198 research outputs found

    Transformation-Based Bottom-Up Computation of the Well-Founded Model

    Full text link
    We present a framework for expressing bottom-up algorithms to compute the well-founded model of non-disjunctive logic programs. Our method is based on the notion of conditional facts and elementary program transformations studied by Brass and Dix for disjunctive programs. However, even if we restrict their framework to nondisjunctive programs, their residual program can grow to exponential size, whereas for function-free programs our program remainder is always polynomial in the size of the extensional database (EDB). We show that particular orderings of our transformations (we call them strategies) correspond to well-known computational methods like the alternating fixpoint approach, the well-founded magic sets method and the magic alternating fixpoint procedure. However, due to the confluence of our calculi, we come up with computations of the well-founded model that are provably better than these methods. In contrast to other approaches, our transformation method treats magic set transformed programs correctly, i.e. it always computes a relevant part of the well-founded model of the original program.Comment: 43 pages, 3 figure

    Super Logic Programs

    Full text link
    The Autoepistemic Logic of Knowledge and Belief (AELB) is a powerful nonmonotic formalism introduced by Teodor Przymusinski in 1994. In this paper, we specialize it to a class of theories called `super logic programs'. We argue that these programs form a natural generalization of standard logic programs. In particular, they allow disjunctions and default negation of arbibrary positive objective formulas. Our main results are two new and powerful characterizations of the static semant ics of these programs, one syntactic, and one model-theoretic. The syntactic fixed point characterization is much simpler than the fixed point construction of the static semantics for arbitrary AELB theories. The model-theoretic characterization via Kripke models allows one to construct finite representations of the inherently infinite static expansions. Both characterizations can be used as the basis of algorithms for query answering under the static semantics. We describe a query-answering interpreter for super programs which we developed based on the model-theoretic characterization and which is available on the web.Comment: 47 pages, revised version of the paper submitted 10/200

    Logic Programming as Constructivism

    Get PDF
    The features of logic programming that seem unconventional from the viewpoint of classical logic can be explained in terms of constructivistic logic. We motivate and propose a constructivistic proof theory of non-Horn logic programming. Then, we apply this formalization for establishing results of practical interest. First, we show that 'stratification can be motivated in a simple and intuitive way. Relying on similar motivations, we introduce the larger classes of 'loosely stratified' and 'constructively consistent' programs. Second, we give a formal basis for introducing quantifiers into queries and logic programs by defining 'constructively domain independent* formulas. Third, we extend the Generalized Magic Sets procedure to loosely stratified and constructively consistent programs, by relying on a 'conditional fixpoini procedure

    Constrained Query Answering

    Get PDF
    Traditional answering methods evaluate queries only against positive and definite knowledge expressed by means of facts and deduction rules. They do not make use of negative, disjunctive or existential information. Negative or indefinite knowledge is however often available in knowledge base systems, either as design requirements, or as observed properties. Such knowledge can serve to rule out unproductive subexpressions during query answering. In this article, we propose an approach for constraining any conventional query answering procedure with general, possibly negative or indefinite formulas, so as to discard impossible cases and to avoid redundant evaluations. This approach does not impose additional conditions on the positive and definite knowledge, nor does it assume any particular semantics for negation. It adopts that of the conventional query answering procedure it constrains. This is achieved by relying on meta-interpretation for specifying the constraining process. The soundness, completeness, and termination of the underlying query answering procedure are not compromised. Constrained query answering can be applied for answering queries more efficiently as well as for generating more informative, intensional answers

    Logic programming and negation: a survey

    Get PDF

    Semantics of Horn and disjunctive logic programs

    Get PDF
    AbstractVan Emden and Kowalski proposed a fixpoint semantics based on model-theory and an operational semantics based on proof-theory for Horn logic programs. They prove the equivalence of these semantics using fixpoint techniques. The main goal of this paper is to present a unified theory for the semantics of Horn and disjunctive logic programs. For this, we extend the fixpoint semantics and the operational or procedural semantics to the class of disjunctive logic programs and prove their equivalence using techniques similar to the ones used for Horn programs

    Knowledge Compilation of Logic Programs Using Approximation Fixpoint Theory

    Full text link
    To appear in Theory and Practice of Logic Programming (TPLP), Proceedings of ICLP 2015 Recent advances in knowledge compilation introduced techniques to compile \emph{positive} logic programs into propositional logic, essentially exploiting the constructive nature of the least fixpoint computation. This approach has several advantages over existing approaches: it maintains logical equivalence, does not require (expensive) loop-breaking preprocessing or the introduction of auxiliary variables, and significantly outperforms existing algorithms. Unfortunately, this technique is limited to \emph{negation-free} programs. In this paper, we show how to extend it to general logic programs under the well-founded semantics. We develop our work in approximation fixpoint theory, an algebraical framework that unifies semantics of different logics. As such, our algebraical results are also applicable to autoepistemic logic, default logic and abstract dialectical frameworks
    corecore