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ABSTRACT 
 

 

The output power of fiber lasers has increased rapidly over the last decade. There 

are two major limiting factors, namely nonlinear effects and transverse mode instability, 

prohibiting the power scaling capability of fiber lasers. The nonlinear effects, originating 

from high optical intensity, primarily limit the peak power scaling. The mode instability, 

on the other hand, arises from quantum-defect driven heating, causing undesired mode 

coupling once the power exceeds the threshold and degradation of beam quality. The mode 

instability has now become the bottleneck for average output power scaling of fiber lasers. 

Mode area scaling is the most effective way to mitigate nonlinear effects. However, 

the use of large mode area may increase the tendency to support multiple modes in the 

core, resulting in lower mode instability threshold. Therefore, it is critical to maintain 

single mode operation in a large mode area fiber. Sufficient higher order mode suppression 

can lead to effective single-transverse-mode propagation. 

In this dissertation, we explore the feasibility of using specialty fiber to construct 

high power fiber lasers with robust single-mode output. The first type of fiber discussed is 

the resonantly-enhanced leakage channel fiber. Coherent reflection at the fiber outer 

boundary can lead to additional confinement especially for highly leaky HOM, leading to 

lower HOM losses than what are predicted by conventional finite element mothod mode 

solver considering infinite cladding. In this work, we conducted careful measurements of 

HOM losses in two leakage channel fibers (LCF) with circular and rounded hexagonal 

boundary shapes respectively. Impact on HOM losses from coiling, fiber boundary shapes 

and coating indexes were studied in comparison to simulations. This work demonstrates 
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the limit of the simulation method commonly used in the large-mode-area fiber designs 

and the need for an improved approach. More importantly, this work also demonstrates 

that a deviation from circular fiber outer shape may be an effective method to mitigate 

HOM loss reduction from coherent reflection from fiber outer boundary. 

In an all-solid photonic bandgap fiber, modes are only guided due to anti-resonance 

of cladding photonic crystal lattice. This provides strongly mode-dependent guidance, 

leading to very high differential mode losses, which is essential for lasing far from the gain 

peak and suppression of stimulated Raman scattering. We will show that all-solid photonic 

bandgap fibers with effective mode area of ~920μm2 can be made with excellent higher 

order mode suppression. We then demonstrate a 50μm-core-diameter Yb-doped all-solid 

photonic bandgap fiber laser. 75W output power has been generated with a diffraction-

limited beam and an efficiency of 70% relative to the launched pump power. We have also 

experimentally confirmed that a robust single-mode regime exists near the high frequency 

edge of the bandgap. 

It is well known that incorporation of additional smaller cores in the cladding can 

be used to resonantly out-couple higher-order modes from a main core to suppress higher-

order-mode propagation in the main core. Using a novel design with multiple coupled 

smaller cores in the cladding, we further scaled up the mode area and have successfully 

demonstrated a single-mode photonic bandgap fiber with record effective mode area of 

~2650µm2. Detailed numeric studies have been conducted for multiple cladding designs. 

For the optimal designs, the simulated minimum higher-order-mode losses are well over 

two orders of magnitudes higher than that of fundamental mode when expressed in dBs. 
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We have also experimentally validated one of the designs. M2<1.08 across the transmission 

band was demonstrated.  

Lowering quantum defect heating is another approach to mitigate mode instability. 

Highly-efficient high-power fiber lasers operating at wavelength below 1020nm are critical 

for tandem-pumping in >10kW fiber lasers to provide high pump brightness and low 

thermal loading. Using an ytterbium-doped-phosphosilicate double-clad leakage-channel 

fiber with ~50µm core and ~420µm cladding, we have achieved ~70% optical-to-optical 

efficiency at 1018nm. The much larger cladding than those in previous reports 

demonstrates the much lower required pump brightness, a key for efficient kW operation. 

The demonstrated 1018nm fiber laser has ASE suppression of ~41dB. This is higher than 

previous reports and further demonstrates the advantages of the fiber used. Limiting factors 

to efficiency are also systematically studied. 
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CHAPTER ONE 

INTRODUCTION 

1.1 High power fiber lasers and applications 

 

In recent decades, fiber lasers have gained significant attention among a variety of 

industries. The advent of high power fiber laser has been a revolutionary force in many 

applications and quickly replaced other types of bulk lasers. The history of fiber lasers, in 

fact, is relatively brief. In early 1980s, optical fibers were mostly utilized as a waveguide 

for telecommunications [1,2]. Only limited research on fiber lasers and amplifiers was 

conducted during 1970s by a few pioneers such as Snitzer, Stone and Burrus [3–6]. The 

interest in using fiber as an active medium gained momentum in 1985 when Payne et al 

demonstrated first neodymium-doped fiber lasers [7,8]. The following of erbium-doped 

fiber amplifier operating in the third telecommunication window was rapidly adopted by 

the industry, leading to the wide spread of the internet [9]. Researches soon realized that 

fiber lasers possess a number of advantages comparing to its counterparts: 1) its unique 

geometry allows for stable single-transvers-mode propagation over a long distance; 2) high 

gains are allowed for very simple resonators and amplifiers as large single-pass gain can 

be achieved; 3) ease of splicing to other fibers permits realization of robust fiberized system 

without complicated free-space alignment, yielding minimum footprint; 4) large surface-

to-volume ratio can facilitates heat extraction from the core, promising high average power 

operation. In addition to these intrinsic advantages, two other technologies, namely high 

power laser diodes (LD) and double-clad fibers, enable the power scaling to take off [10].   
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The schematic of cladding pumping is depicted in Fig. 1.1. It was firstly 

demonstrated in 1988 using a double-clad optical fiber whose core was doped with rare-

earth (RE) element [11]. The principle of cladding-pumping is to turn the outer layer of 

coating to an outer cladding by coating the fiber with lower refractive index (RI) materials 

(usually polymers), so that the inner cladding that has higher RI becomes a pump core. The 

pump light from LD is directly launched into and confined within the pump core. The pump 

light then interacts with the active core along the propagation. Due to the large RI 

difference between fiber coatings and pump core, one can efficiently couple most of the 

pump power into the pump core with large acceptance angle, converting low brightness, 

multimode pump light into high brightness, single mode laser output.  

 

Fig. 1.1 Schematic of cladding pumping [12] 

The advent of double-clad fibers and rapid deployment of high power LD triggered 

unprecedented power scaling of fiber lasers. During the last two decades of development, 

the average power output of a continuous-wave (CW) fiber laser with diffraction-limited 

beam quality has experienced exponential increase (see Fig. 1.2). It only took less than 25 
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years to scale up the average output power from less the l0W to 10kW [13–16]. The 

ultrashort-pulse fiber lasers also show similar power increase trend [17,18].  

 

 

Fig. 1.2 Progress of high power diffraction limited fiber lasers [19]. 

Fiber lasers covers a wide spectrum of application scenarios in many industries. It 

is well known now that high power lasers can be used to machine a wide range of materials 

from plastics to glass and ceramics. Their non-contact nature makes them very low 

maintenance and cost-effective. An optical beam can be repositioned more rapidly than 

any mechanical tool, making it ideal for mass production. The machining precision with a 

diffraction-limited spot size is also significantly better than any conventional machining 

techniques. Another emerging applications is in defense. In 2015, a fiber-based laser 

weapon, the Navy’s Laser Weapon System (LaWS) was deployed on the USS Ponce. The 

high output power can effectively destroy a target at much lower cost compared to 
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projectile weapons [20]. There are many academic applications as well.  One of these is a 

laser-based particle accelerator, which promises to shrink current kilometer-long RF 

accelerators down to table-top ones [21]. High-order harmonics generation is another 

exciting application, promising to offer unsurpassed resolution for imaging and photo-

lithography [22]. High-power single-frequency fiber lasers are critical for gravitational 

wave detection based on large-scale interferometers [23]. 

 

Fig. 1.3 The Laser Weapon System (LaWS) aboard USS Ponce [24]. 

1.2 Present limitations on power scaling 

 

Despite the huge success of adoption of high power lasers. The demand for further 

power scaling is increasing. However, there are two main factors limiting the power 

scalability of fiber lasers, namely nonlinear effects and mode instability [25].  

Nonlinear effects are as a result of high optical intensity in the core. The most 

detrimental nonlinear effects include stimulated Brillouin scatting (SBS), stimulated 
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Raman scattering (SRS), self-phase modulation and self-focusing [19]. The following 

section will offer a brief introduction for each of these nonlinear effects mentioned.  

 

Stimulated Brillouin scattering (SBS) 

SBS involves interaction between light and acoustic wave (usually caused by 

electrostriction) propagating in the fiber. A photon can be scattered into a photon with 

lower energy which usually propagates in the opposite direction, and an acoustic 

phonon [26]. The phenomenon is more pronounced when the bandwidth of the signal is 

narrow. This can prevent signal power from further increasing as the energy is constantly 

transferred from the signal light to back scattered light. Because of the nature of high power 

fiber lasers, it is very critical to increase the SBS threshold. Commonly used techniques 

include modulation of pump laser to broaden the laser linewidth or reduction of mode field 

overlap between light and acoustic mode by manipulating composition in the core [27].  

Stimulated Raman scattering (SRS) 

The stimulated Raman scattering involves interaction between light and molecular 

vibration of silica glass. Similar to SBS effect, a photon can be converted into another one 

with lower energy and an optical phonon. It can start from spontaneous Raman scattering 

or can be intentionally stimulated by seeding Stokes photons. But unlike SBS, SRS is a 

broadband effect and scattered light can propagate in forward and backward directions. 

Today, as the power levels reached beyond 10kW, SRS is the major bottleneck that limits 

the maximum output power of a fiber laser. Common mitigation techniques include use of 
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chirped-pulse-amplification or special fibers that can significantly attenuate the scattered 

beam [28].  

Self-phase modulation 

Self-phase modulation originates from the Kerr effect which describes the change 

of refractive index of the medium in response to an external electrical effect: 

 ∆𝑛 = 𝑛2𝐼 (1) 

where n2 is the nonlinear index component and I is the optical intensity. When the intensity 

of the light propagating in the fiber is high, the refractive index of the fiber is modified due 

to the Kerr effect. This will cause the variations in optical path and in turn modifies the 

phase of the light propagating in the fiber. This effect is particularly detrimental to ultra-

short intense pulse laser since the Kerr effect will cause time-dependent phase shift 

corresponding to the temporal change of the pulse intensity [29]. For an un-chirped pulse, 

the SPM leads to spectral broadening even strong oscillation if SPM is strong enough.  

Self-focusing  

Self-focusing is the ultimate limit for power scaling. It is an extreme case of Kerr 

effect. It is induced by the change of RI due to very high intense light transmitting in the 

core. The fiber core with varied RI acts as a focusing lens which concentrates the light. As 

the beam radius decreases, the optical intensity becomes even higher, further enforcing the 

self-focusing effects. This self-enforcing process eventually collapses the beam into a very 

tiny spot and consequently destroy the fiber core [30]. Currently the peak power at which 
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self-focusing takes place is ~4-6MW at 1µm [31]. Self-focusing effect is difficult to 

circumvent and hence sets the ultimate ceiling for power scaling. 

The nonlinear effects primarily limit the peak power scaling. In recently years, 

another limiting factor, transverse mode instability (TMI) has been observed in numerous 

literature reports that well behaved single-transverse-mode in a fiber laser can quickly 

deteriorates once the output power exceeds certain threshold [32–35]. When the output 

power is below the threshold, the fiber laser resumes the single-mode operation. It was 

soon discovered that the TMI is related to the thermal heating of the fiber lasers [33]. 

Nowadays, the TMI is widely considered to be stemmed from stimulated thermal Rayleigh 

scattering (STRS) [36]. In an active fiber, two propagating modes at slightly different 

frequencies will interfere with each other and form an intensity interference patter along 

the fiber. Due to the amplification, the quantum defect heating generates a travelling 

temperature wave that consequently changes the RI according to the modal 

interference [37]. The modulated RI profile essentially behaves like a grating, transferring 

energy from dominant fundamental mode (FM) to much weaker higher-order-mode 

(HOM) [36,38]. One might notice that this is also a self-enforcing process. The onset of 

TMI will severely degrade the mode quality and limit further increase of average output 

power.  

