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Abstract 

Lobo, J., A. Rajasekar and J. Minker, Semantics of Horn and disjunctive logic programs, 
Theoretical Computer Science 86 (1991) 93-106. 

Van Emden and Kowalski proposed a fixpoint semantics based on model-theory and an operational 

semantics based on proof-theory for Horn logic programs. They prove the equivalence of these 

semantics using fixpoint techniques. The main goal of this paper is to present a unified theory 

for the semantics of Horn and disjunctive logic programs. For this, we extend the fixpoint semantics 

and the operational or procedural semantics to the class of disjunctive logic programs and prove 

their equivalence using techniques similar to the ones used for Horn programs. 

1. Introduction 

The main goal of this paper is to present a unified theory for the semantics of 

Horn and disjunctive logic programs. We present a declarative and a procedural 

semantics that embed the semantics of Horn programs as presented in [6] and [2]. 

In [6,2], two approaches to the semantics of Horn programs were studied. A fixpoint 

semantics based on the model theory of first-order logic and an operational semantics 

based on proof-theory form the core of these papers. Proof of equivalence between 

model-theory and proof-theory using fixpoint techniques instead of Giidel’s Com- 

pleteness Theorem is among the important contributions presented in [6] and [2]. 

In this paper we extend the fixpoint semantics and the operational or procedural 

semantics to a broader class of logic programs which include disjunctive logic 

programs. We prove the equivalence of the two semantics using techniques similar 

to the ones used in [6,2]. 

Fixpoint semantics is based on operators that transform elements of a given lattice 

to elements in the same lattice. Van Emden and Kowalski [6] define an operator 
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that applies to a lattice formed by sets of atoms using set inclusion as partial order 

and maps a set of atoms to a set of atoms. In our paper we use sets of positive 

clauses instead of atoms to apply the concepts in [6] to the extended theory. The 

results on fixpoint semantics are taken from [15]. Procedural semantics in logic 

programming uses implementation-independent proof procedures and describes the 

semantics of the programs as the theorems provable through the given procedures. 

SLD-resolution (SL-resolution for Definite clauses) [8,6] is used as a basis for the 

procedural semantics of Horn theories. One of the underlying characteristics of 

SLD-resolution is that it has a very simple operational interpretation. Horn programs 

are formed of clauses that consist of two parts, an antecedent that consists of a 

conjunction of atoms and a consequent that consists of an atomic formula. SLD- 

resolution considers the consequent of a clause to be a problem that can be solved 

by reducing it to the subproblems given in the antecedent. In this paper, we present 

a procedural semantics, SLO-resolution, for the extended class of programs that 

keeps the problem-subproblem operational flavor of SLD-resolution. The paper is 

organized as follows. In the remainder of this section we present some preliminary 

definitions about logic programming and fixpoint theory. Section 2 contains the 

fixpoint semantics for disjunctive programs. In Section 3 we present the procedural 

semantics and its equivalence with the fixpoint semantics. 

1.1. Preliminaries: Logic programs 

A logic program P is a finite set of clauses of the form 

A,v . . . vA,+B,A...AB, 

where n 2 1, m 2 0, and the A’s and B’s are atomic formulas. The disjunction of 

atoms A, v . . . v A,, is called the head of the clause. The conjunction of atoms 

B,A... A B,,, is called the body of the clause. We assume that all variables that 

occur in a clause are universally quantified in front of the clause. A dejinite Horn 

clause is a clause where n = 1. A Horn program consists of only definite Horn 

clauses. An inde$nite or disjunctive clause is one where n 2 2. A logic program is a 

disjunctive program if it contains a disjunctive clause. A positive clause or assertion 

is a clause with an empty body. The Herbrand Universe U, of a logic program P, 

is the set of all ground terms that can be formed from the constants and function 

symbols in P (if there are no constants in P an arbitrary constant is placed in U,). 

