
Theoretical Computer Science 86 (1991) 93-106

Elsevier

93

Semantics of Horn and disjunctive
logic programs

Jorge Lobo and Arcot Rajasekar
Department of Computer Science, University of Maryland, College Park, MD 20742, USA

Jack Minker
Department of Computer Science and Institute for Advanced Computer Studies, University of

Maryland, College Park, MD 20742, USA

Abstract

Lobo, J., A. Rajasekar and J. Minker, Semantics of Horn and disjunctive logic programs,
Theoretical Computer Science 86 (1991) 93-106.

Van Emden and Kowalski proposed a fixpoint semantics based on model-theory and an operational

semantics based on proof-theory for Horn logic programs. They prove the equivalence of these

semantics using fixpoint techniques. The main goal of this paper is to present a unified theory

for the semantics of Horn and disjunctive logic programs. For this, we extend the fixpoint semantics

and the operational or procedural semantics to the class of disjunctive logic programs and prove

their equivalence using techniques similar to the ones used for Horn programs.

1. Introduction

The main goal of this paper is to present a unified theory for the semantics of

Horn and disjunctive logic programs. We present a declarative and a procedural

semantics that embed the semantics of Horn programs as presented in [6] and [2].

In [6,2], two approaches to the semantics of Horn programs were studied. A fixpoint

semantics based on the model theory of first-order logic and an operational semantics

based on proof-theory form the core of these papers. Proof of equivalence between

model-theory and proof-theory using fixpoint techniques instead of Giidel’s Com-

pleteness Theorem is among the important contributions presented in [6] and [2].

In this paper we extend the fixpoint semantics and the operational or procedural

semantics to a broader class of logic programs which include disjunctive logic

programs. We prove the equivalence of the two semantics using techniques similar

to the ones used in [6,2].

Fixpoint semantics is based on operators that transform elements of a given lattice

to elements in the same lattice. Van Emden and Kowalski [6] define an operator

0304-3975/91/$03.50 @ 1991-Elsevier Science Publishers B.V.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/81938121?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

94 J. Lobo, J. Minker, A. Rajasekar

that applies to a lattice formed by sets of atoms using set inclusion as partial order

and maps a set of atoms to a set of atoms. In our paper we use sets of positive

clauses instead of atoms to apply the concepts in [6] to the extended theory. The

results on fixpoint semantics are taken from [15]. Procedural semantics in logic

programming uses implementation-independent proof procedures and describes the

semantics of the programs as the theorems provable through the given procedures.

SLD-resolution (SL-resolution for Definite clauses) [8,6] is used as a basis for the

procedural semantics of Horn theories. One of the underlying characteristics of

SLD-resolution is that it has a very simple operational interpretation. Horn programs

are formed of clauses that consist of two parts, an antecedent that consists of a

conjunction of atoms and a consequent that consists of an atomic formula. SLD-

resolution considers the consequent of a clause to be a problem that can be solved

by reducing it to the subproblems given in the antecedent. In this paper, we present

a procedural semantics, SLO-resolution, for the extended class of programs that

keeps the problem-subproblem operational flavor of SLD-resolution. The paper is

organized as follows. In the remainder of this section we present some preliminary

definitions about logic programming and fixpoint theory. Section 2 contains the

fixpoint semantics for disjunctive programs. In Section 3 we present the procedural

semantics and its equivalence with the fixpoint semantics.

1.1. Preliminaries: Logic programs

A logic program P is a finite set of clauses of the form

A,v . . . vA,+B,A...AB,

where n 2 1, m 2 0, and the A’s and B’s are atomic formulas. The disjunction of

atoms A, v . . . v A,, is called the head of the clause. The conjunction of atoms

B,A... A B,,, is called the body of the clause. We assume that all variables that

occur in a clause are universally quantified in front of the clause. A dejinite Horn

clause is a clause where n = 1. A Horn program consists of only definite Horn

clauses. An inde$nite or disjunctive clause is one where n 2 2. A logic program is a

disjunctive program if it contains a disjunctive clause. A positive clause or assertion

is a clause with an empty body. The Herbrand Universe U, of a logic program P,

is the set of all ground terms that can be formed from the constants and function

symbols in P (if there are no constants in P an arbitrary constant is placed in U,).

