity profiles resulting from the interference between 𝐿𝑃01 and 𝐿𝑃11for 

(a) different intermodal phases and constant mode ration and then for (b) various 

mode ratio and a fixed intermodal phase of 𝜋/2. 
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APPENDIX B: 

DETAILED PROCEDURE FOR S2 IMAGING DATA ANALYSIS 

AND NUMERICAL EVALUATION OF THE MODE POWER COEFFICIENTS
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This appendix contains two major sections. First, the steps taken to process the 

measurement recorded during S2 imaging and extract individual mode powers, reconstruct the 

mode intensity and the phase profile are detailed. Then, the numerical methods to evaluate the 

mode power coefficients will be provided. 

 

 S2 imaging post-measurement processing 

The detailed experiment for S2 imaging mode analysis was shown in Figure 3-1. Using a 

probe fiber, the intensity signal at several locations across the near-field are recorded using an 

OSA. The example of a near field emerging a few-modes fiber is presented in Figure B- 1(a) 

corresponding to a combination of 60% of 𝐿𝑃01 and 40% of 𝐿𝑃11 with Δϕ = 𝜋 2⁄ . In Figure B- 

1(b), the typical spectral response measured at two locations across the near field indicated with 

black and green dots are plotted using black and green lines respectively. It clearly shows that the 

measured spectral response depends on the probe fiber position in the near field i.e. on the spatial 

overlap between the modes. 

 
Figure B- 1:calculated intensity profile of a beam comprising 60% of 𝐿𝑃01 and 40% of 𝐿𝑃11 with 

Φ = 𝜋 2⁄  in (a). In (b), typical spectral response at two out-of-phase locations 

indicated in (a). Calculated Fourier spectrum 𝐹(𝜏) indicating 𝑇𝐷𝐶 and 𝑇12, decoupled 

and used to decouple 𝐿𝑃11from 𝐿𝑃01. 
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As a result, the spectral response recorded in the center of the image, where only 𝐿𝑃01 is 

present is expected to be flat. In addition, the intermodal phase in Figure B- 1(b) shows the 

expected 𝜋 phase shift between the two lobes of the HOM 𝐿𝑃11. The intermodal phase is recorded 

for all traces measured across the near field and compared to the same reference. 

To evaluate S2 imaging results, the measured spectra are Fourier transformed. Since 

periodic functions in the frequency domain (i.e. MMI) result in sharp features in the temporal 

domain after Fourier processing, guided modes can be decomposed and identified according to 

their characteristic MMI period. This is schematically represented in Figure B- 1(c). The temporal 

scale of the Fourier spectra is labeled Differential Group Delay (DGD), expressed in sec/m and is 

defined as 

𝐷𝐺𝐷 =
𝛥𝜏12
𝐿

 ( 63 ) 

where Δτ12, indicated in Figure B- 1(c), corresponds to the modal group index of the two modes 

interfering, previously defined in Equation ( 27 ) and 𝐿 is the length of fiber used in the 

measurement. Replacing Equation ( 27 ) in Equation ( 63 ) results in an expression of the DGD in 

terms of effective index difference Δ𝑛𝑒𝑓𝑓 = 𝑛𝑒𝑓𝑓,1 − 𝑛𝑒𝑓𝑓,2 according to 

𝐷𝐺𝐷 =
1

𝑐
𝛥𝑛𝑒𝑓𝑓 . ( 64 ) 

Replacing the expression of Δ𝑛𝑒𝑓𝑓 in Equation ( 62 ) using the DGD term in Equation ( 64 ) results 

in the MMI periodicity expressed in terms of the DGD according to 

𝛥𝜙 = 𝜔. 𝐿. 𝐷𝐺𝐷 ( 65 ) 

where 𝜔 = (2𝜋𝑐)/𝜆 is the light frequency. As a result, the measured DGD, corresponding to two-

modes interfering in the Fourier domain, is directly proportional to the period of the MMI 

measured in S2 imaging. To illustrate the identification process of the two modes responsible for 
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each Fourier features, two parameters are introduced, labeled 𝑇𝐷𝐶 and 𝑇12. In the Fourier domain, 

these can be evaluated by recording the Fourier amplitude at the corresponding DGD for each 

spectral measurement. A parallel can be done with terms of the Equation ( 60 ) where 𝑇𝐷𝐶 

corresponds to the DC level of the spectral measurement of MMI such that 

𝑇𝐷𝐶 = 𝐼1 + 𝐼2 ( 66 ) 

and 𝑇12 is proportional to the contrast 𝐶 previously defines as 

𝑇12 = 𝐶 = 2√𝐼1√𝐼2 ( 67 ) 