The Herbrand Base of a logic program P, HB( P), is defined as the set of all ground 

atoms that can be formed by using predicates from P with terms from the Herbrand 

Universe U, as arguments [9]. An Herbrand interpretation I for P is a subset of 

the Herbrand Base of P, in which all atoms in I are assumed to be true while those 

not in I are assumed to be false. A Herbrand model of P is a Herbrand interpretation 

of P that makes all clauses in P true. A substitution is a finite set of pairs 

{(x1, tl), . . . , (x,, t,)} where the x, are distinct variables, the t, terms and each Xi is 
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different from ti. Given a disjunction or a conjunction of disjunctions of atoms F 

and a substitution 8 = {(x,, tl), . . . , (x,, t,,)}, FB is the formula obtained by simul- 

taneously replacing all the occurrences of xi in F by ti, for 1 G is n. A clause C 

subsumes a clause D if there is a substitution 8 and a subclause C’ of C such that 

C’8 = D. 

1.2. Preliminaries: Fixpoint theory 

Let S be a set and the relation s be a binary relation on S and assume s forms 

a partial order on the elements of S (i.e. < is reflexive, transitive and antisymmetric). 

If X is a subset of S, then a E S is an upper bound of X if Vx E X, x s a. a E S is 

the least upper bound (lub) of X of S if a is an upper bound of X and for all upper 

bounds a’ of X, we have a G a’. We can define a greatest lower bound (glb) of X 

in a similar manner. S is a complete lattice if lub(X) and gZb(X) exists for every 

subset X of S. Given a complete lattice S, an operator T: S+ S is said to be 

continuous if for every chain x1 s x2 < . * * of elements of S, T(lub{x, , x2, . . .}) = 

lub{ T(x,), T(xJ, . . .}. For a lattice S, given x E S, x is a$xpoint (fp) of T if T(x) =x. 

We say x is the least jixpoint (Ifp) of T if x c x’ for all fixpoints x’ of T. For an 

operator T, we define the ordinal powers of T as follows: 

TTO=gZb(S) 

TT a = T( T’f (a - l)), if (Y is successor ordinal 

TT a = lub{ TT p: p < a}, if (Y is a limit ordinal. 

The next theorem contains a well-known property of continuous functions. 

Theorem 1.1 (Lloyd [9]). For a continuous operator T: S+ S, Zfp( T) = TT w, where 

w is the jirst limit ordinal. 

2. Declarative semantics 

2.1. Model-state semantics 

Among all the models of a program P we are interested in the Herbrand models. 

In particular, we are interested in the minimal Herbrand models since they have a 

close relation with fixpoint semantics. A model M of P is minimal if there is no 

proper subset M’ of M such that M’ is a model of J? Every Horn program P has 

a unique minimal Herbrand model Mr. The intended meaning of P could be 

characterized by any of its models but there is a strong reason that makes Mr its 

intended interpretation. That is, the atoms in Mr are precisely those that are logical 

consequences of P [6]. We can generalize this statement and say that every positive 

ground clause that is a logical consequence of P is subsumed by an atom in Mr. 

Hence, all logical consequences of a Horn program P are fully characterized by its 

unique minimal model Mr. A different situation occurs when we extend Horn 
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programs to disjunctive programs. A disjunctive program can have more than one 

minimal model all of which characterize its logical consequences. 

Theorem 2.1 (Minker [ 131). Let P be a disjunctive logic program. A positive ground 

clause C is a logical consequence of P if C is true in every minimal model of P. 

Proof. We have that C is a logical consequence of P 
iff P u {lC} is unsatisfiable 

iff P u {lC} has no Herbrand models, by Proposition 3.3 in [9] 

iff 1C is false w.r.t. all Herbrand models of P 
iff C is true w.r.t. all Herbrand models of P 

iff C is true w.r.t. all minimal Herbrand models of P 0 

A characteristic that distinguishes Horn and disjunctive programs is that in disjunc- 

tive programs we can have a clause that is a logical consequence of P but none of 

its subclauses are. For example, take the simple disjunctive program P = {A v B} 
where A v B is a logical consequence of the program P. But neither A nor B are 

consequences of P, We refer to clauses such as A v B in program P as minimal 

clauses of the program P since no subclause is a logical consequence of the program. 

We are interested in capturing such logical consequences in our semantics. In the 

case of Horn programs, logical consequences are characterized by atomic formulas 

and Herbrand models and Herbrand interpretations provide the proper structure 

for capturing them. 

