33,358 research outputs found

    The Relativized Second Eigenvalue Conjecture of Alon

    Full text link
    We prove a relativization of the Alon Second Eigenvalue Conjecture for all dd-regular base graphs, BB, with d3d\ge 3: for any ϵ>0\epsilon>0, we show that a random covering map of degree nn to BB has a new eigenvalue greater than 2d1+ϵ2\sqrt{d-1}+\epsilon in absolute value with probability O(1/n)O(1/n). Furthermore, if BB is a Ramanujan graph, we show that this probability is proportional to nηfund(B)n^{-{\eta_{\rm \,fund}}(B)}, where ηfund(B){\eta_{\rm \,fund}}(B) is an integer depending on BB, which can be computed by a finite algorithm for any fixed BB. For any dd-regular graph, BB, ηfund(B){\eta_{\rm \,fund}}(B) is greater than d1\sqrt{d-1}. Our proof introduces a number of ideas that simplify and strengthen the methods of Friedman's proof of the original conjecture of Alon. The most significant new idea is that of a ``certified trace,'' which is not only greatly simplifies our trace methods, but is the reason we can obtain the nηfund(B)n^{-{\eta_{\rm \,fund}}(B)} estimate above. This estimate represents an improvement over Friedman's results of the original Alon conjecture for random dd-regular graphs, for certain values of dd

    List homomorphism problems for signed graphs

    Full text link
    We consider homomorphisms of signed graphs from a computational perspective. In particular, we study the list homomorphism problem seeking a homomorphism of an input signed graph (G,σ)(G,\sigma), equipped with lists L(v)V(H),vV(G)L(v) \subseteq V(H), v \in V(G), of allowed images, to a fixed target signed graph (H,π)(H,\pi). The complexity of the similar homomorphism problem without lists (corresponding to all lists being L(v)=V(H)L(v)=V(H)) has been previously classified by Brewster and Siggers, but the list version remains open and appears difficult. We illustrate this difficulty by classifying the complexity of the problem when HH is a tree (with possible loops). The tools we develop will be useful for classifications of other classes of signed graphs, and we illustrate this by classifying the complexity of irreflexive signed graphs in which the unicoloured edges form some simple structures, namely paths or cycles. The structure of the signed graphs in the polynomial cases is interesting, suggesting they may constitute a nice class of signed graphs analogous to the so-called bi-arc graphs (which characterize the polynomial cases of list homomorphisms to unsigned graphs).Comment: various changes + rewritten section on path- and cycle-separable graphs based on a new conference submission (split possible in future

    Totally frustrated states in the chromatic theory of gain graphs

    Get PDF
    We generalize proper coloring of gain graphs to totally frustrated states, where each vertex takes a value in a set of `qualities' or `spins' that is permuted by the gain group. (An example is the Potts model.) The number of totally frustrated states satisfies the usual deletion-contraction law but is matroidal only for standard coloring, where the group action is trivial or nearly regular. One can generalize chromatic polynomials by constructing spin sets with repeated transitive components.Comment: 14 pages, 2 figure

    An elementary chromatic reduction for gain graphs and special hyperplane arrangements

    Full text link
    A gain graph is a graph whose edges are labelled invertibly by "gains" from a group. "Switching" is a transformation of gain graphs that generalizes conjugation in a group. A "weak chromatic function" of gain graphs with gains in a fixed group satisfies three laws: deletion-contraction for links with neutral gain, invariance under switching, and nullity on graphs with a neutral loop. The laws lead to the "weak chromatic group" of gain graphs, which is the universal domain for weak chromatic functions. We find expressions, valid in that group, for a gain graph in terms of minors without neutral-gain edges, or with added complete neutral-gain subgraphs, that generalize the expression of an ordinary chromatic polynomial in terms of monomials or falling factorials. These expressions imply relations for chromatic functions of gain graphs. We apply our relations to some special integral gain graphs including those that correspond to the Shi, Linial, and Catalan arrangements, thereby obtaining new evaluations of and new ways to calculate the zero-free chromatic polynomial and the integral and modular chromatic functions of these gain graphs, hence the characteristic polynomials and hypercubical lattice-point counting functions of the arrangements. We also calculate the total chromatic polynomial of any gain graph and especially of the Catalan, Shi, and Linial gain graphs.Comment: 31 page
    corecore