Since the values of 𝑇𝐷𝐶 and 𝑇12 can be measured from the total Fourier spectra (i.e. the sum of all 

the Fourier spectral of each recorded spectral trace), Equations ( 66 )and ( 67 ) form a system of 

two equations with two unknown that can be solved to find 𝐼1 = 𝜌1
2 and 𝐼2 = 𝜌2

2. However, this 

approach is limited to two-modes interfering. In many few-modes fibers, several mode are 

simultaneously guided. Thus, a more complete numerical approach is required to resolve the 

individual mode powers from S2 imaging and will be discussed in Appendix C. 

There are two methods to identify the modes interfering at a Fourier feature 𝑇𝑛𝑚. First, one 

can numerically evaluate the DGD (Equation ( 64 )) at which the two modes interfere using the 

effective index values 𝑛𝑒𝑓𝑓,𝑛 obtained with a mode solver for the guided modes. Even though this 

calculation might help to verify the consistency of the results obtained from S2 imaging, its 

accuracy strongly depends on the accuracy of the mode solver and requires a deep characterization 

of the fiber prior to a mode analysis measurement. The second approach is to record the amplitude 

of the Fourier transform 𝑇𝑛𝑚 at a fixed DGD for each measurement across the fiber near-field. As 

a result, the amplitude profile of the HOM interfering at the DGD can be reconstructed and the 

mode can be clearly identified. The mode phase profile can also be reconstructed by measuring 
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the intermodal phase (see example in Figure B- 1(b)) for each measured spectrum. Examples of 

mode power evaluation, mode amplitude and phase profile reconstruction are detailed in this 

dissertation. 

 

 Numerical method for the evaluation of the mode power coefficients 

In this appendix, three different numerical approaches are proposed to evaluate the mode 

powers 𝜌𝑛
2 depending on different assumptions on the fiber and on the guided modes. To do so, 

the general case of 𝑛 modes interfering is considered. According to Equation ( 57 ), the intensity 

distribution of the field emerging a fiber guiding 𝑛 transverse modes can be generalized to 

𝐼(𝑟, 𝜆) = 𝑇𝐷𝐶 +∑∑
𝑇𝐴𝐶

𝑎𝑏

2
𝑐𝑜𝑠(𝛥𝜙𝑎𝑏(𝜆))

𝑁

𝑏=1

𝑁

𝑎=1

 ( 68 ) 

where, according to the examples provided in Appendix B, the Fourier amplitudes 𝑇𝐷𝐶 and 𝑇𝐴𝐶
𝑎𝑏 are defined 

by 

𝑇𝐷𝐶 = 𝐼1 + 𝐼2 +⋯+ 𝐼𝑁 ( 69 ) 

𝑇𝐴𝐶
𝑎𝑏 = 2√𝐼𝑎𝐼𝑏 ( 70 ) 

with 𝛥𝜙𝑎𝑏 already defined in Equation ( 62 ) and Equation ( 65 ). 

 

o Method 1: This evaluation procedure is best suited when most of the power is 

guided in the FM 𝐿𝑃01. 

Under this assumption, Equation ( 69 ) becomes 

𝑇𝐷𝐶 ≅ 𝐼𝐹𝑀 = 𝜌2(𝐿𝑃01) ( 71 ) 

In other words, 𝜌2(𝐿𝑃01), the mode power of the FM, can be directly measured as the Fourier 

amplitude of the DC peak at 𝐷𝐺𝐷 = 0 ps/m. A consequence of this strict assumption is that no 
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inter-modal coupling exist between the guided HOM. Thus, all the cross-terms 𝑇𝐴𝐶
𝑎𝑏 with 𝑎 ≠ 1 

are equal to zero (assuming the FM is considered as the mode #1, the first HOM as the mode #2, 

etc…). In practice, no Fourier feature is expected at the 𝐷𝐺𝐷 corresponding to two HOMs 

interfering and evaluated from Equation ( 64 ). 