The Herbrand Base of a logic program P, HB(P), is defined as the set of all ground

atoms that can be formed by using predicates from P with terms from the Herbrand

Universe U, as arguments [9]. An Herbrand interpretation I for P is a subset of

the Herbrand Base of P, in which all atoms in I are assumed to be true while those

not in I are assumed to be false. A Herbrand model of P is a Herbrand interpretation

of P that makes all clauses in P true. A substitution is a finite set of pairs

{(x1, tl), . . . , (x,, t,)} where the x, are distinct variables, the t, terms and each Xi is

Semantics of Horn and disjunctive logic programs 95

different from ti. Given a disjunction or a conjunction of disjunctions of atoms F

and a substitution 8 = {(x,, tl), . . . , (x,, t,,)}, FB is the formula obtained by simul-

taneously replacing all the occurrences of xi in F by ti, for 1 G is n. A clause C

subsumes a clause D if there is a substitution 8 and a subclause C’ of C such that

C’8 = D.

1.2. Preliminaries: Fixpoint theory

Let S be a set and the relation s be a binary relation on S and assume s forms

a partial order on the elements of S (i.e. < is reflexive, transitive and antisymmetric).

If X is a subset of S, then a E S is an upper bound of X if Vx E X, x s a. a E S is

the least upper bound (lub) of X of S if a is an upper bound of X and for all upper

bounds a’ of X, we have a G a’. We can define a greatest lower bound (glb) of X

in a similar manner. S is a complete lattice if lub(X) and gZb(X) exists for every

subset X of S. Given a complete lattice S, an operator T: S+ S is said to be

continuous if for every chain x1 s x2 < . * * of elements of S, T(lub{x, , x2, . . .}) =

lub{ T(x,), T(xJ, . . .}. For a lattice S, given x E S, x is a$xpoint (fp) of T if T(x) =x.

We say x is the least jixpoint (Ifp) of T if x c x’ for all fixpoints x’ of T. For an

operator T, we define the ordinal powers of T as follows:

TTO=gZb(S)

TT a = T(T’f (a - l)), if (Y is successor ordinal

TT a = lub{ TT p: p < a}, if (Y is a limit ordinal.

The next theorem contains a well-known property of continuous functions.

Theorem 1.1 (Lloyd [9]). For a continuous operator T: S+ S, Zfp(T) = TT w, where

w is the jirst limit ordinal.

2. Declarative semantics

2.1. Model-state semantics

Among all the models of a program P we are interested in the Herbrand models.

In particular, we are interested in the minimal Herbrand models since they have a

close relation with fixpoint semantics. A model M of P is minimal if there is no

proper subset M’ of M such that M’ is a model of J? Every Horn program P has

a unique minimal Herbrand model Mr. The intended meaning of P could be

characterized by any of its models but there is a strong reason that makes Mr its

intended interpretation. That is, the atoms in Mr are precisely those that are logical

consequences of P [6]. We can generalize this statement and say that every positive

ground clause that is a logical consequence of P is subsumed by an atom in Mr.

Hence, all logical consequences of a Horn program P are fully characterized by its

unique minimal model Mr. A different situation occurs when we extend Horn

96 J. Lobo, J. Minker, A. Rajasekar

programs to disjunctive programs. A disjunctive program can have more than one

minimal model all of which characterize its logical consequences.

Theorem 2.1 (Minker [131). Let P be a disjunctive logic program. A positive ground

clause C is a logical consequence of P if C is true in every minimal model of P.

Proof. We have that C is a logical consequence of P
iff P u {lC} is unsatisfiable

iff P u {lC} has no Herbrand models, by Proposition 3.3 in [9]

iff 1C is false w.r.t. all Herbrand models of P
iff C is true w.r.t. all Herbrand models of P

iff C is true w.r.t. all minimal Herbrand models of P 0

A characteristic that distinguishes Horn and disjunctive programs is that in disjunc-

tive programs we can have a clause that is a logical consequence of P but none of

its subclauses are. For example, take the simple disjunctive program P = {A v B}
where A v B is a logical consequence of the program P. But neither A nor B are

consequences of P, We refer to clauses such as A v B in program P as minimal

clauses of the program P since no subclause is a logical consequence of the program.