 

1.3 Review on mitigation techniques on nonlinear effects and TMI 

 

To date, the most effective way to mitigate the nonlinear effects is to increase the 

effective mode area [39]. The expansion of mode area will not only reduce the optical 
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intensity, but increase pump absorption and stored energy, leading to higher pulse energy 

in many pulse laser systems [40]. The main issue of mode area scaling is that the fiber will 

enter multimode regime as the core is enlarged, which will facilitate the mode coupling 

and worsen the TMI effect. Therefore, it is of primary importance to maintain single-mode 

quality in the large-mode-area (LMA) fiber. 

Numerous approaches have been explored over the past decade (see Fig. 1.4). The 

first approach involves lowering numerical aperture (NA) while expanding core diameter 

so that single-mode operation can be preserved [41]. Recently, a number of low NA fibers 

have been reported with diameter ranging from 35µm to 52µm [42–44]. In particular, fibers 

with a NA of ~0.04 were used for 3kW demonstration [45,46]. One major deficiency of 

these approaches is that a lower NA weakens fundamental mode guidance and renders it 

very sensitive to bending and any other mechanical perturbation on the fibers [25]. Another 

type of specialty fiber, photonic crystal fiber (PCF) also falls into this category. A typical 

PCF consists of a solid silica-based central core and a lattice of periodically arranged air-

hole cladding [47,48]. The lower effective NA significantly reduces the number of modes 

supported. The first photonic crystal fiber was proposed with a very small core size, which 

later inspired the development of large-mode-area photonic crystal fiber lasers [49–52]. 

Single-mode operation can be achieved by appropriately tailoring the air holes in the 

cladding. The high bending sensitivity due to the very low NA at large core sizes, however, 

makes a PCF only feasible to be used as a short stiff rod beyond 40μm core diameter, 

rendering it unsuitable for high average power lasers where longer fiber length is necessary 

for thermal management [53]. 
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Apart from PCFs, other types of specialty fiber have also been proposed in order to 

increase the core size and minimize the HOM content. Some early approaches include 

resonant-ring designs and chirally-coupled-core (CCC) fibers [54,55]. Both rely on 

resonant out-coupling of higher order modes from a conventional step-index core while 

FM is well confined in the fiber core. They are, however, limited in terms of scaling much 

beyond 50μm core diameter. The higher order mode out-coupling fundamentally relies on 

phase-matching typically at a different wavelength for a different mode, and spatial overlap 

between the modes. However, both these aspects become major limits very quickly in a 

large core fiber. As such, it becomes difficult to ensure that all phase-matching conditions 

are met at the same desired wavelength for all relevant higher order modes when there are 

a number of modes in consideration, making these designs hard to implement, especially 

at large core diameters. 

Some more recent approaches include leakage channel fibers [56,57]. They 

overcome the limitations of the resonantly-coupled approach by starting with a leaky 

waveguide. Because modes are no longer guided in a leaky waveguide, a significant new 

way for optimizing differential mode loss is possible. These highly leaky HOMs are no 

longer confined to the core and have, therefore, significant reduced overlap with active 

area of the fiber amplifier, minimizing the impact of quantum heating. Since these designs 

do not necessarily depend on any resonant effects or air-filling ratio, they are much more 

tolerant in the fabrication process compared to PCF and CCC. Due to the delocalized nature 

of modes, they are more scalable to much large core diameters. Robust single-mode 

operation with a flat-top mode in a Yb-doped LCF with ~50μm core was reported 
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recently [58]. The effective mode area was increased by 50% in a straight configuration 

for this core size, owing to the flat-top mode arising from by a slightly lower refractive 

index in the core center. 

The last specialty fiber worth mentioning is the photonic bandgap fibers [59,60]. 

They usually have periodically arranged high-index rods embedded in the host materials 

forming the cladding. The core is created by omitting several high-index rods in the center. 

The PBF guides light based on the bandgap effect, meaning a mode is supported in the core 

only when it falls within the photonic bandgap of the cladding lattice. The light guidance 

only exists within a narrow spectral range, which can be used for lasing off the gain peak 

and SRS suppression [60,61]. A PBF can be designed to provide significant differential 

mode losses for FM and HOMs so that single-mode operation is possible for large core 

diameters. Theoretical and experimental studies have contributed to a large effective mode 

area of up to 900μm2 previously [62–64]. 

 

 

Fig. 1.4 Cross-section of specialty fiber designs: (a) photonic crystal fiber (PCF) [53]; (b) 

chirally-coupled-core fiber [55]; (c) leakage channel fiber [65]; (d)  all-solid photonic bandgap 

fibers [40]. 
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Four types of specialty fiber mentioned above are shown in Fig. 1.4. The 

comparison between these types of fibers are summarized in table. 1.1. Despite numerous 

specific techniques have studied for the suppression of a wide range of nonlinearities, the 

fundamental solution is to scale mode areas in fibers while maintaining sufficient single 

mode operation. Here the key problem is that more modes are supported once physical 

dimensions of waveguides are increased. The key to solve this problem is to look for fiber 

designs with significant higher order mode suppression. Seen from the table. 1.1, the all-

solid LCF and PBF are the most two promising candidate for power scaling due to strong 

HOM suppression in the presence of LMA, good bend performance, and ease of fabrication 

and usage [66].  

Table. 1.1 Comparison between PCF, CCC, LCF and PBF. 

Fiber types Bend 

performance 

Fabrication 

complexity 

Ease of use Single-mode 

(D<50µm) 

HOM 

suppression 

PCF Poor Complicated Poor Excellent Good for 

D<50µm 

CCC Good Complicated Good Excellent Good for 

D<50µm 

LCF Good Easy Good Good Strong 

PBF Good Moderate Good Excellent Strong 
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1.4 Dissertation outline 

 

In this dissertation, the main focus will be on developing ytterbium-doped high 

power fiber lasers based on two types of specialty fiber, LCF and PBF. We will 

conduct detailed simulations and experimental studies on fiber’s single-mode property 

and explore the fiber laser performance.  

The dissertations will be organized as follow. Chapter 2 will discuss the new 

resonantly-enhanced leakage channel fiber (Re-LCF) with 50μm core diameter, which 

provides stronger HOM suppression compared to traditional LCF. We will 

demonstrate the limit of the simulation method commonly used in the large-mode-area 

fiber designs. The mode content measurement based on S2 technique has found that 

deviation from circular fiber outer shape may be an effective method to mitigate HOM 

loss reduction from coherent reflection from fiber outer boundary. 

Chapter 3 will be focused on AS-PBF with 50μm core diameter. More details 

about the guidance theory is offered in this chapter. Similar to Chapter 2, both 

simulation and experiment have been extensively conducted to characterize the 

effectiveness of single-mode operation. Both passive PBF and Yb-doped PBF are 

characterized for their HOM suppression and fiber laser performance. This work 

demonstrates the strong potential for mode area scaling of in single-mode all-solid 

photonic bandgap fibers. 

Followed by Chapter 3, in Chapter 4, further mode area scaling of the PBF is 

explored. Several entirely new designs with resonant-coupling features are proposed 
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and simulated. Using a novel design with multiple coupled smaller cores in the 

cladding, we have successfully demonstrated a single-mode photonic bandgap fiber 

with a record effective mode area. For the optimal designs of a 100µm core fiber, the 

simulated minimum higher-order-mode losses are well over two orders of magnitudes 

higher than that of fundamental mode when expressed in dBs. We have also 

experimentally validated one of the designs. 

From Chapter 2 to Chapter 4, the direction to reduce mode instability while 

increasing mode area is to minimize HOM content. Since the mode instability is driven 

by quantum defect heating, in Chapter 5, an ytterbium-doped fiber laser operating 

below 1020nm is constructed. By bring the laser wavelength closer to pumping 

wavelength, the quantum defect heating can be reduced by half, leading to significant 

reduction of TMI. Configuration of short wavelength fiber laser and experimental 

results are analyzed. Using an ytterbium-doped-phosphosilicate double-clad leakage-

channel fiber with ~50µm core and ~420µm cladding, we have achieved ~70% optical-

to-optical efficiency at 1018nm. 

Finally, Chapter 6 will summarize the studies throughout the dissertation and 

outline the prospective research. 
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CHAPTER TWO 

HIGH DIFFERENTIAL MODE LOSSES IN RESONANTLY-

ENHANCED LEAKAGE CHANNEL FIBERS 

2.1 Introduction 

LCFs are particularly useful to generate high differential loss of modes. A typical 

geometric arrangement of LCF is shown in Fig. 2.1. It is worth noting that these LCFs are 

made entirely of glass without any air holes. The discontinuity of core-cladding boundary 

makes all modes leaky, allowing the fiber to be engineered to have high transmission loss 

for all HOM while maintaining negligible loss of FM [67]. Traditional LCF have identical 

cladding features placed periodically in the cladding, typically in a triangular 

matrix [65,68]. The features, however, do not have to be identical. In fact, both index and 

dimension of each cladding layers can be independently designed in order to cause 

resonance between the lowest-loss HOM and the 2D structured cladding. This resonance 

can pull the HOM further out into the cladding, leading to much improved HOM 

suppression of LCF. These LCFs are referred to as resonantly-enhanced leakage channel 

fibers (Re-LCF) [69]. Performance of Re-LCF with ~50µm core diameters was recently 

reported [69,70]. 
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Fig. 2.1 Cross Section image of a typical LCF 

 

Higher-order-mode losses are very important design parameters for the 

performance of fibers with large effective mode areas. They have, however, never been 

accurately measured in actual optical fibers. Using the S2 technique, higher-order-mode 

content at the output of an optical fiber can be measured accurately [71]. This is typically 

done in a way that is hard to separate the contributions to higher-order-mode content at the 

output from many possible contributors such as launching conditions, fiber layout 

configurations, and fiber designs.  

Design simulations are often based on the assumption of infinite cladding. This is 

a good assumption for well guided modes where light is mostly in the core. It is no longer 

a good assumption for highly leaky modes where a significant amount of light is radiated 

away from the core into the cladding. In this case, the reflection from any material interface, 

e.g. glass/coating boundary, in the fiber can provide additional confinement of the mode, 

leading to lower waveguide losses for the modes. The effect of circular glass/coating 

boundary on waveguide losses has been theoretically studied previously [56], showing that 
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the waveguide losses of modes are strongly dependent on the fiber diameter. This is not 

surprising, considering the coherent nature of the reflections.  

Another important question is regarding the impact of refractive index of coating 

on the waveguide losses of modes. Double-clad fibers used in fiber lasers are often coated 

with a low-index polymer coating in order to provide a multimode pump guide [72]. Total 

internal reflection can take place at such boundary, completely trapping optical power in 

the guided modes of the highly multimode pump guide. The radiated power from modes 

guided mostly in the core region is expected to satisfy the total internal reflection condition 

at such boundary. Does this mean waveguide losses of core modes will vanish? It was 

speculated in  [56] that the leaky core modes will still lose power to modes in the 

multimode pump waveguide in this case. This is, however, never proven. 

For the further progress of mode area scaling of optical fibers, it is very important 

to accurately know the losses of higher-order modes in optical fibers and how they relate 

to designs. It is also very important to understand how factors such as coiling, fiber shapes 

and index of coating impact the waveguide losses in relation to designs. All these factors 

change the nature of reflection at material interfaces in fibers. 

In an effort to answer some of these questions, we have accurately measured 

waveguide losses of modes using a cut-back technique in combination with a S2 technique 

and a fully spliced configuration to ensure constant launch conditions. The measured 

waveguide losses were then compared to simulations based on infinite cladding. The test 

was conducted for a variety of coil diameters to identify any impact from coiling. Two Re-

LCFs with ~50µm core diameter were tested. The first fiber has a circular glass/coating 
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boundary and is coated with standard coating with higher refractive index. The second fiber 

has a rounded hexagonal glass/coating boundary and is coated with low-index acrylic 

coating with a refractive index of 1.375. 

 

2.2 Experimental characterization of Re-LCF 

The cross-section images of the two fibers used in this work are shown in Fig. 2.2. 