Under these assumptions, the measured Fourier amplitudes 𝑇𝐴𝐶
𝐹𝑀,𝐻𝑂𝑀defined by Equation 

( 70 ) transform in 

𝑇𝐴𝐶
𝐹𝑀,𝐻𝑂𝑀 = 2√𝐼𝐹𝑀𝐼𝐻𝑂𝑀  ( 72 ) 

which further leads to 

𝑇𝐴𝐶
𝐹𝑀,𝐻𝑂𝑀 = 2√𝑇𝐷𝐶𝐼𝐻𝑂𝑀 ( 73 ) 

As a result, the mode power of individual HOMs can be evaluated from 

𝜌2(𝐻𝑂𝑀) =
𝑇𝐴𝐶

𝐹𝑀,𝐻𝑂𝑀2

4𝑇𝐷𝐶
 ( 74 ) 

This evaluation technique is particularly suitable to resolve weakly guided HOM content in few-

modes fibers. To date, most of the S2 imaging studies reported in the literature employ this 

approach to evaluate the mode powers. It is commonly known as Multi-Path Interference (MPI) 

defined as 

𝑀𝑃𝐼 = 10 × 𝑙𝑜𝑔{𝜌2(𝐻𝑂𝑀)} ( 75 ) 

However, as the amount of power carried by the HOMs increases, the initial assumptions are not 

fulfilled leading to an unappropriated evaluation procedure. 

A complete study has been demonstrated to determine the exact working range of this evaluation 

method as function of the power fraction guided in the HOM. 
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o Method 2: General case of 𝑛 modes interfering but where the intermodal 

coupling remains low. 

The general solutions of the system of two equations ( 69 ) and ( 70 ) can be expressed as 

𝐼1,2(𝑟) =
1

2
(𝑇𝐷𝐶 ±√𝑇𝐷𝐶

2 − ∑ (𝑇𝐴𝐶
𝑎𝑏)

2
𝑁

𝑎,𝑎≠𝑏

) ( 76 ) 

where 𝑎 and 𝑏 denote different guided modes. The solution 𝐼1 corresponds to 𝜌1
2, the mode power 

of the mode #1 corresponding to the positive solution. On the other side, 𝐼2 refers to the sum of all 

the remaining mode powers. Thus, this equation can be solved after several iterations. 

 

o Method 3: general analytical mode evaluation 

This approach can be employed regardless of the mode power distribution in the fiber. In the case 

of three guide modes (or more) labeled 1, 2 and 3, the mode power coefficients are obtained from 

the following system of 𝑛 equations corresponding to the 𝑛 guided modes: 

𝜌1
2 =

𝑇𝐴𝐶
12𝑇𝐴𝐶

13

𝑇𝐴𝐶
23  ( 77 ) 

𝜌2
2 =

𝑇𝐴𝐶
21𝑇𝐴𝐶

23

𝑇𝐴𝐶
13  ( 78 ) 

𝜌3
2 =

𝑇𝐴𝐶
31𝑇𝐴𝐶

32

𝑇𝐴𝐶
12  ( 79 ) 

However, for this approach to be applicable, the interference between HOMs must be 

measurable on the FT which is, in practice. Indeed, the complexity of the Fourier trace increases 

with increasing inter-modal coupling. 

These analytical concepts were inspired from the recent work by Otto et al. [113].
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APPENDIX C: 

COUPLED-CORE THEORY AND LIGHT PROPAGATION 

IN 7-CORES FIBER
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The mathematical development presented in this appendix was used to derivate the 

Equation ( 48 ) used in Section 6.2. 