We are interested in capturing such logical consequences in our semantics. In the

case of Horn programs, logical consequences are characterized by atomic formulas

and Herbrand models and Herbrand interpretations provide the proper structure

for capturing them.

For disjunctive programs, the logical consequences are characterized by positive

clauses but a single Herbrand interpretation or model does not capture this concept.

Our first step is to extend the definition of the Herbrand Base to cover the disjunctive

cases.

Definition 2.2 (Minker, Rajasekar [15]). Given a disjunctive logic program P, the

Disjunctive Herbrund Base of P, DHB(P), is the set of all positive clauses that can

be formed with distinct atoms from HB(P).

The need of the Disjunctive Herbrand Base is also reflected in the minimal models

of a program. In contrast to Horn programs, disjunctive programs may have more

than one minimal model. For the program P in the previous example, the minimal

models are {A} and {B}. We want to condense this information in a unique simple

structure. For this, we extend the definitions of interpretations and models to states
and model-states.

Definition 2.3. For a disjunctive logic program P
(1) a state of P is a subset of the Disjunctive Herbrand Base of P, DHB(P);
(2) a model-state of P is a state S of P, such that

(a) Every minimal model of P is a model of S.

(b) Every minimal model of S is a model of P.

Semantics of Horn and disjunctive logic programs 97

Lemma 2.4. Every disjunctive program P has a model-state MS.

Proof. Let MS be the set {C E DHB(P): C is a logical consequence of P}. We

prove that MS is a model-state of P. Part (a) of the definition of model-states follows

directly from Theorem 2.1. Let M be a minimal model of MS and by contradiction,

assume M is not a model of P. Then, there is a ground instance A, v * * * v A,,, +

BI,..., B, of a clause in P such that B1 A * * * A B, is true in M but Al v * * * v A,

isfalsein M,i.e. B,EM ,..., B,~MandAigM ,..., A,&M. B,EM ,..., B,EM

implies there are (possibly empty) positive clauses C,, . . . , C,, such that B, v

C,..., B,vC,EMSand Cr,..., C, are false in M, otherwise M is not minimal.

Therefore, C v C, v * * . v C, is a ground logical consequence of P. Therefore, C v

c,v * * * v C, belongs to MS. Then, M is a model of C v C, v . . . v C,. Hence, M

is a model of C since C,, . . . , C,, are false in M. Therefore, M is a model of

A,v . . . v A,,, + B, , . . . , B, contradicting our assumption. 0

Now, we can collapse the information contained in the minimal models of a

disjunctive program to its minimal model-states.

Definition 2.5. A model-state S of a program P is minimal iff there is no model-state

of P which is a proper subset of S.

The following two theorems justify the choice of minimal model-states as the

intended meaning of logic programs.

Theorem 2.6. Every logic program P has a unique minimal model-state MS, (the least

model-state.)

Proof. By Definition 2.3 a model M is a minimal model of a model-state of program

P iff M is a minimal model of l? Assume MI and M2 are minimal model-states of

a program l? We have to prove MI = M2. Let C be a clause in M, . Hence, M,t C

since every minimal model of MI is a minimal model of M2. Since M2 is a set of

positive clauses then there is a clause C’E M2 such that C’G C. If C’= C then

C E M2. If C’c C and C’ E M2, using a similar argument we know that there is

C”E MI such that C’s C’c C. Therefore, MI -{C} is a model-state contradicting

that M, is minimal. We can use a similar argument to prove that every clause in

M2 is also in M,. 0

A consequence of this theorem is a corollary similar to the intersection model

property for Horn programs [6].

98 J. Lobo, J. Minker, A. Rajasekar

Corollary 2.7. For a logic program P the intersection of all model-states is the least

model-state MS,.