The dimensions of features for each of the cladding layers are slightly different for 

optimized higher-order-mode losses at the operating coiling condition and around the 

wavelength of 1050nm. The fibers were designed to operate at a coil diameter of ~40cm, 

which is advantageous for applications requiring compact packing. For the circular Re-

LCF, the core is 48µm at its smallest dimension (flat-to-flat) and 49.3µm at its largest 

dimension (corner-to-corner). The diameter of the circular Re-LCF is 392.7µm. For the 

hexagonal Re-LCF, the core is 50.9µm at its smallest dimension and 51.3µm at its largest 

dimension. The cladding is 426.1µm at its smallest dimension (flat-to-flat) and 449.3µm at 

its largest dimension (corner-to-corner). The two layers of features for both fibers is made 

from fluorine doped silica glass, whose refractive index is 0.0155 below silica. For the 

circular fiber Re-LCF, the average node size of inside layer is 30.1µm and outside layer is 

28.31µm. For the hexagonal Re-LCF, the average node size of inside layer is 32.38µm and 

outside layer is 29.32µm. The circular Re-LCF is coated with a standard high index coating 

and was fabricated at Nufern. The hexagonal Re-LCF was drawn at Clemson with features 

fabricated at Nufern and is coated with low-index acrylic coating (n=1.375). This fiber was 

drawn at a slightly lower temperature in order to maintain the hexagonal shape of the stack.    
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Fig. 2.2 Cross-section images of Re-LCFs used in this work, (a) circular 

Re-LCF and (b) hexagonal Re-LCF. 

 

The feature boundaries were acquired from the cross-section images and were used 

in the simulations. We suppose the fiber is bent with a curvature radius R and the equivalent 

refractive index profile neq(x,y) is approximated as: 

neq(x,y)=ns(x,y)(1+x/R) 

where ns(x,y) is the refractive index when fiber is straight [73]. A perfect matched 

layer (PML) is used to simulate the infinite cladding [74,75]. The simulation obtains 

complex effective refractive indices neff=nr+ini. The models used in the FEM mode solvers 

are shown in Fig. 2.2a and Fig. 2.2b for the circular and hexagonal Re-LCFs respectively. 

The loss is derived from the complex effective refractive indices: 

Loss=20×k×ni×log10(e) 

where k is the free-space wavenumber. 

In order to ensure launch stability during the measurements, the Re-LCF was 

spliced to a SM980nm fiber through a tapered mode adaptor to minimize the mode 

mismatch, which was fabricated by tapering the Re-LCF down to a core diameter of ~8µm 
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over a length of ~6cm. The S2 technique was used to measure higher-order-mode content. 

It has a tunable laser and CCD for imaging capturing. The fiber was laid in a circular grove 

fabricated into an aluminum plate. The part of the fibers which was outside the circular 

grove is made to be as straight as possible. Circular groves with various diameters are 

fabricated into the same aluminum plate so that dependence on coil diameters can be tested. 

 

 

Fig. 2.3 Fourier transform of the spectrum versus differential group delay for circular LCF 

coil at diameter of 50cm. The insertion is the resolved LP11 mode pattern and phase. 

 

Our S2 setup has a ~-40dB detection limit in ratio of HOM power to FM power. In 

all of our experiments, only LP11 mode was observed in the two Re-LCFs. A sample of S2 

imaging is illustrated in Fig. 2.3. The sharp peaks followed by the LP11 mode are from 

multiple reflections from bulk optics in the system, which were carefully calibrated prior 

to the measurement. They can be easily identified due to their FM mode shape and always 

remain at the same location. The normal scan range was from 1026nm to 1076nm with a 

center wavelength of 1051nm. After power ratio of LP11 mode to LP01 modes was 



 20 

determined at varying coil diameters, the fiber was cut by approximately 1m. The 

measurements were repeated for varying coil diameters. The fibers were cut back several 

times during the measurements. Eventually, in order to obtain HOM loss, the measured 

and normalized LP11 mode contents on a dB scale were plotted against the lengths of coiled 

fibers for each coil diameter and a straight line was fitted (see Fig. 2.4 for data at few 

selected coil diameters). Since the measured LP11 mode in the S2 measurements always 

shows a well-defined narrow peak in delay, we have assumed that the coupling between 

LP01 and LP11 modes is minimal in our fibers. The fundamental mode loss is assumed to 

be negligible in arriving at the LP11 mode loss. This is largely true for the range of coil 

diameters used in the measurements. The slope of the straight line was regarded as the loss 

of the LP11 mode based on the two assumptions above. The error is estimated to be typically 

less than 10%. The FM loss was measured separately at fixed wavelength of 1050nm using 

a cut-back technique while ensuring fundamental mode at the output. The fiber lengths 

used in the experiment and related coil lengths at various coil diameters are summarized in 

Table 2.1 for the circular Re-LCF and hexagonal Re-LCF. 
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Table. 2.1 Fiber lengths of the circular Re-LCF used in the experiment. 

Circular Re-LCF Hexagonal Re-LCF 

Fiber 

length 

Coil 

diameter 

Coil length Fiber 

length 

Coil 

diameter 

Coil length 

9.8m 60cm 7.54m 7.8m 60cm 5.18m 

55cm 7.77m 55cm 5.18m 

50cm 7.85m   

45cm 7.42m   

40cm 7.85m   

35cm 7.97m   

30cm 8.71m   

9.0m 60cm 6.12m 6.6m 60cm 3.30m 

55cm 6.91m 55cm 3.45m 

50cm 6.28m   

45cm 7.07m   

40cm 7.54m   

35cm 6.59m   

30cm 7.54m   

8.2m 60cm 5.65m 5.8m 60cm 3.77m 

55cm 5.18m   

50cm 6.28m   

45cm 5.65m   

40cm 7.54m   

35cm 7.69m   

30cm 7.54m   

7.3m 60cm 3.77m 4.9m 50cm 3.14m 

55cm 4.32m 45cm 2.12m 

50cm 4.71m 40cm 1.88m 

45cm 4.24m 35cm 1.65m 

40cm 5.02m   

35cm 4.40m   

30cm 6.59m   

6.4m 60cm 3.77m 4.0m 50cm 1.57m 

55cm 3.45m 40cm 1.57m 

50cm 3.14m 35cm 1.37m 

45cm 4.24m   

40cm 3.77m   

35cm 4.40m   

30cm 5.65m   
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5.3m 30cm 3.77m    

4.3m 30cm 2.83m    

3.3m 30cm 1.88m    

 

 

Fig. 2.4 Measured relative LP11 mode content (circles) versus coiled fiber length at various 

coil diameters for the circular Re-LCF and their linear fit (line). 

The measured LP11 mode content, i.e. power ratio of LP11 and LP01 modes, is 

summarized in Fig. 2.5 for the circular Re-LCF. The coil lengths for each fiber length are 

different depending on coil diameters (see Table. 2.1). The LP11 mode content at the output 

is largely determined by the launch condition and LP11 mode loss over the coiled section 

of the fiber. The LP11 mode losses are determined, as described earlier, by the slope of 

linear fit to the measured LP11 mode content versus coil length data for each coil diameter. 

Due to the very high LP11 mode loss at 30cm coil diameter, much shorter fiber length had 

to be used in this case (see Fig. 2.5). 
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Fig. 2.5 Measured relative LP11 mode content at various coil diameters 

for the circular Re-LCF. 

 

2.3 Impact of fiber outer boundaries on leaky mode losses 

The simulated loss for the fundamental mode, second mode and third mode are 

shown in Fig. 2.6. The second mode and third mode are two different orientations of the 

LP11 mode (see insets in Fig. 2.6). The measured FM loss is also shown along with the 

measured LP11 mode loss. Two sets of FM measurement are shown, one with free space 

launch and one with spliced input. The fiber was designed for operation at a coil diameter 

of 40cm. At smaller coil diameters, the predicted FM loss can be very high (see Fig. 2.6 

for diameters less than 0.35m). As it can be seen, the measured FM losses fit well with the 

simulation in the low loss regime. This is consistent with what we expected. The mode is 

well confined to the core region in the low loss regime. There is very little impact from 
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what is going on far beyond the core. The measured FM losses are, however, lower than 

the simulation in the high loss regime when coil diameter is below 35cm. 

 

Fig. 2.6 Simulated and measured mode losses in the circular Re-LCF. 

 

The measured LP11 mode losses are, however, much lower than the simulation at 

large coil diameters. The difference between the measured LP11 mode losses and the 

simulation, however, converges at small coil diameters when coil diameter is below 0.35m. 

The lower measured losses of both the fundamental and LP11 modes in the predicted high 

loss regime can be explained by the reflection at the circular glass/coating boundary. The 

modes which are significantly radiated away from the core into the cladding are likely to 

be reflected back to the core due to the coherent reflection, leading to much lower 

waveguide loss than the simulated. The LP11 mode is designed to have high waveguide loss 

and consequently, is expected to experience larger impact from the coherent reflection at 

the fiber glass/coating boundary. The convergence of the measured LP11 mode losses and 
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the simulation at smaller coil diameters is interesting. This may be an indication that phase 

walk-off in the reflection from the curved cylindrical boundary of the coiled fiber can 

mitigate the coherent reflection at small coil diameters. It is worth noting that, since we 

could not distinguish the LP11 mode with the two different orientations illustrated in the 

insets in Fig. 2.6, our measured data represent an average of the two orientations. Our 

tunable light was slightly polarized and there was no polarization control in the 

measurement. 

To investigate further on how to mitigate the effect of the coherent reflection from 

fiber boundary, we conducted the same set of measurements on the hexagonal Re-LCF. 

This fiber is coated with low-index polymer coating (n = 1.375) to simulate the effect of 

double-clad fiber. In a double-clad fiber, optical powers can be trapped within the pump 

guide due to the total internal reflection at the interface between pump core and cladding, 

leading to potentially lower HOM losses than those with high index coating. Since this is 

the situation where most large mode area fibers are used, it is very important to understand 

the impact of pump cladding on the HOM losses in this case. The simulated mode losses 

for the fundamental mode, second mode and the third mode for this fiber are shown in Fig. 

2.7. The simulation present similar loss pattern as those in Fig. 2.6. The minor differences 

of the loss curves between the circular and hexagonal Re-LCF are mainly caused by 

slightly different dimensions of the features. This fiber was also designed for operating at 

~40cm coil diameter. The measured mode losses are also shown in the figure. It is 

interesting to see the LP11 mode losses fit reasonably well with the simulation even at large 

coil diameters. This is a dramatic improvement on HOM losses compared with those in the 
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circular LCF. Since the radiated optical powers from the core modes are expected to be 

trapped by the pump cladding it is reasonable to assume that the loss of LP11 mode power 

is through reflection into modes of the multimode pump guide at the pump core and 

cladding interface [56]. The result is a strong indication that non-circular pump cladding 

can be very effective in mitigation of the coherent reflection at the pump core and cladding 

interface. This is significant and confirms the validity of the design approach based on 

suppression of HOM propagation for mode area scaling. The measured FM losses also fit 

reasonably well to the simulation (see Fig. 2.7). 

 

Fig. 2.7 Simulated and measured mode loss in the hexagonal Re-LCF. 

Effective mode area of FM was also simulated for the hexagonal Re-LCF for 

various coil diameters in Fig. 2.8. The effective mode area is ~900µm2 at the operating coil 

diameter of 40cm. 
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Fig. 2.8 Simulated effective mode area in the hexagonal Re-LCF. 

 

The wavelength dependence of LP11 mode content can be measured by dividing the 

wavelength scan used in the S2 measurement into a number of smaller sub-scans with equal 

wavelength span. This was done in Fig. 2.9 for the LP11 mode content in the 4m hexagonal 

Re-LCF coiled in 35cm diameter coil. The sub-scan has a wavelength range of 10nm. 

Wavelengths at the center of each sub-scan are used for the plot. The flat wavelength 

dependence over this wavelength range is expected and consistent with the simulation. It 

is worth noting that ~-40dB HOM suppression can be achieved over such a short fiber 

length, especially considering the short length of the coiled section of ~1.4m (see Table. 

2.1). 
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Fig. 2.9 Wavelength dependence of the measured LP11 mode content in the 4m 

hexagonal Re-LCF in 35cm coil. Coiled length is 1.37m. 