For disjunctive programs, the logical consequences are characterized by positive 

clauses but a single Herbrand interpretation or model does not capture this concept. 

Our first step is to extend the definition of the Herbrand Base to cover the disjunctive 

cases. 

Definition 2.2 (Minker, Rajasekar [15]). Given a disjunctive logic program P, the 

Disjunctive Herbrund Base of P, DHB(P), is the set of all positive clauses that can 

be formed with distinct atoms from HB(P). 

The need of the Disjunctive Herbrand Base is also reflected in the minimal models 

of a program. In contrast to Horn programs, disjunctive programs may have more 

than one minimal model. For the program P in the previous example, the minimal 

models are {A} and {B}. We want to condense this information in a unique simple 

structure. For this, we extend the definitions of interpretations and models to states 
and model-states. 

Definition 2.3. For a disjunctive logic program P 
(1) a state of P is a subset of the Disjunctive Herbrand Base of P, DHB( P); 
(2) a model-state of P is a state S of P, such that 

(a) Every minimal model of P is a model of S. 

(b) Every minimal model of S is a model of P. 
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Lemma 2.4. Every disjunctive program P has a model-state MS. 

Proof. Let MS be the set {C E DHB(P): C is a logical consequence of P}. We 

prove that MS is a model-state of P. Part (a) of the definition of model-states follows 

directly from Theorem 2.1. Let M be a minimal model of MS and by contradiction, 

assume M is not a model of P. Then, there is a ground instance A, v * * * v A,,, + 

BI,..., B, of a clause in P such that B1 A * * * A B, is true in M but Al v * * * v A, 

isfalsein M,i.e. B,EM ,..., B,~MandAigM ,..., A,&M. B,EM ,..., B,EM 

implies there are (possibly empty) positive clauses C,, . . . , C,, such that B, v 

C,..., B,vC,EMSand Cr,..., C, are false in M, otherwise M is not minimal. 

Therefore, C v C, v * * . v C, is a ground logical consequence of P. Therefore, C v 

c,v * * * v C, belongs to MS. Then, M is a model of C v C, v . . . v C,. Hence, M 

is a model of C since C,, . . . , C,, are false in M. Therefore, M is a model of 

A,v . . . v A,,, + B, , . . . , B, contradicting our assumption. 0 

Now, we can collapse the information contained in the minimal models of a 

disjunctive program to its minimal model-states. 

Definition 2.5. A model-state S of a program P is minimal iff there is no model-state 

of P which is a proper subset of S. 

The following two theorems justify the choice of minimal model-states as the 

intended meaning of logic programs. 

Theorem 2.6. Every logic program P has a unique minimal model-state MS, (the least 

model-state.) 

Proof. By Definition 2.3 a model M is a minimal model of a model-state of program 

P iff M is a minimal model of l? Assume MI and M2 are minimal model-states of 

a program l? We have to prove MI = M2. Let C be a clause in M, . Hence, M,t C 

since every minimal model of MI is a minimal model of M2. Since M2 is a set of 

positive clauses then there is a clause C’E M2 such that C’G C. If C’= C then 

C E M2. If C’c C and C’ E M2, using a similar argument we know that there is 

C”E MI such that C’s C’c C. Therefore, MI -{C} is a model-state contradicting 

that M, is minimal. We can use a similar argument to prove that every clause in 

M2 is also in M,. 0 

A consequence of this theorem is a corollary similar to the intersection model 

property for Horn programs [6]. 
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Corollary 2.7. For a logic program P the intersection of all model-states is the least 

model-state MS,. 

Theorem 2.8. For every positive ground clause C which is a logical consequence of a 

logic program P, there is a clause in MSp that subsumes C, 

Proof. Follows from the definition of model-states. Cl 

The set MSp has been identified by [7] following a different approach. They 

define for each predicate Q in a program P, the set PIGC[Q] which contains the 

minimal clauses where the predicate Q occurs in clauses which are derivable from 

I? Taking the union of the PIGC sets over all the predicate symbols in P we obtain 

MS,. 