Theorem 2.8. For every positive ground clause C which is a logical consequence of a

logic program P, there is a clause in MSp that subsumes C,

Proof. Follows from the definition of model-states. Cl

The set MSp has been identified by [7] following a different approach. They

define for each predicate Q in a program P, the set PIGC[Q] which contains the

minimal clauses where the predicate Q occurs in clauses which are derivable from

I? Taking the union of the PIGC sets over all the predicate symbols in P we obtain

MS,.

2.2. Fixpoint semantics

The power set of the Herbrand Base of a program P, 2HB(P), is a complete lattice

under the set inclusion relation. Van Emden and Kowalski [6] define a closure

operator that maps a Herbrand interpretation to a Herbrand interpretation of a

program P They have shown that the operator is continuous for Horn programs

and hence has a least fixpoint. The least fixpoint is also shown to define the intended

meaning of a Horn program P in the sense that the least fixpoint of the program

is the least model Mp of l? Here, we use the power set of DHB(P), 2DHB(P), (i.e.

the set of all states of a program P) with the partial order set inclusion G as the

complete lattice underlying the fixpoint semantics of disjunctive programs. The

closure operator that maps states to states of a program P is defined as follows:

Definition 2.9 (Minker, Rajasekar [151). For a program P, a mapping Tp : 2DHB(P’ +

2DHB(P) is defined as follows. Let S be a state of a program P, (i.e., S is a subset

of DHB(P)), then

Tp(S)={CkDHB(P)IC’+B,,B2 ,..., B, is a ground instance of a program clause

in P, {B,v C,, . . . , B, v C,} c S where Vi, 1 G i < n, Ci can be null, C” =

C’vC,v.* . v C, and C is the smallest factor of C”}.

The smallest factor of a ground clause C’ is defined as the clause C such that C

contains only distinct atoms and C logically implies C’ and C’ logically implies C.

Example 2.10. Consider the program

P = {P(X) v q(f(W) * r(X); t(x) + q(X); p(b) v q(b); r(a) v s(a)>

and the state

S = {p(b) v q(b), r(a) v s(a)1

Semanfics of Horn and disjunctive logic programs 99

then

Tp(S) = {p(b) v q(b), r(a) v s(a), P(U) v s(f(a)) v s(a),p(b) v t(b)).

Minker and Rajasekar [15] prove that for a program P, the mapping Tr is

continuous. Hence, TpTw is its least fixpoint. The next theorem shows that for a

program P the least fixpoint of Tp contains all positive clauses that are derivable

from the program P. First, we have to distinguish between the terms derivability

and provability. We say a disjunctive program P derives a clause C if there is a

finite sequence C,, C,, . . . , C, of clauses such that C, is either a clause in P, an

instance of a clause preceding C,, or a (binary) resolvent of clauses preceding Ci,

and C, = C. A clause is provable from a program when it is a logical consequence

of the program. In the case of Horn programs the notions of provability and

derivability of atoms coincide. For disjunctive programs this is not valid. With

respect to the semantics we are developing, we are only interested in the intended

meaning of a program in the derivable sense. That is, our intended semantics will

achieve a state that contains all (and only) the clauses which are derivable from a

logic program. Since any provable clause also has a subclause that is derivable, we

feel justified in restricting our intended meaning of a logic

clauses without loss of generality.

program to derivable

Theorem 2.11 (Minker, Rajasekar [15]). Given a program P,

Ifp(T,) = {C E DHB(P)) C derivable from P}.

Next, we establish the equivalence between the fixpoint and model semantics for

logic programs. For a program P, we denote by MM(P) the set of minimal models

of l? Using Theorems 2.1 and 2.11 we have the following result:

Lemma 2.12 (Minker, Rajasekar [15]). Given a program P and a ground clause C,

VMEMM(P), MI= C i#Ifp(Tr)kC.

The next theorem follows directly from the lemma.

Theorem 2.13. Let P be a logic program and S be a state of P

(i) S is a model-state for P #for all clauses C E T,,(S) there is a clause C’ such

that C’ implies C.