 

Differential group delay between the LP01 and LP11 modes can also be measured 

by dividing the total wavelength scan in the S2 measurement into a number of sub-scans of 

equal wavelength span. The differential group delays were obtained from the S2 

measurement of the circular Re-LCF and are plotted against the center wavelengths of each 

of the sub-scans in Fig. 2.10. The differential group delay was also simulated by a multipole 

mode solver using approximate circular features and is also plotted in Fig. 2.10. There is 

an excellent agreement between the measured differential GVD and the simulation. Same 

results were also observed on hexagonal Re-LCF. 

 

 

 

 



 29 

 

Fig. 2.10 Simulated and measured differential group delay between LP01 and LP11 modes 

in the circular Re-LCF. The simulation was done for a straight fiber. The measurements 

were performed at a range of coil diameters. 

 

 

2.4 Conclusion 

In this work, we conducted careful measurements of HOM losses using a cut-back 

technique in combination with a S2 technique and a fully spliced configuration to ensure 

launch stability. Impact on HOM losses from coiling, fiber shapes and coating indexes 

were studied in comparison to simulations based on infinite cladding.  

The results confirm that the simulation based on infinite cladding is accurate for 

well confined modes with low waveguide losses. But for the highly leaky modes, the 

measured losses can be significantly lower than what are predicted by conventional 

simulation method at large coil diameters in the circular LCF. The measured loss, however, 
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start to approach the simulation results at smaller coil diameters. The measured losses of 

the highly leak modes in the hexagonal LCF, on the other hand, are consistent with the 

simulation even at large coil diameters. 

The results show that tight coiling can mitigate the effect of coherent reflection at 

outer boundary in fibers, possibly due to phase walk-off from the coiled cylindrical surface. 

The results from the rounded hexagonal fiber are even more startling. HOM losses in 

excess of 20dB/m were measured in the hexagonal Re-LCF with ~50µm core diameter. It 

suggests that a deviation from circular boundary can be very effective in mitigating the 

impact of the coherent reflection from outer boundary in fibers. The low-index polymer 

coating on this fiber does not seem to matter at all. This is strong evidence that the radiated 

powers from the core are reflected into the guided modes in the multimode pump 

waveguide. This is also a strong proof that the design concept of exploiting strong leakage 

losses of HOMs works even in double-clad fibers with a suitable design of fiber boundary. 
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CHAPTER THREE 

YTTERBIUM-DOPED LARGE-MODE-AREA ALL-SOLID 

PHOTONIC BANDGAP FIBER LASERS 

 

3.1 Introduction 

The all-solid PBFs have been viewed as a promising candidate for realizing high 

power fiber lasers and amplifiers because of its best HOM suppression capability for the 

same effective mode area [59,60]. This is due to a combination of three key factors. They 

have an open cladding which provides a leaky waveguide where mode-dependent losses 

can be introduced. The cladding is highly dispersive as one would expect in a photonic 

bandgap cladding, enabling designs which can also provide mode-dependent guidance. 

Lastly, the cladding effective index changes significantly within the bandgap due to the 

highly dispersive cladding, enabling a single-mode regime near the high-frequency end of 

the bandgap [76].  

In all-solid photonic bandgap fibers, a mode is guided only when it falls within the 

photonic bandgap of the cladding lattice. This provides great potential for creating designs 

that support only the fundamental mode, i.e. selective mode guidance versus selective 

elimination of mode guidance as in some other approaches. The robust optical guidance 

and physical constructs of all-solid PBFs enable them to be made and used much like 

conventional fibers. Double-clad designs and polarization-maintaining can be added with 

ease [77]. Transmission can be made with strong wavelength-dependence in these fibers 
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for use in SRS suppression, accomplished by introducing strong loss at the Raman Stoke 

wavelength, in FWM suppression by providing appropriate dispersion, and in lasers at 

wavelengths normally dominated by much stronger transitions [60]. 

Mode area scaling to 20μm mode field diameter using all-solid photonic bandgap 

fibers was reported few years ago [78]. A detailed theoretical investigation on the limit of 

mode area scaling with all-solid photonic bandgap fibers was reported recently, indicating 

an upper limit of ~500μm2 using a more optimized seven-cell core and operating in the 

first bandgap [79]. Recently, all-solid photonic bandgap fibers with up to ~700μm2 

effective mode areas have been demonstrated operating in the first bandgap [60,64].  

In this chapter, we will start with the brief discussion on the guidance theory of AS-

PBF. we will report both theoretical and experimental studies of mode-area-scaling with 

all-solid photonic bandgap fibers to beyond 900μm2 which has the capability to delivery 

30 times of power as regular single-mode fiber without reaching the non-linear threshold. 

The quantitative mode content measurements show that excellent single mode output can 

be obtained from theses fibers in length scale close to what is required for fiber laser and 

amplifiers. We will also demonstrate an Yb-doped all-solid photonic bandgap fiber laser 

with a core diameter of ~50μm. The calculated effective mode area is ~1450μm2 in a 

straight fiber, which is over a factor of 4 increase over that previously demonstrated in a 

ytterbium-doped all-solid PBF [60]. We have also tested the laser performance and beam 

quality. Strong single-mode propagation was observed.  
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3.2 Guidance theory of AS-PBF 

Guidance properties of all-solid photonic bandgap fibers and their fairly matured 

fabrication processes are well understood [80–84]. These fibers have a background glass 

and a cladding lattice of high index nodes (Fig. 3.1a). The cladding is defined by node 

diameter d, pitch Λ, node index nh and background index nb. The photonic bandgap effect 

of the cladding lattice, i.e. anti-resonant effects of the cladding lattice, guides light in the 

core of the fiber. The bandgaps in the cladding is illustrated as the white areas in Fig. 3.1b. 

The horizontal axis in Fig. 3.1b is the normalized frequency of the node, V/π = (d/λ)(nh
2-

nb
2)1/2 and the vertical axis modal index minus nb. The guided modes in the defect core only 

exist within the cladding bandgaps, which determine the wavelength range over which the 

modes in the core are guided. This photonic bandgap guidance can be strongly mode-

dependent. A large core all-solid PBF can potentially be designed by maximizing guidance 

of the fundamental mode while minimizing the guidance of all higher order modes, 

equivalent to the use of mode-dependent leakage losses. As in conventional fibers, the 

effective indices of the core modes are just slightly below the core index nb. First three 

modes in the first bandgap of an all-solid photonic bandgap fiber with 50μm core are 

illustrated in Fig. 3.2, showing strong guidance of fundamental mode and weakly guided 

higher order modes. 



 34 

 

Fig. 3.1 (a) Illustrations and parameter definitions of a seven-cell-core all-solid photonic 

bandgap fiber, and (b) photonic bandgaps of the cladding lattice (Δ = 2.07%). 

 

The first all-solid photonic bandgap fiber was demonstrated in 2004 [85]. The 

refractive index of the nodes in the cladding was ∼16% above that of the background glass. 

The nodes were made of SF6 with an index of ∼1.79 and the background glass was made 

of LLF1 with an index of 1.54. In the next demonstration in 2005, the refractive index of 

the nodes in the cladding was just 1% above the silica background [82]. High index contrast 

had been considered to be a key to photonic bandgaps. This was the first demonstration 

that guidance based on photonic bandgaps in optical fibers can take place at arbitrarily 

weak refractive index contrast. This is fundamentally due to the fact that the guided modes 

in the defect core are impinging on the photonic bandgap cladding at a very shallow 

glancing angle. The bandgap only needs to exist for such a small glancing angle, which 

significantly relaxes the requirement for high refractive index contrast. The multiple 

bandgaps are easily observed in these early fibers. 
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The next significant breakthrough was the thorough understanding of the origins of 

the photonic bandgaps in the cladding by Birks et al. [81] The key is to understand the 

modes supported by the photonic bandgap cladding. Due to the periodic nature of the 

cladding, these modes are not the localized modes we typically see in waveguides, but 

these global modes have their origin in the localized modes supported by each individual 

node. In a photonic bandgap cladding, they form bands of global modes, see Fig. 3.1b. 

Each band can be traced back to the localized modes guided in the nodes which are labeled 

in Fig. 3.1b. The definitions of relevant fiber parameters are given in Fig. 3.1a, where Λ is 

the spacing of the cladding nodes; d is the node diameter, nb is the background glass index 

and nh is the node index. The transverse electric field of the mode at the upper edge of the 

first band, labeled LP01 in Fig. 3.1b, is shown in Fig. 3.2a and that at the lower edge of the 

first band is shown in Fig. 3.2b. These global modes in the bands can be viewed as arising 

from the localized mode coupled to its nearest neighbors. Since the phase of the field over 

neighboring nodes can take an infinite number of combinations, there are an infinite 

number of global modes within each band at any specific frequency, in an infinite cladding. 

The top of the band is from modes with equal phase over neighboring nodes, see Fig. 3.2a. 

The bottom of each band is from modes with anti-phase over neighboring nodes, see Fig. 

3.2b. It was realized very quickly that the even-order bandgaps are shallower than the 

adjacent odd-number bandgaps in refractive index due to the difference in the field 

distributions of the global modes which form the bandgaps [81]. For even-order bandgaps, 

the relevant global modes are more concentrated in the low-index background. 
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A recent theoretical work has determined that a seven-cell all-solid photonic 

bandgap fiber can achieve an effective area of 511μm2 in a fiber with a core diameter of 

~42.2μm when operating in the first photonic bandgap at ~1μm and being coiled at radius 

R = 10cm [79]. Further mode area scaling is limited by significant increase of fundamental 

mode loss at large pitch required for larger cores, noting core diameter 2ρ = 4Λ-d for a 

seven-cell core. Higher order bandgaps are usually associated with shallower bandgaps and, 

consequently, high losses (Fig. 3.1b). However, this loss can be significantly lowered by 

an increase of d/Λ. Operating in the third bandgap allows choosing a much larger d/Λ, by 

almost a factor of three. This is more than what is required to compensate the loss caused 

by the reduced bandgap depth, leading to an overall lower loss for the fundamental mode 

and, consequently, much larger core diameters for using the third bandgap. In this work, 

we will demonstrate further mode area scaling is still possible with the operating in the 

third bandgap. 

 

3.3 Mode are scaling of AS-PBF with core diameter of 50μm 

An AS-PBF with core diameter of 50μm was fabricated using standard stack and 

draw procedures. The nodes in the cladding are made from a graded index MM preform 

with germanium doped core with peak Δ = 1.72%. The fiber has core diameters of 55.1μm. 

The flat-to-flat dimension and corner-to-corner dimension of the cladding are 373μm and 

411μm, respectively. The node diameter is 15.3μm and pitch distance is 6.1μm The cross 

sections of the two fibers are shown in Fig. 3.2. Effective mode area is simulated at various 

coiling diameters and is shown in Fig. 3.3, showing an effective area of ~900μm2 at 
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wavelength of 1050nm and coil diameter of 30cm. An effective are of ~920μm2 can be 

achieved when using 50cm coil diameter. There is no significant variation in mode areas 

when wavelength is changed within the bandgap (see Fig. 3.3). 

 

Fig. 3.2 Cross section photos of the two fabricated fibers. 
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Fig. 3.3 Simulated effective area of Fiber 1 versus coil diameter. 

The bend-dependent loss was measured for Fiber 1 by setting the coil diameters to 

20cm, 30cm and 35cm and performing cut-back measurements. The result is shown in Fig. 

3.4. The target coil diameter is 30cm. At the center of the third bandgap at ~1.05μm, very 

little bend dependent loss was measured at the target coil diameter. At 20cm, significant 

bend-induced loss was seen throughout the band. Also shown is the much stronger bend-

induced loss in the second bandgap at ~1.55μm. This is expected, due to the shallower band 

depth for this even bandgap (Fig. 3.1b) [81]. 
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Fig. 3.4 Loss of Fiber 1 at coiling diameters of 20cm, 30cm and 35cm 

 

Fig. 3.5 Measured HOM contents in a 5 m fiber coiled at 70 cm diameter 

using S2 method [7]. 