Using a semi-analytical model based on the coupled mode theory [201], the beam 

propagation equation of the 7-core coupled fiber can be written as 

𝑑𝐸𝑖
𝑑𝑧

= −𝑖 (∑𝑀𝑖𝑗𝐸𝑗

7

𝑗=1

) ( 80 ) 

The eigenvectors 𝐸𝑖 of the coupling matrix Equation ( 80 ) correspond to the field of each of the 7 

transverse supermodes guided in the MCF. The corresponding eigenvalues are the effective 

propagation constants 

Mii = βi for 𝑖 = 1,…,7 ( 81 ) 

and the core-coupling coefficients defined as 

Mi1 = M1i = Mi,i−1 = c̃ for 𝑖=2,…,7 ( 82 ) 

where 𝑖 = 1 stands for the center core and 𝑖 = 2,…,7 represent the surrounding cores. 

In the present study, the input fiber is assumed to be a single-core, single-mode fiber. In the ideal 

case, is is assumed to be matched to the center of the MCF. As a result, only the eigenvectors 

overlapping with the center core (i.e. with non-zero center intensity) are excited and propagate in 

the MCF. Two eigenvectors propagate in the MCF under this excitation and are defined with 

𝐸1⃗⃗⃗⃗ = (
−1 + √7

1
⋮

) , 𝐸6⃗⃗⃗⃗ = (
1 + √7
1
⋮

)  ( 83 ) 

where the dots indicate that the 5 following values are equal to 1. The fields of the propagating 

supermodes can be defined as 

𝐸𝑖(𝑧) = 𝐸𝑖(0)𝑒
𝑖𝛽�̃�𝑧 ( 84 ) 
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with L the MCF length and the eigenvalues 𝛽�̃�, also called effective propagation constants and 

defined according to Equation ( 83 ) as 

𝛽1̃ = 𝛽 − (1 − √7)�̃� ( 85 ) 

𝛽6̃ = 𝛽 + (1 + √7)�̃� ( 86 ) 

The MCF transmission collected using the same single-core, single-mode matched fiber can be 

calculated according to 

𝑇 = |𝐸1
∗(0)𝐸1(𝐿) + 𝐸6

∗(0)𝐸6(𝐿)|
2. ( 87 ) 

As a result, the MCF transmitted intensity can be expressed as 

𝑇(𝜈) = 1 − 4𝑃1𝑃6 𝑠𝑖𝑛
2(2√7�̃�(𝜈)𝐿) ( 88 ) 

with 𝜈 the frequency of the propagating light and �̃� the coupling coefficient. Equation ( 88 ) is 

similar to the two-modes interference intensity function previously mentioned (Equation ( 60 )) 

with 𝑃1 = 𝜌1
2 and 𝑃6 = 𝜌6

2, proportional to the mode power in each supermode defined by 

𝑃1 = |𝐸1(0)|
2 =

(−1 + √7)
2

6 + (−1 + √7)
2 ≈ 31% ( 89 ) 

𝑃6 = |𝐸6(0)|
2 =

(1 + √7)
2

6 + (1 + √7)
2 ≈ 69% ( 90 ) 

The Taylor expansion of the transmission in defined by Equation ( 88 ) around the frequency 

dependent coupling coefficient �̃�(𝜈) can be written as  

𝑇(𝜈) = 1 − 4𝑃1𝑃6 𝑠𝑖𝑛
2(𝜙0 + 2𝜋𝜏0𝜈) ( 91 ) 

The phase term 𝜙0 and the delay 𝜏0 of the transmission Taylor expansion can be expressed by 

𝜙0 = 2√7�̃�(𝜈0)𝐿 − 2√7�̃�1𝜈0𝐿 ( 92 ) 
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𝜏0 =
√7

𝜋
�̃�1𝐿 ( 93 ) 

with 𝜈0 = 281.76 THz corresponding to 0
  = 1064 nm, the wavelength used in the study detailed 

in Chapter 6. The coefficient �̃�1 corresponding to the modal delay between the two propagating 

supermodes 𝑆𝑀1 and 𝑆𝑀6 and it can be calculated from the derivative of c with respect to the 

frequency. The coefficient, �̃�1 can also be identified as the inter-modal delay defined from 

Equation ( 27 ). 
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