(ii) S is the minimal model-state for P iff S = cun(Ifp(Tr)),

where for a given set of positive ground clauses S, the canonical set of S, can(S), is

defined us can(S) = {C (C E S and 73C’ such that C’ E S and C’ is a proper

subclause of C}.

100 J. Lobo, J. Minker, A. Rajasekar

Proof. Directly from Lemma 2.12 and definitions of model-state and minimal

model-state. 0

3. Procedural semantics

In this section we are concerned with the procedural semantics of logic programs.

Procedural interpretations provide implementation-independent proof procedures

for deriving inferences from logic programs. In the case of a Horn program the

derivable consequences consist of atoms. Hence, a query consists of an atom or a

conjunction of atoms of the form 3(A, A - * . A A,); n 2 0. The “successful” answer

to such a query is simple and consists of substitutions for the variables in the query.

A substitution 0 is a correct answer substitution for a query if V((A, A . . . A A,)B)
is a logical consequence of P. This provides the declarative meaning to the answer

for such a query.

In the case of disjunctive programs the derivable consequences consist of disjunc-

tions of atoms. Hence, a natural extension of a Horn query to the disjunctive domain

is a query consisting of a disjunction of atoms or a conjunction of such disjunctions.

A disjunctive query is of the form 3(C1 A * . . A C,) where the Ci’s are positive

clauses and n 2 0. But the answer to a disjunctive query is not a simple substitution

as in the case of Horn programs as we can see in the following example. Consider,

the disjunctive program P = {p(u) v p(b)} and the query Q = 3X(p(X)). We want

to know if the query is a logical consequence of the program P. There is no single

substitution which makes an appropriate answer for the query Q. However, in some

cases a disjunctive query can also have an answer given as a single substitution. We

call such answers simple answers. Consider the query Q’ = 3X, Y(p(X) v p(Y)) for

the same program, then there exists a substitution {X = a, Y = b} which provides

a correct answer for the query Q’. As in Horn programs, a simple answer substitution

8 is a correct answer substitution if V(C, A . * - A C,)0 is a logical consequence of

the program. In this section we describe a procedure to answer simple queries,

SLO-resolution. We refer to these queries as goals to distinguish them from queries

with disjunctive answers. This procedure is similar to SLD-resolution [S]. Complete

proof procedures for indefinite theories that use resolution based on model elimina-

tion [2] are highly expensive due to ancestry resolution and factoring. However,

the similarities between SLD and SLO might lead to a good implementation for

SLO-resolution.

Definition 3.1. A goal is of the form: + C1, . . . , C,, n 2 0, where the C’s are positive

clauses.

Definition 3.2. Given a positive clause C = A, v . * - v A,, we say that C &subsumes

a clause D if 0 is the most general unifier for {A, = D1,. . . , AP = DP} where

D,v . . * v D, is a subclause of D.

Semantics of Horn and disjunctive logic programs 101

Definition 3.3. Let P be a disjunctive logic program and G be a goal. An SLO-

derivation from P with top-goal G consists of a (possibly infinite) sequence of goals

G,=G, Gi,..., such that for all i 3 0, the goal Gj+l is obtained from G, =

+cr,. . .) c,, . . .) C, (where the C’s are positive clauses) as follows:

(1) C,,, is a clause in Gi (C, is called the selected clause),

(2) Ct&,..., B, is a standardized variant of a program clause in P,

(3) C &subsumes C,,,,

(4) Gi+l is the goal

+(G,..., Cm--l,Bl~C,,...,B~vCm,Crn+,, C,)e.

The standardized variant is a renaming of all the variables in the original clause

(in P) by variables that do not appear in the derivation up to Gi. Notice that

when the body of the program clause is empty, G,+l is equal to

t(C1,...,Cm_l,Cm+l,...,Ck)B.

Definition 3.4. An SLO-refutation from P with top-goal G is a finite SLO-derivation

of the null clause q from P with top-goal G. If G, = q , we say the SLO-refutation

has length n.