The HOM contents are also measured across the bandgap in a 7 m fiber coiled in 

70 cm diameter in Fig. 3.5 using a fast S2 method implemented with a tunable laser and a 

CCD camera [71]. As it can be seen, the HOM contents are well below 20 dB across the 

bandgap once the launch is optimized. 
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3.4 Ytterbium-doped AS-PBF lasers 

Two active PBFs with Yb-doped cores were fabricated using the standard stack and 

draw technique for this work. Both active fibers were drawn from the same preform while 

the second active PBF (Active2) was ~4% larger than the first active PBF (Active1) in 

dimensions. This small increment was calculated to allow true single-mode operation at 

the lasing wavelength. A more detailed explanation will be given in Section 3. For all three 

fibers, the nodes in the cladding were made of germanium-doped silica with graded index 

profile which has a peak value of 1.48. Both active PBFs were coated with low refractive 

index polymer coating, providing a numerical aperture (NA) of 0.46 for the guidance of 

pump light. The pump absorption of the active PBF was estimated to be ~1dB/m at 976nm. 

The cross-section of the Active1 PBF and the dimensions of three fibers are shown in Fig. 

3.1 and Table. 3.1, respectively. 

Table. 3.1 Dimensions of fabricated PBF 

PBF Pitch/Λ 

(µm) 

Node 

Size/d 

(µm) 

d/Λ Core size 

flat to 

flat (µm) 

Core size 

corner to 

corner 

(µm) 

OD flat-

to-flat 

(µm) 

OD corner-

to-corner 

(µm) 

Active1 16.41 6.56 0.4 48.14 56.66 404.52 439.06 

Active2 16.96 6.71 0.4 50.07 58.83 417.5 454.3 

Passive 16.52 6.37 0.39 49.46 58.08 405.01 440.15 
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Fig. 3.6 (a) Cross-section of the Active1 PBF; (b) Zoomed-in cross-section of Active1 PBF. 

The core of the active PBFs consists of 7 Yb-doped rods in the center. Ideally, the 

refractive index of the active rods should be matched to that of silica background. However, 

this is very hard to satisfy and our active rods have a small index depression relative to 

silica [86]. In order to determine the index depression Δn which is defined as the difference 

of refractive index between the background glass and the active rods, the fiber was cladding 

pumped well below the lasing threshold and the mode pattern was measured using 

amplified spontaneous emission (ASE). This was then compared to the simulation, as done 

in  [58]. The simulation studied mode profiles at different index depression Δn, ranging 

from 0.5 × 10−4 to 3 × 10−4 with increment of 0.25 × 10−4. The mode patterns and the 

intensity distributions across the white axis are presented in Fig. 3.6. A shallow dip at the 

center of the core was observed during the experiment due to the index depression. The 

simulation showed this phenomenon clearly. It is estimated that the measurement best 

matches simulation result when Δn equals 2.25 × 10−4. 
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Fig. 3.7 (a) Top: Experimental results of mode profile and intensity distribution 

using ASE; (b) Below: Simulation of mode profile at Δn = 2.25 × 10−4 and 

intensity distributions at various ∆n with 0.25x10−4 increments. 

 

The depressed refractive index of the Yb-doped rods would directly affect the 

effective mode area of the non-Gaussian-like mode. Figure 3.3a shows the effective mode 

area with respect to the index depression in a straight fiber. As the difference in refractive 

index increases, the FM becomes flatter, resulting in a larger effective mode area. At an 

index depression of 2.25 × 10−4, the effective mode area reaches ~1450μm2. .On the other 

hand, the effective mode area at various bending radii when Δn is fixed at 2.25 × 10−4 is 

plotted in Fig. 3.3b. At a bending radius of 0.25m, which is the designed coil configuration, 

the effective mode area is estimated to be ~1020μm2. 
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Fig. 3.8 (a) Simulated effective area versus index depression Δn in a straight fiber; (b) 

Simulated effective area versus bending radius with Δn = 2.25 × 10−4. 

 

The two active PBFs were subjected to extensive study to determine the power 

scalability and robustness of single mode operation. In all the characterizations, the fiber 

had both ends perpendicularly cleaved to form the cavity and was laid in an aluminum 

groove with a 50cm diameter coil in accordance to the initial design. The metal plate also 

served to dissipate heat from outside coating. The fiber was cladding pumped by a 

commercial laser diode emitting at ~976nm (LIMO200-F200-DL980) through a dichroic 

mirror. The output power at 1030nm and the residual pump light were measured at the 

other end. The slope efficiency with respect to the absorbed pump power and lasing 

threshold as a function of bending diameter using 6m Active1 is shown in Fig. 3.4a. The 

slope efficiency remained above 80% with the threshold below ~6W when bending 

diameter was kept at and above 50cm. It can be seen that from a bending diameter of 60cm 

to 50cm, the slope efficiency only dropped 3%, but the mode quality is expected to benefit 

from a tighter coil size. The optimal coil size was consequently determined to be ~50cm. 
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The Active1 was then repeatedly cut back from its original length. The slope efficiencies 

versus fiber length are shown in Fig. 3.4b. The dashed blue line indicates the slope 

efficiency with respect to the launched pump power while the solid red line indicates the 

slope efficiency with respect to the absorbed pump power. Both efficiencies increased as 

the fiber length was shortened until they reached maximal values of 72% and 83% at the 

optimal fiber length of 5.2m. 

 

Fig. 3.9 (a) Efficiency relative to the absorbed pump as a function of bending diameter. (b) 

Measured optimal fiber length to achieve maximal efficiency. 

 

However, a closer look shows that Active1 did not provide single-mode operation 

very well at 50cm coil diameter. This was attributed to the lasing wavelength being too 

close to the low frequency edge of the bandgap, where the fiber is multimode [23]. The 

Active2 PBF with 4% increase in dimension was drawn to aim at moving the lasing 

wavelength of ~1030nm closer to the high frequency edge of the bandgap, where robust 

single-mode operation is expected (see Fig. 3.6). Laser output from a section of 6m Active2 

coiled at 50cm in diameter was characterized for beam quality. A CCD camera traced the 
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output beam propagation over 15cm distance. Calculation of the beam size was based on 

the second-moment method, yielding M2 = 1.13 and M2 = 1.16 along the horizontal and 

vertical direction respectively. The fact that M2 is larger than 1 is attributed to the non-

Gaussian-like beam shape. The promising result shown in Fig. 3.5(a) implies robust single 

mode operation. The expected rotation of the hexagonal mode shape from near field to far 

field can be clearly observed. The slope efficiencies of Active2 were measured 

subsequently. The slope efficiencies relative to the launched and absorbed pump power 

were measured to be 70% and 84% respectively, which is close to the maximum 

efficiencies of Active1. The highest output power achieved in this configuration was ~75W, 

limited by the pump power available. 

 

Fig. 3.10 (a) Beam quality measurement of the output signal. Insets along the curve represent 

mode profiles at near-field, beam waist and other transition phases. (b) Measured slope efficiencies 

relative to the launched and absorbed pump power. The dotted line represents a linear fit while 

the solid circles and triangles represent measured values. 

 
As mentioned before, by bringing the high-frequency bandgap edge closer to the 

laser wavelength, one can expect more robust single-mode operation. This can be 
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illustrated by the inset in Fig. 3.6, as the frequency increases, the HOMs are cut off 

gradually at the high-frequency bandgap edge and only FM is supported at the highest 

frequency [87]. To test the robustness of the single-mode operation, the light from a tunable 

laser was launched into a section of Active2 with only a single 50cm coil. The launch beam 

was first carefully aligned then intentionally moved by 6.25μm and 12.5μm in the 

transverse plane off the optimal launch condition so that HOM may be excited. Fig. 3.6 

shows the scaled transmission band obtained from the passive PBF and mode profile 

captured from Active2 at various wavelengths from 1025nm-1095nm. Since the index 

depression of the active fiber is very small, we expect its bandwidth to be only slightly 

narrower than that of the passive fiber while the overall bandgap structure remains the same. 

Near the short wavelength edge of the bandgap, i.e. at the high frequency edge of the 

bandgap, the fiber exhibited a clear robust single-mode regime in Active2. HOM was 

observed at non-optimal launch conditions above 1040nm. 



 47 

 

Fig. 3.11 The transmission band measured from the passive PBF and the measured mode 

profile from Active2 at different wavelengths. Δx is distance of the launch offset. The inset 

illustrates modes supported within the bandgap of a PBF. 

3.5 Conclusion 

Fibers with strong higher order mode suppression are critical for further power 

scaling of single mode fiber lasers to beyond kW levels. In an all-solid photonic bandgap 

fiber, modes are only guided due to anti-resonance of cladding photonic crystal lattice. This 

provides strongly mode-dependent guidance, leading to very high differential mode losses. 

In addition, the all-solid nature of the fiber makes it easily spliced to other fibers. We have 

studied both theoretically and experimentally the possibility of further mode area scaling 

using all-solid photonic bandgap fibers.  We confirmed that all-solid photonic bandgap 

fibers have the potential to provide significant higher order mode suppression. For the 
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passive AS-PBF, we have demonstrated a record effective mode area of ~920μm2 with 

higher order mode content below −30dB.  

We then have demonstrated an Yb-doped all-solid PBF laser with a core diameter 

of ~50μm. The effective area is ~1450μm2 in a straight fiber and ~1020μm2 when coiled at 

50cm diameter. The large effective mode area will help to mitigate nonlinear effects at high 

powers. Active1, reached 83% and 72% slope efficiencies against the absorbed and 

launched power respectively. Active2 reached 84% and 70% slope efficiencies with respect 

to the absorbed and launched power respectively. We have also confirmed robust single-

mode operation in Active2 with M2 less than 1.2 in both horizontal and vertical axes. We 

have also experimentally confirmed that the single-mode regime exists at shorter 

wavelengths close to the edge of transmission window and small fiber diameter 

adjustments can be used to fine tune the robustness of single mode operation, a feature 

unique to PBF. This work demonstrates that the significant power scalability and excellent 

beam quality is possible in all-solid PBF lasers. 
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CHAPTER FOUR 

MULIPLE-CLADDING-RESONANCE ALL-SOLID PHOTONIC 

BANDGAP FIBERS WITH LARGE MODE AREA 

4.1 Introduction 

In the course of developing high-power fiber lasers, mode area scaling is a key to 

mitigate nonlinear effects as a result of high optical intensity. In many applications, 

diffraction-limited beam is highly desired. We now know that mode instability can lead to 

poor mode quality at higher powers even in fibers with some higher-order-mode 

suppression. In the recent decade, numerous approaches have been proposed, which led to 

a significant progress in mode area scaling of optical fibers. One notable area is in photonic 

crystal fibers (PCF) [34,53,59,88,89]. The short straight PCF rods used in the 

demonstrations have prevented their use in multi-kilowatts fiber lasers due to limited heat 

dissipation. The air holes in the cladding have also prevented them from being used in 

robust monolithic fiber lasers. The lack of strong higher-order-mode suppression has also 

led to mode instability issues [32,57,86]. To overcome some of the drawbacks, we have 

studied all-glass and coil-able leakage channel fibers (LCF) [57,68]. In the light of recent 

works in mode instabilities, much stronger higher-order-mode suppression is necessary to 

ensure single-mode operation at high powers [33,36]. 

Recently there have been significant interests in all-solid bandgap fibers (AS-

PBF) [62,66,90]. The unique combination of an open cladding and a dispersive anti-

resonant cladding which enhances the mode dependence enables some of the strongest 
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higher-order-mode suppressions. In a recent work, we have demonstrated the existence of 

a robust single-mode regime near the short-wavelength edge of the bandgap in an 

ytterbium-doped 50µm-core all-solid photonic bandgap fiber. Our efforts in further mode 

area scaling of all-solid photonic bandgap fibers using similar designs have failed to find a 

design with sufficient higher-order-mode suppression for 100µm-core fibers. This led us 

to look for significant improvement in the designs. 