2.2. Fixpoint semantics 

The power set of the Herbrand Base of a program P, 2HB(P), is a complete lattice 

under the set inclusion relation. Van Emden and Kowalski [6] define a closure 

operator that maps a Herbrand interpretation to a Herbrand interpretation of a 

program P They have shown that the operator is continuous for Horn programs 

and hence has a least fixpoint. The least fixpoint is also shown to define the intended 

meaning of a Horn program P in the sense that the least fixpoint of the program 

is the least model Mp of l? Here, we use the power set of DHB(P), 2DHB(P), (i.e. 

the set of all states of a program P) with the partial order set inclusion G as the 

complete lattice underlying the fixpoint semantics of disjunctive programs. The 

closure operator that maps states to states of a program P is defined as follows: 

Definition 2.9 (Minker, Rajasekar [ 151). For a program P, a mapping Tp : 2DHB(P’ + 

2DHB(P) is defined as follows. Let S be a state of a program P, (i.e., S is a subset 

of DHB(P)), then 

Tp(S)={CkDHB(P)IC’+B,,B2 ,..., B, is a ground instance of a program clause 

in P, {B,v C,, . . . , B, v C,} c S where Vi, 1 G i < n, Ci can be null, C” = 

C’vC,v.* . v C, and C is the smallest factor of C”}. 

The smallest factor of a ground clause C’ is defined as the clause C such that C 

contains only distinct atoms and C logically implies C’ and C’ logically implies C. 

Example 2.10. Consider the program 

P = {P(X) v q(f(W) * r(X); t(x) + q(X); p(b) v q(b); r(a) v s(a)> 

and the state 

S = {p(b) v q(b), r(a) v s(a)1 
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then 

Tp(S) = {p(b) v q(b), r(a) v s(a), P(U) v s(f(a)) v s(a),p(b) v t(b)). 

Minker and Rajasekar [15] prove that for a program P, the mapping Tr is 

continuous. Hence, TpTw is its least fixpoint. The next theorem shows that for a 

program P the least fixpoint of Tp contains all positive clauses that are derivable 

from the program P. First, we have to distinguish between the terms derivability 

and provability. We say a disjunctive program P derives a clause C if there is a 

finite sequence C,, C,, . . . , C, of clauses such that C, is either a clause in P, an 

instance of a clause preceding C,, or a (binary) resolvent of clauses preceding Ci, 

and C, = C. A clause is provable from a program when it is a logical consequence 

of the program. In the case of Horn programs the notions of provability and 

derivability of atoms coincide. For disjunctive programs this is not valid. With 

respect to the semantics we are developing, we are only interested in the intended 

meaning of a program in the derivable sense. That is, our intended semantics will 

achieve a state that contains all (and only) the clauses which are derivable from a 

logic program. Since any provable clause also has a subclause that is derivable, we 

feel justified in restricting our intended meaning of a logic 

clauses without loss of generality. 

program to derivable 

Theorem 2.11 (Minker, Rajasekar [15]). Given a program P, 

Ifp( T,) = {C E DHB( P) ) C derivable from P}. 

Next, we establish the equivalence between the fixpoint and model semantics for 

logic programs. For a program P, we denote by MM(P) the set of minimal models 

of l? Using Theorems 2.1 and 2.11 we have the following result: 

Lemma 2.12 (Minker, Rajasekar [15]). Given a program P and a ground clause C, 

VMEMM(P), MI= C i#Ifp(Tr)kC. 

The next theorem follows directly from the lemma. 

Theorem 2.13. Let P be a logic program and S be a state of P 

(i) S is a model-state for P #for all clauses C E T,,(S) there is a clause C’ such 

that C’ implies C. 

(ii) S is the minimal model-state for P iff S = cun( Ifp( Tr)), 

where for a given set of positive ground clauses S, the canonical set of S, can(S), is 

defined us can(S) = {C ( C E S and 73C’ such that C’ E S and C’ is a proper 

subclause of C}. 
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Proof. Directly from Lemma 2.12 and definitions of model-state and minimal 

model-state. 0 

3. Procedural semantics 

In this section we are concerned with the procedural semantics of logic programs. 