Example 3.5. Let P be the following program:

p = {t(X) +p(f(X)); P(X) + m(X); P(f(X)) + 4(X);

q(X) + m(f(f(X))); 4(X) -p(X); m(O) v m(f(f(X))) +I.

An SLO-refutation for the goal et(O) is given below.

+ t(0)

using t(X) +p(f(X))

-+P(f(O)) v t(0)

using PUW)) + q(X)

+4(0) v PU(O)) v t(0)

using q(X) + WUIX)))

+-mu-(o))) v q(O) VP(f(O)) v t(O)

using q(X) +p(X)

v(o) v w-(f(0))) v cl(O) vp(f(O)) v t(0)

using p(X) t m(X)

-m(O) VP(O) v m(f(f(0))) v q(0) vp(S(0)) v t(O)

using m(0) v m(f(f(X))) +

0

102 J. Lobo, J. Minker, A. Rajasekar

The following two theorems establish the soundness and completeness of SLO-

resolution with respect to derivability, i.e. for a positive clause C and a disjunctive

program P, there is an SLO-refutation for +C if and only if C is derivable from

I? The proofs are similar to the soundness and completeness proofs of SLD-

resolution [9].

Theorem 3.6 (Soundness). Let P be a disjunctive program, G = +-C, , . . . , C, be a

goalande,,..., en be substitutions, obtained from an SLO-refutation from P with top

goal G, then V((C, A . . . A C,)tI, , . . . , 6,) is a logical consequence of P.

Proof. We prove the theorem by induction on the length of the SLO-refutation.

(Base case) One step refutation (n = 1). Since G is a goal of the form +- C, there

exists a program clause of the form C+, such that C8, subsumes C,B,. Since C8,

is an instance of an assertion clause in P, C8, is a logical consequence of l? Also

C, 19~ is a logical consequence of P, since Co1 subsumes C,0, .

(Induction hypothesis) The theorem is valid for all SLO-refutations which are of

size less than n.

(Induction case) SLO-refutation of length n. Let C + B, , . . . , B, be the program

clause used in the first step of the derivation, i.e. in the derivation of the goal G,

from the starting goal Go= G with C, as the selected clause in G and 0, as the

substitution used in the subsumption. Then

G,=+(c, ,..., c,,-l,BIVc, ,..., B,vC,,C,+,,...,Ck)e,.

Now, from the induction hypothesis, there is a refutation of length n - 1 from P

with top-clause G, , using e2, . . . , 8, as substitutions,

=3 V((C, A . . . A c,_, h B, v c, A . - . A B, V c, A c,+, A . . - A &)e,, . . . , e,)

is a logical consequence of P

j~((B,vC,A...AB,VC,)e,,..., e,) is a logical consequence of P

* v((c v c,)e,, . . . , 0,) is a logical consequence of P since C + B,, . . . , B, is

a program clause

+v((c,)k..., 0,) is a logical consequence of P since C8, subsumes C,B,

from the definition of SLO-derivation

=+‘v((c, A . . . A c,_, A c,,, A cm+, A . . . A ck)el, . . . , e,) iS a lOgiCa con-

sequence of l? q

Theorem 3.7 (Completeness). Let P be a disjunctive program and C be a ground

clause which is derivable from P. Then there is an SLO-refutation from P with top

goal C.

Semantics of Horn and disjunctive logic programs 103

Proof. C is derivable from P

j CE T,Tn, forsomenEw.

We prove that C E TpT n implies there is an SLO-refutation from P with top

goal C. We show this by induction on n.

(Base case) n = 0. Tp t 0 = 0 and there is nothing to prove.

(Induction hypothesis) The theorem is valid for values less than n.

(Induction case) C E Tp t n and C @ Tp t n - 1.