It is well known that additional cores in the cladding which are in resonance for 

coupling with the higher-order modes in the main core can be used to suppress the higher-

order modes in the main core [54,91]. This has even been recently used in hollow-core 

photonic bandgap fibers for suppressing higher-order modes [92,93]. Recently, it has been 

suggested that multiple-coupled cores in the cladding can lead to much improved higher-

order-mode suppression [94]. The key improvement is the use of multiple coupled small 

cores in the claddings which both enhances the coupling with higher-order modes in the 

main core and broadens the coupling resonance. The higher-order-mode in the main core 

is coupling to multiple coupled cores in the cladding simultaneously in the new design 

instead of just few isolated cores in the cladding in previous works. Narrow coupling 

resonance in the previous approaches  has always made them somewhat impractical [54,91]. 

Such multiple coupled cores can be easily incorporated in the existing fabrication process 

of photonic bandgap fibers. The new proposal is, therefore, significant in providing a far 

more practical design. Recently, robust single-mode operation with mode field diameter of 

44µm in a straight fiber was demonstrated using this approach in an all-solid photonic 

bandgap fiber [95]. 
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In this chapter, we theoretically and experimentally investigated the multiple-

cladding-resonance (MCR) designs in all-solid photonic bandgap fibers for further mode 

area scaling as well as for coiled operations. Detailed numeric studies have been conducted 

for multiple cladding designs. Our simulation also indicates well over two orders of 

magnitude suppression of higher-order modes in coiled operations. We have demonstrated 

robust single-mode operation with record effective mode area of ~2650µm2, i.e. a mode 

field diameter of 58µm, in straight fibers. This represents a significant improvement over 

previous demonstrations of robust single-mode operation in all-solid photonic bandgap 

fibers.  

 
4.2 Design theory  

Additional smaller cores can be easily created in the cladding of photonic bandgap 

fibers by missing several nodes. The smaller cores share the same cladding as the main 

core. If the cladding cores are well isolated, the resonant conditions between the 

fundamental mode in the cladding cores and various higher-order modes of the main core 

can be easily calculated. Using step-index fiber analogue, the propagation constant of 

modes in the main core can be written as: 

 
𝛽𝑚
2 = 𝑘2𝑛𝑏

2 −
𝑈𝑚
2

𝜌𝑚
2

 
(1) 

where k is the vacuum wavenumber; nb is the refractive index of the background glass; ρm 

is the main core radius; and main core parameter Um is as normally defined for optical 

fibers [96]. It needs to be noted that the refractive index of all the cores is the same as that 
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of the background glass nb in this case. Similarly, the propagation constant of modes in the 

cladding cores can be written as 

 
𝛽𝑐
2 = 𝑘2𝑛𝑏

2 −
𝑈𝑐
2

𝜌𝑐2
 

(2) 

The cladding core parameter Uc is defined similarly as Um. The resonant condition 

for maximum coupling of a mode in the main core and a mode in the cladding core is ρm=ρc. 

Using the relations obtained thus far in Eq.1 and Eq.2, the resonant condition can be written 

as: 

 𝑈𝑚
𝜌𝑚

=
𝑈𝑐
𝜌𝑐

 
(3) 

Since the refractive index of core and cladding are the same for both main and 

cladding cores. The resonant condition can be rewritten using the normalized frequency, 

i.e. V value, Vm and Vc for the main and cladding cores respectively. 

 𝑈𝑚
𝑉𝑚

=
𝑈𝑐
𝑉𝑐

 
(4) 

 

This can be easily calculated for the fundamental mode of the cores in the cladding 

and various higher-order modes in the main core (see Fig. 4.1). 
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Fig.4.1 Required core diameter ratio (ρc/ρm) for maximum resonant coupling 

between the fundamental mode of the cladding core and one of the higher-order 

modes of the main core versus normalized frequency (V value) of the main core. 

 

The horizontal axis is the V value of the main core. For weakly coupled cladding 

cores, Fig. 4.1 provides a reasonable approximation for a straight fiber. In the multimode 

regime with V>10, for coupling with LP11 and LP21 modes in the main core, ρc/ρm≈0.6 

and 0.44 respectively. As it turned out, this approximation works reasonably well for 

cladding cores of a photonic bandgap fibers. 

4.3 Numeric simulations and results 

Based on the approximation in Fig. 4.1 as guidance, three cladding designs were 

numerically studied using a FEM mode solver. The cross-sections of all designs are shown 

in Fig. 4.2. For all the designs, a 7-cell core is adopted. Instead of the periodically arranged 

high-index inclusions surrounding the core, several cladding structures are used to form 
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the cladding. The smaller cores in the cladding are formed by purposefully taking out a 

certain number of nodes such that a cladding defect core is created. The first design shown 

in the left side of Fig. 4.1 is referred to the “mixed-cell” since it has two and three nodes 

removed to create the cladding cores. The second and third design shown in the middle and 

right side of the Fig. 4.2 are accordingly referred to “three-cell”  and “ two-cell” 

respectively. The core diameter ratio ρc/ρm≈0.65 and 0.53 for the 3- and 2-cell cores 

respectively, close to the 0.6 required in Fig. 4.1 for coupling with LP11 mode in the main 

core. It is worth noting that the effective mode index of the cladding core will increase or 

decrease in a coiled fiber depending on its relative location to the center of the coil. The 

condition required in Eq. 4 is, therefore, only an approximation in this case.  

The nodes in the cladding were made of germanium-doped silica with a graded 

index profile similar to the one used in our previous Yb-doped PBF. The pitch, that is the 

distance between two adjacent cladding nodes, is 25μm, which yields a 100μm core 

diameter. The ratio between the diameter of the cladding nodes and pitch is fixed, at 0.24. 

 

Fig. 4.5 Cross-section of PBFs studied. From left to right are: mixed-cell, three-cell and two-cell AS-PBF. 
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A commercially available COMSOL Finite Element Method (FEM) mode solver is 

used for the simulation. A perfectly matched layer is implemented to obtain the mode loss. 

The fiber is simulated under 50cm bending radius. This provides a coil diameter which is 

acceptable for multi-kw high-power fiber lasers and minimizes mode compression due to 

coiling. The wavelength is scanned from 900nm to 1100nm. Given the symmetry of the 

cladding arrangement, propagation loss under different bending orientations has been 

studied. The arrow in the inset of Fig. 4.3 indicates the direction where the center of the 

coil is. The loss curves with respect to the wavelength are plotted in Fig. 4.3. 

 

(a) 
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(b) 

 

(c) 

Fig. 4.3 Simulated loss of LP01 (blue) and LP11 modes (Orange and Green) in (a) mixed-cell 

design, (b) two-cell design and (c) three-cell design. The insets show the layout of different 

cladding arrangement. The arrow in the inset indicates the coil center. Insets also show the 

mode patterns of LP01 and LP11. 
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For the mixed-cell PBF (Fig. 4.3a) and three-cell PBF (Fig. 4.3c), each has three 

possible different bending orientations: one horizontal and two vertical. Meanwhile two-

cell PBF only has two fundamentally different ways to coil. The first three dominant modes, 

namely LP01 and LP11 (LP11A and LP11B) with two orthogonal orientations are presented. 

The inset in Fig. 4.3a shows the generic mode pattern for LP01, LP11A and LP11B. It can be 

clearly seen that when fiber is bent horizontally, all three designs demonstrate significant 

differential mode loss within the third bandgap at wavelength ranging from 1000nm to 

1030nm, which indicates a possible window for single-mode operation. The lowest 

fundamental mode loss can be as low as ~0.01dB/m. 

One should note that at 1030nm the FM tends to have a small loss peak, which can 

be attributed to the resonance effect with the cladding, as it can be clearly seen in the inset 

of Fig. 4.3a. The differential loss is much worse when bending vertically. For example, for 

the three cell PBF shown in the Fig. 4.3c, the LP11A mode has almost the same loss as LP01 

mode does. At longer wavelengths, it can even have less loss than LP01 mode. The loss of 

all LP modes tend to increase significantly outside the bandgap when the wavelength is 

below 1000nm or beyond 1050nm. The mode can be severely distorted in the high loss 

regime. 

Table. 4.1 Summary of loss ratio for three types of fiber design 

 

Fiber Type Wavelength 

(nm) 

Minimum FM 

loss (dB/m) 

Corresponding HOM 

loss (dB/m) 

Loss ratio 

Mixed-cell 1020 0.02 3.83 192 

Three-cell 1040 0.01    4.13 413 

Two-cell 1000 0.02 5.03 252 
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Table. 4.1 summarized the FM loss, minimum HOM loss and loss ratios at the 

wavelength that has the minimum FM loss for the horizontally coiled fibers. Note that the 

corresponding HOM loss is picked between LP11A and LP11B, whichever has the lower 

loss. From the table, it can be seen that the three-cell PBF has the highest loss ratio at 

1040nm but the bandwidth for low FM loss is rather narrow in this case. The two-cell PBF 

has the second highest loss ratio, yet the LP11 mode loss drops down dramatically once 

the wavelength is longer than 1000nm. It is worth noting that, as for the mixed-cell fiber 

design under horizontal bending, both LP11A and LP11B mode loss are above 10dB/m 

while the fundamental mode loss is kept at or below 0.2dB/m around 1000nm. In addition, 

the bandwidth for such high differential loss is broader compared to the three-cell and two-

cell designs. As the wavelength move toward 1020nm, the LP01 continues to drop below 

0.1dB/m, even though the LP11A mode loss simultaneously decreases, the loss ratio 

between the LP11 to LP01 still reaches as high as 192 (see Table. 4.1). 

Ideally, the bending orientation should be controlled to be horizontal for best HOM 

suppression. However, in practical cases, the bending direction may be arbitrary, meaning 

a fiber can have a combination of all the possible bending orientations throughout its length. 

In this case, total HOM loss will be an average loss of all the orientations. Since FM loss 

remains largely independent of the orientations, it is still sufficient to realize single 

transverse-mode operation over a few meters of fiber although with a lesser HOM 

suppression. 
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4.4 Experimental characterization of MCR PBF 

To validate the simulation, the mixed-cell design was fabricated through standard 

stack-and-draw process. The dimension of the fiber is illustrated in Table. 4.2 and the cross-

section of the actual fiber is shown in Fig. 4.4. One can notice that there is a slight 

difference between actual dimension and numeric simulation, which can be attributed to 

parameter control during the fabrication. The germanium nodes in the cladding have the 

same refractive index profile as the one used in the simulation. The center core is made of 

silica. The outer shape of the fiber is rounded hexagon, which also helps increase the 

differential mode loss. 

Table. 4.2 Dimensions of fabricated hetero-structured PBF 

 
Pitch/Λ (µm) Node 

Size/d 

(µm) 

d/Λ Core size 

flat to 

flat (µm) 

Core size 

corner to 

corner 

(µm) 

OD flat-

to-flat 

(µm) 

OD corner-to-corner 

(µm) 

24.8 6.6 0.27 82.3 91.7 411.1 421.3 

 

Transmission, mode pattern and beam quality of the mixed-cell PBF have been 

fully characterized. In all measurements, the fiber is bent at diameter of 1m, conforming to 

the bending radius set in the numeric simulation. It is also worth mentioning that the 

bending direction was not controlled during the measurement. The transmission of a 4m 

PBF is shown in Fig. 4.5 in a linear scale. The scanning wavelength ranges from 998nm to 

1041nm. The highest transmission peak is observed at the vicinity of 1015nm. Knowing 

the dimension difference, this is well correspondent to the computational results, which has 

low attenuation around 1020nm under all three bending configurations. 
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Fig. 4.4 Cross-section of the fabricated mixed-cell PBF. 

 

 

Fig. 4.5 Normalized Transmission of 4m of the fabricated PBF. 
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The simulated effective mode area (EMA) of the fiber versus bending diameter is 

shown in Fig. 4.6. At bending diameter of 1m, the EMA is ~1842µm2, marked by the 

orange diamond in Fig. 4.6. 

 

Fig. 4.6 Estimated effective mode area (EMA) of the fabricate PBF. The coil diameter is 

in log scale. The insets are mode patterns under different coil diameters. At 1m bending 

diameter, the EMA is estimated to be ~1842µm2, shown as the orange diamond in the chart. 

The dash line indicates the EMA of a straight fiber. 

