49 research outputs found

    Survey on Directed Model Checking

    Get PDF
    International audienceThis article surveys and gives historical accounts to the algorithmic essentials of directed model checking, a promising bug-hunting technique to mitigate the state explosion problem. In the enumeration process, successor selection is prioritized. We discuss existing guidance and methods to automatically generate them by exploiting system abstractions. We extend the algorithms to feature partial-order reduction and show how liveness problems can be adapted by lifting the search Space. For deterministic, finite domains we instantiate the algorithms to directed symbolic, external and distributed search. For real-time domains we discuss the adaption of the algorithms to timed automata and for probabilistic domains we show the application to counterexample generation. Last but not least, we explain how directed model checking helps to accelerate finding solutions to scheduling problems

    Procedure-modular specification and verification of temporal safety properties

    Get PDF
    This paper describes ProMoVer, a tool for fully automated procedure-modular verification of Java programs equipped with method-local and global assertions that specify safety properties of sequences of method invocations. Modularity at the procedure-level is a natural instantiation of the modular verification paradigm, where correctness of global properties is relativized on the local properties of the methods rather than on their implementations. Here, it is based on the construction of maximal models for a program model that abstracts away from program data. This approach allows global properties to be verified in the presence of code evolution, multiple method implementations (as arising from software product lines), or even unknown method implementations (as in mobile code for open platforms). ProMoVer automates a typical verification scenario for a previously developed tool set for compositional verification of control flow safety properties, and provides appropriate pre- and post-processing. Both linear-time temporal logic and finite automata are supported as formalisms for expressing local and global safety properties, allowing the user to choose a suitable format for the property at hand. Modularity is exploited by a mechanism for proof reuse that detects and minimizes the verification tasks resulting from changes in the code and the specifications. The verification task is relatively light-weight due to support for abstraction from private methods and automatic extraction of candidate specifications from method implementations. We evaluate the tool on a number of applications from the domains of Java Card and web-based application

    Computer Aided Verification

    Get PDF
    This open access two-volume set LNCS 10980 and 10981 constitutes the refereed proceedings of the 30th International Conference on Computer Aided Verification, CAV 2018, held in Oxford, UK, in July 2018. The 52 full and 13 tool papers presented together with 3 invited papers and 2 tutorials were carefully reviewed and selected from 215 submissions. The papers cover a wide range of topics and techniques, from algorithmic and logical foundations of verification to practical applications in distributed, networked, cyber-physical, and autonomous systems. They are organized in topical sections on model checking, program analysis using polyhedra, synthesis, learning, runtime verification, hybrid and timed systems, tools, probabilistic systems, static analysis, theory and security, SAT, SMT and decisions procedures, concurrency, and CPS, hardware, industrial applications

    VerificaciĆ³n de aplicaciones web dinĆ”micas con Web-TLR

    Full text link
    Web-TLR is a software tool designed for model-checking Web applications that is based on rewriting logic. Web applications are expressed as rewrite theories that can be formally verified by using the Maude built-in LTLR model-checker. Whenever a property is refuted, it produces a counterexample trace that underlies the failing model checking computation. However, the analysis (or even the simple inspection) of large counterexamples may prove to be unfeasible due to the size and complexity of the traces under examination. This work aims to improve the understandability of the counterexamples generated by Web-TLR by developing an integrated framework for debugging Web applications that integrates a trace-slicing technique for rewriting logic theories that is particularly tailored to Web-TLR. The verification environment is also provided with a user-friendly, graphical Web interface that shields the user from unnecessary information. Trace slicing is a widely used technique for execution trace analysis that is effectively used in program debugging, analysis and comprehension. Our trace slicing technique allows us to systematically trace back rewrite sequences modulo equational axioms (such as associativity and commutativity) by means of an algorithm that dynamically simpli es the traces by detecting control and data dependencies, and dropping useless data that do not infuence the final result. Our methodology is particularly suitable for analyzing complex, textually-large system computations such as those delivered as counter-example traces by Maude model-checkers. The slicing facility implemented in Web-TLR allows the user to select the pieces of information that she is interested into by means of a suitable pattern-matching language supported by wildcards. The selected information is then traced back through inverse rewrite sequences. The slicing process drastically simpli es the computation trace by dropping useless data that do not influence the nal result. By using this facility, the Web engineer can focus on the relevant fragments of the failing application, which greatly reduces the manual debugging e ort and also decreases the number of iterative verfications.Espert Real, J. (2011). VerificaciĆ³n de aplicaciones web dinĆ”micas con Web-TLR. http://hdl.handle.net/10251/11219.Archivo delegad