CE T,Tn

+ There exists a program clause in P, C’+ B,, BZ, . . . , B4 such that C =

(C’v c,v . . * v C,) 8, where f3 is a substitution, where (C’ v C, v 9 * . v C,) 8 is

ground and (B1 v C1)8,. . . , (B, v C,) 0 are in Tp t n - 1 where Ci, 1 G is q is

a positive clause, possibly null (by definition of Tp),

a (Bi v Ci)B, 1~ is q have an SLO-refutation from P (by the induction

hypothesis),

=+ There exists an SLO-refutation from P with G = +-(B, v Cl, . . . , B4 v C,) 0 as

the top goal. Since, each of the (Bi v Ci)O is ground and has an SLO-refutation,

these refutations can be combined into a refutation with G,

+ There exists an SLO-refutation from P with G’ = +(B, v C, . . . , B, v C)t3 as

the top goal. Since each C,e is a subclause of C and (Bi v Ci)O has an

SLO-refutation, (Bi v C)e also has an SLO-refutation,

+ There exists an SLO-refutation from P with G,, = (C v C’)f3 as the top. With

G, as top goal we have G, = (B, v C v C’, . . . , B, v C v C’) 0. G, has an SLO-

refutation hence G,, also has an SLO-refutation,

+ There exists an SLO-refutation from P with G = C (C is ground) as the top

goal, since C’0 is a subclause of C. 0

In general, 0-subsumption between clauses is not unique. This introduces a new

nondeterministic step (Step 3) not present in SLD-resolution. There are some

heuristics that can be used to guide the subsumption. We currently have an

implementation of SLO-resolution in Prolog which gives priority to the most recently

added atoms of a goal clause while doing &subsumption. We also include a

mechanism which checks for repetition of goals to detect some of the infinite

derivations. Although the similarities between SLO and SLD might suggest efficient

implementations of SLO-resolution, the restriction on the type of queries requires

further investigation in the area. In [16,15] Minker and Rajasekar present SLI-

resolution as an alternative proof procedure for disjunctive logic programs. SLI-

resolution is a full theorem prover developed by Minker and Zanon [17] (SLI-

resolution was first named LUST-resolution by the authors). However, it might be

possible to define a simpler system for disjunctive programs where explicit rep-

resentation of negative information is not present.

104 .I. Lobo, J. Minker, A. Rajasekar

4. Summary

We have presented three different characterizations for the semantics of (disjunc-

tive) logic programs: a fixpoint characterization, a model theoretic one, based on

model-states, and a proof-procedure characterization. We have also shown the

equivalence between the three characterizations. The results can be summarized in

the following theorem.

Theorem 4.1 (Disjunction characterization). Let P be a logic program and C E
DHB(P). Then the following are equivalent:

(a) C is true in every minimal Herbrand model of P
(b) C is logically implied by a clause in the least model-state MSp of P.
(c) C is logically implied by a clause in the least jixpoint of Tp,
(d) +C has an SLO-refutation using P
(e) C is a logical consequence of P

A similar theorem in [6] describes the semantics for Horn programs. Moreover,

all the results presented in this paper reduce to previous results obtained for Horn

programs as indicated in Table 1. The fixpoint semantics extends the theory based

on the operator Tp of van Emden and Kowalski [6] for Horn programs.

Table 1. Semantics for logic programs

(Positive consequences)

Semantics

Fixpoint semantics

Model theory

Procedure

Horn

Theory

TP?O
Least model

SLD

Disjunctive

Reference Theory Reference

[61 TP t 0 t151
[61 Minimal model [I31

Model-state Sect. 2.1

t’k 81 SLO Sect. 3

The model-state semantics extends the least model semantics described in [6] and

is equivalent to the minimal model semantics [13] developed for disjunctive logic

programs. SLO-resolution is an extension of SLD-resolution of Horn programs [81.

Based on the results presented here and the correspondence between these results

and the results in the Horn domain, a large spectrum of new developments have

been achieved and reported upon elsewhere [5,15,18,11,14] by us and others.

Using the Generalized Closed World Assumption (GCWA), developed by Minker

[13], as a consistent rule of negation for disjunctive theories, it was possible to

extend the semantics of disjunctive programs to general programs (where negated

atoms are allowed in the body of program clauses). Minker and Rajasekar extend

the concept of stratified programs of Apt, Blair and Walker [l] to disjunctive

Semantics of Horn and disjunctive logic programs 105

programs and describe an iterative definition for negation using the GCWA. A

weaker definition of negation called the Weak Generalized Closed World Assump-

tion [1 l] was used in [lo] to describe a completion theory for disjunctive programs.