At large core diameters as in the fabricated fibers in this work, the effective mode 

indexes of the fundamental and higher-order modes are very close, leading to small 

intermodal delays. This causes significant difficulty in using the well-known quantitative 

mode characterization techniques such as S2 and C2 techniques [97,98]. Much wide 

wavelength scan range is required for the S2 method. In case of the C2 method, broadband 

source with coherent length less than few tens of femtosecond is required, in addition to 

the necessary dispersion compensation. Recently we have demonstrated the first 

quantitative mode characterization in a 100µm-core fiber using a matched white-light 
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interferometry where dispersion is completely compensated. The fabricated fiber in this 

work, however, has very narrow transmission band, which makes any quantitative mode 

characterization impossible [99]. 

To verify the robustness of single-mode operation, a tunable laser light was 

launched into a 4m PBF bending at 1m diameter. The fiber was initially aligned such that 

light could be directly launched into the center core while the tunable laser scanned the 

wavelength from 1010nm to 1030nm at the increment of 5nm. The near field mode pattern 

was captured using a CCD camera at the other end of the PBF. Then the fiber was moved 

off the optimal launching condition by 12µm, 24µm and 36µm sequentially in attempt to 

excite HOM. After each offset, the tunable laser would repeat the same wavelength scan. 

Fig. 4.7 shows the near field mode image under different launching conditions at 

various wavelengths. At the optimal launching condition, the fundamental mode was well 

guided from 1010nm to 1015nm and start to degrade slightly at 1030nm. The HOM was 

constantly absent across the wavelength spectrum as the launching condition was gradually 

deteriorated from the optimal launching position. This measurement effectively 

demonstrated the single-mode operation for this PBF. 
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Fig. 4.7 Near filed mode pattern of the mixed-cell PBF at various wavelengths. Δ is the 

distance of the launch offset. 

The beam quality was further verified by employing M2 technique. Three 

wavelengths from the tunable laser, namely 1013nm, 1018nm and 1024nm were selected 

for this measurement. The fiber length and coil diameter are the same as the ones in the 

tests mentioned above. A CCD camera is deployed to trace the propagation of the output 

beam. The results are shown in Fig. 4.8. It can be seen that for all the three wavelengths, 

the measured M2 values along the horizontal and vertical direction are equal or less than 

1.08. The beam profiles captured also indicate a good single-mode operation. This further 

confirms that robust single-mode operation is supported in the large core while HOM is 

highly suppressed by the outer cladding defects due to coupling. 
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Fig. 4.8 Beam quality measurement at wavelength of 1013nm, 1018nm and 1024nm. Both 

x-axis (blue) and y-axis (green) were measured with selected mode profiles along the curve. 

 

4.5 Conclusion 

 
In summary, we have demonstrated robust single-mode operation in a MCR-PBF 

with a record mode area of ~2650μm2. Three types cladding layouts have been theoretically 

studied. Comparing among different bending orientations, horizontal bending performs 

much better in terms of differential mode loss than that vertical bending does. With 

controlled bending configuration, a very high loss ratio between LP11 and LP01 can be 

realized. Mixed-cell design was fabricated and demonstrated to be robustly single-mode at 

coil diameter of 1m. The M2 was measured to be less than 1.08 across the bandgap. This 
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work further pushes mode area scaling limit in single-mode all-solid photonic bandgap 

fibers. The MCR mechanism can be potentially adopted to realize rare-earth doped single-

mode fiber lasers with 100µm core diameter. 
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CHAPTER FIVE 

LOW QUANTUM DEFECT YTTERBIUM-DOPED 

PHOSPHOSILICATE FIBER LASERS 

5.1 Introduction 

Many advantages of ytterbium-doped fiber lasers such as excellent efficiency, low 

quantum defect, and readily available high-power pumps have made them an ideal choice 

for high-power fiber lasers and amplifiers [100,101]. In the previous chapters, power 

scaling of ytterbium-doped fiber lasers has been extensively studied. Large mode area 

fibers, such as photonic crystal fiber (PCF), photonic bandgap fiber (PBF), and leakage 

channel fiber (LCF), have been developed for mitigating nonlinear effects in the course of 

power scaling. 

To date, most high-power ytterbium-doped fiber lasers operate at 1030nm-1200nm. 

However, many applications such as spectroscopy and laser cooling require shorter 

operating wavelengths in order to be frequency doubled or quadrupled to the desired 

wavelengths [102]. Most importantly, multimode high-power fiber lasers operating below 

1020nm can be used in a tandem pumping scheme as pumps to reduce quantum defect 

heating and provide high pump brightness in ytterbium-doped fiber lasers operating at 

~10kW. In this high-power regime, single-mode operation becomes much more 

challenging due to mode instability driven by quantum defect heating [33,34,36]. Thermal 

management also becomes much more challenging due to the much higher heat load. 

Multimode 1018nm fiber lasers are key components in the tandem pumping scheme to 
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provide high brightness pumps and much lower quantum defects in IPG 10kW fiber 

lasers [13]. 

However, it is difficult to realize stable and efficient 1000-1018nm ytterbium-

doped fiber lasers in conventional ytterbium-doped aluminosilicate host as it requires a 

large population inversion to reach gain threshold. Stable operation can only be realized by 

shortening the fiber, which leads to poor pump absorption. One additional challenge is 

parasitic lasing at the ASE peak of ~1030nm. This can be mitigated by using a fiber Bragg 

grating to some extent. The relative gain of 1030nm can be calculated using the simple 

model proposed by Nilsson et al, which is dependent on the pump absorption and clad/core 

area ratio [103]. The first key factor for high efficiency for a given launched pump power 

is low inversion required for reaching the lasing threshold. A second key factor is a small 

cladding-to-core ratio. This effectively lowers signal intensity in a relatively larger core if 

the cladding is kept the same, allowing a lower pump intensity to maintain a given inversion. 

Addressing these two factors effectively can further minimize pump power exiting the fiber. 

For tandem pumping, high efficiency is clearly critical due to the very high power 

involved at multiple kW levels. If high efficiency is not critical, ytterbium-doped fiber 

lasers can be operated from 976nm-1120nm as demonstrated by Royon et al [100]. 

Recently, a number of high-power 1018nm ytterbium-doped fiber lasers have been 

demonstrated. A 85W ytterbium-doped 1018nm fiber laser with 15µm core and 130µm 

cladding was reported in  [104]. The highest reported power is 309W at 1018nm with an 

efficiency against the launched pump power of 71% using a double-clad fiber with a 30µm 

core diameter and 250µm cladding diameter [105]. 
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Phosphosilicate host is known for reaching gain threshold at lower inversion than 

that required for conventional aluminosilicate host for lasing wavelengths below 1020nm 

due to its high emission cross section at shorter wavelength [106]. Using an ytterbium-

doped phosphosilicate leakage channel fiber with ~50µm core diameter and ~420µm 

cladding diameter, we have achieved 70% slope efficiency with respect to the launched 

pump power at 1018nm. The efficiency is similar to what is reported previously for 

ytterbium-doped fiber laser operating at 1018nm [104,105]. 

The cladding diameter of ~420µm in our demonstration is, however, much larger 

than the 250µm and 130µm reported respectively in  [104,105]. The much smaller cladding 

diameters in  [104,105] were critical for the much higher pump brightness required to 

achieve the reported 71% slope efficiency. The much larger cladding diameter in our work 

demonstrates that much lower pump brightness is required in our fiber. Tandem pumping 

is only required currently for 10kW single-mode fiber lasers to lower the quantum defect 

of the output amplifier. The 1018nm fiber laser pumps need to have high enough power to 

be useful for this application. Currently commercially available pump power in 200µm-

core 0.22NA fiber is 500W, while it is 6kW (Laserline) for 400µm-core 0.22NA fiber. This 

work therefor provides the technical basis for >3kW 1018nm fiber lasers, which will be a 

key for scaling single-mode fiber lasers to beyond 10kW. 

In this chapter, a number of ytterbium-doped fiber lasers operating between 

1008nm and 1020nm were constructed, optimized and carefully characterized in order to 

understand the limit of laser efficiency. For comparison, free-running fiber lasers at 

1030nm were also constructed. The performance of the free-running fiber lasers was 
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carefully characterized for various ytterbium-doped fiber lengths. This study allows us to 

gain significant insights to what are limiting the laser efficiency. 

5.2 Experimental Setup 

 

Fig. 5.1 Schematic Experimental Setup. 

The configuration of the fiber laser system shown in the Fig. 5.1 consists of a 

section of Yb-doped phosphosilicate LCF and a FBG with high reflectivity. The Yb-doped 

LCF used in this system has been previously reported in  [58]. The fiber core is 52μm at 

its smallest dimension (flat-to-flat) and 60μm at its largest dimension (corner-to-corner). 

The doped area is 30μm in diameter and is made of a highly uniform Yb-doped 

phosphosilicate glass with an index very slightly below that of silica glass by 2 × 10−4. 

The two-layers of features in the cladding are made from fluorine-doped silica glass with 

a refractive index of 0.0155 below that of silica. The cladding diameter is ~420μm and is 

coated with a low-index polymer coating (n = 1.375) to guide the pump light with a NA of 

0.46. Pump absorption at 975 nm was measured to be 1.05 dB/m. The output mode profile 

is flat-top instead of Gaussian due to the slight refractive index depression in the core. This 
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provides an effective mode area of ~1900µm2 at 1050nm. For high efficiency, it is critical 

to minimize the intra-cavity splice loss. The photosensitive fiber for the fiber Bragg 

gratings was specially made at Clemson and has a similar core/cladding dimension of 

50μm/400μm as the LCF to minimize splicing loss. A series of FBGs with different 

reflecting wavelengths were written using an interferometer and a frequency-quadrupled 

YAG laser in our laboratory at Clemson. It is worth mentioning that the fabrication process 

is kept constant to ensure the reflectivity for various wavelengths is similar. Due to the 

inherent nature of the multimode photosensitive fiber, one cannot accurately obtain the 

reflectivity of the FBG. Fig. 5.2 shows the relative transmission spectrum of a 1018nm 

FBG. Nearly 20dB of relative transmission loss is achieved at peak of the reflectivity. This 

measurement is strongly dependent on the excitation of modes in this multimode fiber. It 

indicates >99% reflectivity for a subset of modes. One end of the FBG is angle cleaved to 

suppress the ASE while the other end is spliced to the Yb-doped LCF. The Yb-doped LCF 

is coiled at diameter of 80cm and pumped by 976nm laser diode. Emitted laser lights are 

recorded at both ends of the fiber. 
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Fig. 5.2 Transmission spectrum of a 1018nm FBG. 

To begin with, a 8m Yb-doped LCF and 1018nm FBG is used. However, the ASE 

is very strong and ultimately lead to spurious oscillation at 1030nm when the pump power 

exceeds the threshold even though the FBG was angle cleaved. This is because the signal 

gain at 1018nm was much lower than that at 1030nm at the threshold in the long fiber 

length used. The fiber was then gradually cut back by 30-40cm each time so that the net 

gain at 1018nm can ultimately exceed the net gain near 1030nm. Once the fiber laser is 

operating stably at the desired wavelength and the efficiency is recorded. The FBG is then 

replaced with a slightly shorter wavelength FBG and the cut-back process was repeated. 

Fig.  5.3a shows the spectra of the output of all the fiber lasers tested. The laser wavelength 

ranges from 1008nm to 1020nm. All the spectra are captured at the highest pump power. 

Over 50dB of difference between signal peak and ASE peak has been achieved for all the 

wavelengths tested. In particular, as for the 1018nm fiber laser, the laser peak is over 60dB 
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higher than the ASE peak. By integrating the spectrum, the ASE suppression of 1018nm 

fiber lasers is calculated to be 41dB. Fig. 5.3b shows the output power of the corresponding 

fiber lasers versus the launched pump power. The highest output power achieved is 52W 

at 1020nm when the pump power launched into the fiber reached 82W. The output power 

is limited by the available pump power. The efficiency is then calculated as 73% with 

respect to the launched power in this case. The slope efficiency then starts to decrease as 

lasing wavelength becomes shorter. 

 

Fig. 5.6 (a) Optical spectra at the laser output, wavelengths ranges from 1008nm to 1020nm. 

(b) Output powers versus the launched pump powers at various lasing wavelengths. 