Procedural interpretations provide implementation-independent proof procedures 

for deriving inferences from logic programs. In the case of a Horn program the 

derivable consequences consist of atoms. Hence, a query consists of an atom or a 

conjunction of atoms of the form 3(A, A - * . A A,); n 2 0. The “successful” answer 

to such a query is simple and consists of substitutions for the variables in the query. 

A substitution 0 is a correct answer substitution for a query if V((A, A . . . A A,)B) 
is a logical consequence of P. This provides the declarative meaning to the answer 

for such a query. 

In the case of disjunctive programs the derivable consequences consist of disjunc- 

tions of atoms. Hence, a natural extension of a Horn query to the disjunctive domain 

is a query consisting of a disjunction of atoms or a conjunction of such disjunctions. 

A disjunctive query is of the form 3( C1 A * . . A C,) where the Ci’s are positive 

clauses and n 2 0. But the answer to a disjunctive query is not a simple substitution 

as in the case of Horn programs as we can see in the following example. Consider, 

the disjunctive program P = {p(u) v p(b)} and the query Q = 3X(p(X)). We want 

to know if the query is a logical consequence of the program P. There is no single 

substitution which makes an appropriate answer for the query Q. However, in some 

cases a disjunctive query can also have an answer given as a single substitution. We 

call such answers simple answers. Consider the query Q’ = 3X, Y( p(X) v p( Y)) for 

the same program, then there exists a substitution {X = a, Y = b} which provides 

a correct answer for the query Q’. As in Horn programs, a simple answer substitution 

8 is a correct answer substitution if V( C, A . * - A C,)0 is a logical consequence of 

the program. In this section we describe a procedure to answer simple queries, 

SLO-resolution. We refer to these queries as goals to distinguish them from queries 

with disjunctive answers. This procedure is similar to SLD-resolution [S]. Complete 

proof procedures for indefinite theories that use resolution based on model elimina- 

tion [2] are highly expensive due to ancestry resolution and factoring. However, 

the similarities between SLD and SLO might lead to a good implementation for 

SLO-resolution. 

Definition 3.1. A goal is of the form: + C1, . . . , C,, n 2 0, where the C’s are positive 

clauses. 

Definition 3.2. Given a positive clause C = A, v . * - v A,, we say that C &subsumes 

a clause D if 0 is the most general unifier for {A, = D1,. . . , AP = DP} where 

D,v . . * v D, is a subclause of D. 
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Definition 3.3. Let P be a disjunctive logic program and G be a goal. An SLO- 

derivation from P with top-goal G consists of a (possibly infinite) sequence of goals 

G,=G, Gi,..., such that for all i 3 0, the goal Gj+l is obtained from G, = 

+cr,. . .) c,, . . .) C, (where the C’s are positive clauses) as follows: 

(1) C,,, is a clause in Gi (C, is called the selected clause), 

(2) Ct&,..., B, is a standardized variant of a program clause in P, 

(3) C &subsumes C,,,, 

(4) Gi+l is the goal 

+(G,..., Cm--l,Bl~C,,...,B~vCm,Crn+,, . . . . C,)e. 

The standardized variant is a renaming of all the variables in the original clause 

(in P) by variables that do not appear in the derivation up to Gi. Notice that 

when the body of the program clause is empty, G,+l is equal to 

t(C1,...,Cm_l,Cm+l,...,Ck)B. 

Definition 3.4. An SLO-refutation from P with top-goal G is a finite SLO-derivation 

of the null clause q from P with top-goal G. If G, = q , we say the SLO-refutation 

has length n. 

Example 3.5. Let P be the following program: 

p = {t(X) +p(f(X)); P(X) + m(X); P(f(X)) + 4(X); 

q(X) + m(f(f(X))); 4(X) -p(X); m(O) v m(f(f(X))) +I. 

An SLO-refutation for the goal et(O) is given below. 