Dung extended the completion theory to capture the Generalized Closed World

Assumption [5]. Results extending the well-founded semantics for general Horn

programs to disjunctive programs have been also reported [4,3, 191. Finally, the

strong connections between negation in general Horn programs and nonmonotonic

reasoning mechanisms like circumscription and default logic suggest that similar

results might be obtained in the case of disjunctive programs with negation.

Acknowledgment

We wish to express our appreciation to the National Science Foundation for their

support of our work under grant number IRI-86-09170 and the Army Research

Office under grant number DAAG-29-85-K-0-177.

References

[l] K.R. Apt, H.A. Blair and A. Walker, Towards a theory of declarative knowledge, in: J. Minker,

ed., Foundations of Deductive Databases and Logic Programming (Morgan Kaufmann, Los Altos,

1988) 89-148.

[2] K.R. Apt and M.H. van Emden, Contributions to the theory of logic programming, .I ACM 29(3)

(1982) 841-862.

[3] C. Baral, J. Lobo and J. Minker, Generalized disjunctive well-founded semantics for logic programs:

declarative semantics, Submitted to ICLP 90.

[4] C. Baral, J. Lobo and J. Minker, Generalized well-founded semantics for logic programs, in: F’roc.

5th Internat. Symp. Methodologies for Intelligent Systems (1990) 465-473.

[5] P.M. Dung and K. Kanchanasut, On the generalized predicate completion of non-Horn programs,

in: E.L. Lusk and R.A. Overbeek, eds., Proc. North Amer. Conf: of Logic Programming, Cleveland,

OH (1988) 587-603.

[6] M.H. van Emden and R.A. Kowalski, The semantics of predicate logic as a programming language,

J. ACM 23(4) (1976) 733-742.

[7] L.J. Henschen and A. Yahya, Deduction in non-Horn databases, J. Automat. Reason. l(2) (1985)

141-160.

[8] R. Hill, Lush resolution and its completeness, Technical Report DCL Memo 78, Department of

Artificial Intelligence, University of Edinburgh, August 1974.
[9] J.W. Lloyd, Foundations of Logic Programming (Springer, Berlin, 1984).

[lo] J. Lobo, J. Minker and A. Rajasekar, Weak completion theory for non-Horn programs, in: Proc.

5th Internat. Conf: Symp. on Logic Programming, Seattle, Washington (1988) 828-842.

[ll] J. Lobo, J. Minker and A. Rajasekar, Weak generalized closed world assumption, J. Automat.

Reason. 5 (1989) 293-307.

[12] D.W. Loveland, Automated Theorem Proving: A Logical Basis (North-Holland, Amsterdam, 1978).
[13] J. Minker, On indefinite databases and the closed world assumption, in: Lecture Notes in Computer

Science, Vol 138 (Springer, Berlin, 1982) 292-308.
[14] J. Minker and A. Rajasekar, On stratified disjunctive programs, Annals ofMathematics andArti$cial

Intelligence 1 (1990) 339-357.

106 J. Lobe, J. Minker, A. Rajasekar

[15] J. Minker and A. Rajasekar, A fixpoint semantics for disjunctive logic programs, J. Logic Program-
ming S(1) (1990) 45-74.

[16] J. Minker and A. Rajasekar, Procedural interpretation of non-Horn logic programs, in: Proc. 9th

Internat. Conf on Automated Deduction, Argonne, IL (1988) 278-293.

[17] J. Minker and G. Zanon, An extension to linear resolution with selection function, Inform. Process.
Lett. 14(3) (1982) 191-194.

[18] A. Rajasekar, Semantics for disjunctive logic programs, Ph.D. Thesis, Department of Computer

Science, University of Maryland, 1989.

[191 K. Ross, Well-founded semantics for disjunctive logic programs, in: Proc. 1st Internat. Conf: on
Deductive and Object Oriented Databases, Kyoto, Japan (1989).