    Computer Aided Verification

    Get PDF
    This open access two-volume set LNCS 10980 and 10981 constitutes the refereed proceedings of the 30th International Conference on Computer Aided Verification, CAV 2018, held in Oxford, UK, in July 2018. The 52 full and 13 tool papers presented together with 3 invited papers and 2 tutorials were carefully reviewed and selected from 215 submissions. The papers cover a wide range of topics and techniques, from algorithmic and logical foundations of verification to practical applications in distributed, networked, cyber-physical, and autonomous systems. They are organized in topical sections on model checking, program analysis using polyhedra, synthesis, learning, runtime verification, hybrid and timed systems, tools, probabilistic systems, static analysis, theory and security, SAT, SMT and decisions procedures, concurrency, and CPS, hardware, industrial applications

    Synthesis Of Distributed Protocols From Scenarios And Specifications

    Get PDF
    Distributed protocols, typically expressed as stateful agents communicating asynchronously over buffered communication channels, are difficult to design correctly. This difficulty has spurred decades of research in the area of automated model-checking algorithms. In turn, practical implementations of model-checking algorithms have enabled protocol developers to prove the correctness of such distributed protocols. However, model-checking techniques are only marginally useful during the actual development of such protocols; typically as a debugging aid once a reasonably complete version of the protocol has already been developed. The actual development process itself is often tedious and requires the designer to reason about complex interactions arising out of concurrency and asynchrony inherent to such protocols. In this dissertation we describe program synthesis techniques which can be applied as an enabling technology to ease the task of developing such protocols. Specifically, the programmer provides a natural, but incomplete description of the protocol in an intuitive representation ā€” such as scenarios or an incomplete protocol. This description specifies the behavior of the protocol in the common cases. The programmer also specifies a set of high-level formal requirements that a correct protocol is expected to satisfy. These requirements can include safety requirements as well as liveness requirements in the form of Linear Temporal Logic (LTL) formulas. We describe techniques to synthesize a correct protocol which is consistent with the common-case behavior specified by the programmer and also satisfies the high-level safety and liveness requirements set forth by the programmer. We also describe techniques for program synthesis in general, which serve to enable the solutions to distributed protocol synthesis that this dissertation explores

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This open access book constitutes the proceedings of the 28th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2022, which was held during April 2-7, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 46 full papers and 4 short papers presented in this volume were carefully reviewed and selected from 159 submissions. The proceedings also contain 16 tool papers of the affiliated competition SV-Comp and 1 paper consisting of the competition report. TACAS is a forum for researchers, developers, and users interested in rigorously based tools and algorithms for the construction and analysis of systems. The conference aims to bridge the gaps between different communities with this common interest and to support them in their quest to improve the utility, reliability, exibility, and efficiency of tools and algorithms for building computer-controlled systems

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This open access book constitutes the proceedings of the 28th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2022, which was held during April 2-7, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 46 full papers and 4 short papers presented in this volume were carefully reviewed and selected from 159 submissions. The proceedings also contain 16 tool papers of the affiliated competition SV-Comp and 1 paper consisting of the competition report. TACAS is a forum for researchers, developers, and users interested in rigorously based tools and algorithms for the construction and analysis of systems. The conference aims to bridge the gaps between different communities with this common interest and to support them in their quest to improve the utility, reliability, exibility, and efficiency of tools and algorithms for building computer-controlled systems

    Computer Aided Verification

    Get PDF
    The open access two-volume set LNCS 12224 and 12225 constitutes the refereed proceedings of the 32st International Conference on Computer Aided Verification, CAV 2020, held in Los Angeles, CA, USA, in July 2020.* The 43 full papers presented together with 18 tool papers and 4 case studies, were carefully reviewed and selected from 240 submissions. The papers were organized in the following topical sections: Part I: AI verification; blockchain and Security; Concurrency; hardware verification and decision procedures; and hybrid and dynamic systems. Part II: model checking; software verification; stochastic systems; and synthesis. *The conference was held virtually due to the COVID-19 pandemic
    corecore