+ t(0) 

using t(X) +p(f(X)) 

-+P(f(O)) v t(0) 

using PUW)) + q(X) 

+4(0) v PU(O)) v t(0) 

using q(X) + WUIX))) 

+-mu-(o))) v q(O) VP(f(O)) v t(O) 

using q(X) +p(X) 

v(o) v w-(f(0))) v cl(O) vp(f(O)) v t(0) 

using p(X) t m(X) 

-m(O) VP(O) v m(f(f(0))) v q(0) vp(S(0)) v t(O) 

using m(0) v m(f(f(X))) + 

0 
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The following two theorems establish the soundness and completeness of SLO- 

resolution with respect to derivability, i.e. for a positive clause C and a disjunctive 

program P, there is an SLO-refutation for +C if and only if C is derivable from 

I? The proofs are similar to the soundness and completeness proofs of SLD- 

resolution [9]. 

Theorem 3.6 (Soundness). Let P be a disjunctive program, G = +-C, , . . . , C, be a 

goalande,,..., en be substitutions, obtained from an SLO-refutation from P with top 

goal G, then V(( C, A . . . A C,)tI, , . . . , 6,) is a logical consequence of P. 

Proof. We prove the theorem by induction on the length of the SLO-refutation. 

(Base case) One step refutation (n = 1). Since G is a goal of the form +- C, there 

exists a program clause of the form C+, such that C8, subsumes C,B,. Since C8, 

is an instance of an assertion clause in P, C8, is a logical consequence of l? Also 

C, 19~ is a logical consequence of P, since Co1 subsumes C,0, . 

(Induction hypothesis) The theorem is valid for all SLO-refutations which are of 

size less than n. 

(Induction case) SLO-refutation of length n. Let C + B, , . . . , B, be the program 

clause used in the first step of the derivation, i.e. in the derivation of the goal G, 

from the starting goal Go= G with C, as the selected clause in G and 0, as the 

substitution used in the subsumption. Then 

G,=+(c, ,..., c,,-l,BIVc, ,..., B,vC,,C,+,,...,Ck)e,. 

Now, from the induction hypothesis, there is a refutation of length n - 1 from P 

with top-clause G, , using e2, . . . , 8, as substitutions, 

=3 V((C, A . . . A c,_, h B, v c, A . - . A B, V c, A c,+, A . . - A &)e,, . . . , e,) 

is a logical consequence of P 

j~((B,vC,A...AB,VC,)e,,..., e,) is a logical consequence of P 

* v((c v c,)e,, . . . , 0,) is a logical consequence of P since C + B,, . . . , B, is 

a program clause 

+v((c,)k..., 0,) is a logical consequence of P since C8, subsumes C,B, 

from the definition of SLO-derivation 

=+‘v((c, A . . . A c,_, A c,,, A cm+, A . . . A ck)el, . . . , e,) iS a lOgiCa con- 

sequence of l? q 

Theorem 3.7 (Completeness). Let P be a disjunctive program and C be a ground 

clause which is derivable from P. Then there is an SLO-refutation from P with top 

goal C. 
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Proof. C is derivable from P 

j CE T,Tn, forsomenEw. 

We prove that C E TpT n implies there is an SLO-refutation from P with top 

goal C. We show this by induction on n. 

(Base case) n = 0. Tp t 0 = 0 and there is nothing to prove. 

(Induction hypothesis) The theorem is valid for values less than n. 

(Induction case) C E Tp t n and C @ Tp t n - 1. 

CE T,Tn 

+ There exists a program clause in P, C’+ B,, BZ, . . . , B4 such that C = 

(C’v c,v . . * v C,) 8, where f3 is a substitution, where (C’ v C, v 9 * . v C,) 8 is 

ground and ( B1 v C1)8,. . . , (B, v C,) 0 are in Tp t n - 1 where Ci, 1 G is q is 

a positive clause, possibly null (by definition of Tp), 

a ( Bi v Ci)B, 1~ is q have an SLO-refutation from P (by the induction 

hypothesis), 

=+ There exists an SLO-refutation from P with G = +-( B, v Cl, . . . , B4 v C,) 0 as 

the top goal. Since, each of the ( Bi v Ci)O is ground and has an SLO-refutation, 

these refutations can be combined into a refutation with G, 

+ There exists an SLO-refutation from P with G’ = +( B, v C, . . . , B, v C)t3 as 