 

5.3 Discussions 

In this experiment, the fiber length is cut back a small section of length at a time to 

suppress the ASE until the optimum fiber length is reached for the stable laser operation at 

the expenses of inadequate pump absorption. As the length of the fiber gets shorter, in order 

to achieve the same total gain (in our case, round-trip loss is more or less fixed), a higher 
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average inversion over the fiber length is required to reach the gain threshold. At higher 

inversions, the ratio of gain at the shorter lasing wavelength over the ASE peak increases. 

With the help of FBG, the threshold eventually reaches first at the shorter lasing 

wavelength and the fiber laser will then operate stably. We have conducted this cut-back 

procedure for several lasing wavelengths between 1008nm and 1020nm. The efficiency of 

the fiber lasers with respect to the launched pump power and the ytterbium-doped fiber 

lengths used are shown in Fig. 5.4. It can be seen clearly that the slope efficiency decreases 

sharply when the operating wavelength is below 1018nm. The decrease of the slope 

efficiency at shorter lasing wavelengths correlates well with the shorter fiber lengths used 

at various wavelength. Based on the results in Fig. 5.4 alone, we cannot be sure if the poorer 

efficiency at the shorter lasing wavelength is due to inadequate pump absorption as a result 

of the shorter fiber length used or some up-conversion processes at higher inversions or a 

combination of both. 

 

Fig. 5.4 Launched efficiency (black circle) and fiber length (red triangle) as a 

function of wavelength. 
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To further understand the mechanisms responsible for the poorer efficiency at 

shorter lasing wavelengths, we need to characterize slope efficiency with respect to both 

launched and absorbed pump powers at various inversion levels. It is hard to get an accurate 

measurement of the unabsorbed pump powers in order to determine the slope efficiency 

with respect to the absorbed pump powers in the case where a FBG is spliced to the Yb-

doped fibers. We therefore decided to do the cut-back measurement in a free-running fiber 

laser without the FBG. Another ~6m Yb-doped LCF was used for the 1030nm fiber laser 

measurement. Two facets of the fiber were perpendicularly cleaved to serve as two 

reflectors at ~4% reflectivity thus the laser would naturally emit at ~1030nm. The 

experimental configuration is similar to that used in Chapter 2. The fiber was repeatedly 

cut back 40-50cm every time followed by laser efficiency test at each fiber length. 

The slope efficiency with respect both to the launched and absorbed power of the 

1030nm fiber laser versus the inverse of fiber length is plotted in Fig. 5.5. The free-running 

fiber laser measurements were done twice and both results are shown as the 1st 

measurement and the 2nd measurement. The inverse of fiber length serves as a good 

surrogate for the average inversion in case of constant round-trip loss. For comparison, the 

efficiency with respect to the launched pump power of the LCF-FBG fiber lasers is also 

presented. It can be clearly seen that the efficiency with respect to the launched pump 

power overlaps fairly well in all cases including the free-running fiber laser and the LCF-

FBG fiber laser. The LCF-FBG fiber laser has a lower round-trip loss due to the much 

higher reflectivity of the FBG. The free-running fiber laser therefore operates at a much 

higher threshold gain and therefore a much higher average inversion for the same fiber 
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length. Despite the difference in inversion levels among the two types of fiber lasers, their 

efficiency with respect to the launched pump power versus inverse fiber length overlaps 

very well. This is a strong indication that the launched efficiency is primarily limited the 

poor pump absorption as a result of the shorter fiber length and is not related to the higher 

inversion. A further evidence is that the slope efficiency versus the absorbed pump power 

for the free-running laser at fiber length longer than 3m, i.e. 1/L<0.33, is between 92.4% 

to 93.5%, very close to the quantum limit of 94.7%. The average inversion of the free-

running fiber laser with 3m-long fiber is estimated to be ~40% based on the round-trip loss 

and absorption/emission cross sections. This is higher than the average inversion of any of 

the fiber lasers with FBGs. The highest of which is ~40% for the LCF-FBG fiber laser with 

a lasing wavelength of 1008nm. 

 

Fig. 5.5 Slope efficiency versus the inverse of the fiber length. 
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Another detail worth noting is that the absorbed efficiency of the free-running 

1030nm fiber laser starts to decrease when the fiber is cut back to shorter than 3m, i.e. 

1/L>0.33. This suggests that other loss mechanism is introduced at higher population 

inversion. This additional loss mechanism may be related to the cooperative luminescence 

as the characteristic green fluorescence indeed becomes more visible at shorter fiber 

length [107]. The difference between the measured absorbed efficiency and the quantum 

limited efficiency is plotted in Fig. 5.6 versus the estimated average inversion. A quadratic 

fit is expected if the cooperative up-conversion process is expected to be responsible for 

the deviation from the quantum limit. The data at higher inversion can indeed be reasonably 

fitted with a quadratic curve. At lower inversion, the measured data deviates from a 

quadratic fit. This poor fit at lower inversion may be due to the fact that other losses such 

as fiber background loss and measurement errors play a more significant role in this regime. 

 

Fig. 5.6 Deviation of measured absorbed efficiency from quantum efficiency as a function 

of average inversion. Solid red line is the quadratic fit for the measured data. 
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Fig. 5.7 shows the net gain cross-section for the phosphosilicate host at various 

population inversion levels. This is obtained using the absorption and emission cross 

sections reported in  [106]. The emission peaks of ytterbium-doped phosphosilicate fibers 

are at shorter wavelengths comparing to that of ytterbium-doped aluminosilicate fibers, due 

to a narrower Stark split [106]. Compared with aluminosilicate fiber, the phosphosilicate 

fiber has higher gain between 1000nm and 1020nm for the same inversion [106]. As it can 

have been seen that even with 20% population inversion, the net gain is positive in the 

1000-1030nm range. 

 

Fig. 5.7 Net gain in the phosphosilicate fiber. 

 

 



 78 

5.4 Conclusion 

In conclusion, we have demonstrated that ytterbium-doped phosphosilicate host is 

much superior for efficient lasing operation at wavelengths between 1008 and 1020nm 

comparing to conventional aluminoslilicate host. Highly efficient 1018nm fiber laser with 

70% efficiency with respect to the launched pump power is demonstrated in a 50µm-core 

Yb-doped LCF with 420µm cladding diameter, demonstrating the low brightness pump 

required for such efficiency. This large cladding diameter will allow the use of much higher 

power, lower brightness pump diodes, which is essential for tandem pumping of single-

mode fiber lasers at higher powers. The demonstrated 1018nm fiber laser has ~41dB ASE 

suppression, demonstrating the high stability of the laser. We have conducted further study 

to show that the poorer slope efficiency with respect to the launched pump power at shorter 

operating wavelengths is dominated by poorer pump absorption due to the shorter fiber 

length required to achieve stable operation. It is also found that there is an additional loss 

mechanism at higher population inversions, possibly due to the cooperative up-conversion. 

The fiber lasers operate in multimode in this work due to the poor high-order-mode 

suppression in the LCF used. This is due to the lower refractive index of the ytterbium-

doped glass, which modified the operation of the LCF [58]. Single-mode operation is 

possible with more optimized fibers such as those used in Chapter 2. Since single-mode 

operation is not necessary for tandem pumping, which is the focus of this work, we did not 

attempt it in this work. This work, however, demonstrates that efficient high-power single-

mode ytterbium-doped fiber lasers at 1018nm is feasibly with single-mode photonic 

bandgap fibers or more optimized leakage channel fibers. These fiber lasers have a very 
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low quantum defect of 4.1% when pumped at 976nm, providing a path for the mitigation 

of thermal effects without the complexity of tandem pumping for multi-kilowatt fiber lasers. 
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CHAPTER SIX 

CONCLUSIONS AND OUTLOOK 

6.1 Conclusions 

We have firstly conducted detailed studies on the new RE-LCF. The results confirm 

that the simulation based on infinite cladding is accurate for well confined modes with low 

waveguide losses. But for the highly leaky modes, the measured losses can be significantly 

lower than what are predicted by conventional simulation method at large coil diameters 

in the circular LCF. The measured loss, however, start to approach the simulation results 

at smaller coil diameters. The measured losses of the highly leak modes in the hexagonal 

LCF, on the other hand, are consistent with the simulation even at large coil diameters. 

HOM losses in excess of 20dB/m were measured.  The results show that tight coiling can 

mitigate the effect of coherent reflection at outer boundary in fibers, possibly due to phase 

walk-off from the coiled cylindrical surface. The results from the rounded hexagonal fiber 

are even more startling. It suggests that a deviation from circular boundary can be very 

effective in mitigating the impact of the coherent reflection from outer boundary in fibers. 

The low-index polymer coating on this fiber does not seem to matter at all. This is strong 

evidence that the radiated powers from the core are reflected into the guided modes in the 

multimode pump waveguide. This is also a strong proof that the design concept of 

exploiting strong leakage losses of HOMs works even in double-clad fibers with a suitable 

design of fiber boundary. 
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In an all-solid photonic bandgap fiber, modes are only guided due to anti-resonance 

of cladding photonic crystal lattice. This provides strongly mode-dependent guidance, 

leading to very high differential mode losses. In addition, the all-solid nature of the fiber 

makes it easily spliced to other fibers. We have studied both theoretically and 

experimentally the possibility of further mode area scaling using all-solid photonic 

bandgap fibers. Our theoretical studies have shown that all-solid photonic bandgap fibers 

have the potential to provide significant higher order mode suppression. Our experimental 

studies have confirmed this to a large extent. We have demonstrated a record effective 

mode area of ~920μm2 in all-solid photonic bandgap fibers with higher order mode content 

below −30dB. It was observed that mode instability can be initiated by very small amount 

of higher order modes when combining with thermal effects. Fibers with strong higher 

order mode suppression are critical for further power scaling of single mode fiber lasers to 

beyond kW levels. 

Followed by the demonstration of passive AS-PBF. We then demonstrated a 50μm-

core-diameter Yb-doped all-solid photonic bandgap fiber laser with a mode area ~1450μm2 

in a straight fiber and ~1020μm2 when coiled at 50cm diameter. 75W output power has 

been generated with a diffraction-limited beam and an efficiency of 70% relative to the 

launched pump power. We have also experimentally confirmed that a robust single-mode 

regime exists near the high frequency edge of the bandgap. This work demonstrates the 

strong potential for mode area scaling of single-mode all-solid photonic bandgap fibers. 

Using a novel design with multiple coupled smaller cores in the cladding, we have 

continued our effort in further mode area scaling, demonstrating a single-mode photonic 
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bandgap fiber with record effective mode area of ~2650µm2. Detailed numeric studies have 

been conducted for multiple cladding designs. For the optimal designs, the simulated 

minimum higher-order-mode losses are well over two orders of magnitudes higher than 

that of fundamental mode when expressed in dBs. We have also experimentally validated 

one of the designs. M2<1.08 across the transmission band was demonstrated. 

Highly-efficient high-power fiber lasers operating at wavelength below 1020nm are 

critical for tandem-pumping in >10kW fiber lasers to provide high pump brightness and 

low thermal loading. Using an ytterbium-doped-phosphosilicate double-clad leakage-

channel fiber with ~50µm core and ~420µm cladding, we have achieved ~70% optical-to-

optical efficiency at 1018nm. The much larger cladding than those in previous reports 

demonstrates the much lower required pump brightness, a key for efficient kW operation. 

The demonstrated 1018nm fiber laser has ASE suppression of ~41dB. Limiting factors to 

efficiency are also systematically studied. 

6.2 Outlook 

To date, LMA fiber is the most effective way to mitigate nonlinear effects. Mode 

instability has become the major bottleneck for pushing the output power even higher. 

Therefore, it is of primary importance to overcome the LMA fiber’s tendency to support 

multiple modes. The research narrated in this dissertation has provided a basis for tackling 

the mode instability issue. Developing low quantum defect high power fiber lasers with 

better mode control capability is of great interest. By incorporating PBF into 1018nm fiber 

laser system, it is possible to achieve single-transverse-mode output with relatively high 
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efficiency and lower TMI. The scope of this dissertation is limited within Yb-doped system. 

However, it is also important to extend the coverage of high power fiber lasers to other 

wavelength regime such as ~1.55µm and ~2µm. The issue for constructing Er-doped and 

Tm-doped system can be more challenging. The research of these fiber lasers is expected 

to be carried out soon.   
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