the top goal. Since each C,e is a subclause of C and ( Bi v Ci)O has an 

SLO-refutation, ( Bi v C)e also has an SLO-refutation, 

+ There exists an SLO-refutation from P with G,, = (C v C’)f3 as the top. With 

G, as top goal we have G, = (B, v C v C’, . . . , B, v C v C’) 0. G, has an SLO- 

refutation hence G,, also has an SLO-refutation, 

+ There exists an SLO-refutation from P with G = C (C is ground) as the top 

goal, since C’0 is a subclause of C. 0 

In general, 0-subsumption between clauses is not unique. This introduces a new 

nondeterministic step (Step 3) not present in SLD-resolution. There are some 

heuristics that can be used to guide the subsumption. We currently have an 

implementation of SLO-resolution in Prolog which gives priority to the most recently 

added atoms of a goal clause while doing &subsumption. We also include a 

mechanism which checks for repetition of goals to detect some of the infinite 

derivations. Although the similarities between SLO and SLD might suggest efficient 

implementations of SLO-resolution, the restriction on the type of queries requires 

further investigation in the area. In [16,15] Minker and Rajasekar present SLI- 

resolution as an alternative proof procedure for disjunctive logic programs. SLI- 

resolution is a full theorem prover developed by Minker and Zanon [17] (SLI- 

resolution was first named LUST-resolution by the authors). However, it might be 

possible to define a simpler system for disjunctive programs where explicit rep- 

resentation of negative information is not present. 
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4. Summary 

We have presented three different characterizations for the semantics of (disjunc- 

tive) logic programs: a fixpoint characterization, a model theoretic one, based on 

model-states, and a proof-procedure characterization. We have also shown the 

equivalence between the three characterizations. The results can be summarized in 

the following theorem. 

Theorem 4.1 (Disjunction characterization). Let P be a logic program and C E 
DHB(P). Then the following are equivalent: 

(a) C is true in every minimal Herbrand model of P 
(b) C is logically implied by a clause in the least model-state MSp of P. 
(c) C is logically implied by a clause in the least jixpoint of Tp, 
(d) +C has an SLO-refutation using P 
(e) C is a logical consequence of P 

A similar theorem in [6] describes the semantics for Horn programs. Moreover, 

all the results presented in this paper reduce to previous results obtained for Horn 

programs as indicated in Table 1. The fixpoint semantics extends the theory based 

on the operator Tp of van Emden and Kowalski [6] for Horn programs. 

Table 1. Semantics for logic programs 

(Positive consequences) 

Semantics 

Fixpoint semantics 

Model theory 

Procedure 

Horn 

Theory 

TP?O 
Least model 

SLD 

Disjunctive 

Reference Theory Reference 

[61 TP t 0 t151 
[61 Minimal model [I31 

Model-state Sect. 2.1 

t’k 81 SLO Sect. 3 

The model-state semantics extends the least model semantics described in [6] and 

is equivalent to the minimal model semantics [13] developed for disjunctive logic 

programs. SLO-resolution is an extension of SLD-resolution of Horn programs [ 81. 

Based on the results presented here and the correspondence between these results 

and the results in the Horn domain, a large spectrum of new developments have 

been achieved and reported upon elsewhere [5,15,18,11,14] by us and others. 

Using the Generalized Closed World Assumption (GCWA), developed by Minker 

[13], as a consistent rule of negation for disjunctive theories, it was possible to 

extend the semantics of disjunctive programs to general programs (where negated 

atoms are allowed in the body of program clauses). Minker and Rajasekar extend 

the concept of stratified programs of Apt, Blair and Walker [l] to disjunctive 
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programs and describe an iterative definition for negation using the GCWA. A 

weaker definition of negation called the Weak Generalized Closed World Assump- 

tion [ 1 l] was used in [lo] to describe a completion theory for disjunctive programs. 

Dung extended the completion theory to capture the Generalized Closed World 

Assumption [5]. Results extending the well-founded semantics for general Horn 

programs to disjunctive programs have been also reported [4,3, 191. Finally, the 

strong connections between negation in general Horn programs and nonmonotonic 

reasoning mechanisms like circumscription and default logic suggest that similar 

results might be obtained in the case of disjunctive programs with negation. 
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