1,070 research outputs found

    Type classes for efficient exact real arithmetic in Coq

    Get PDF
    Floating point operations are fast, but require continuous effort on the part of the user in order to ensure that the results are correct. This burden can be shifted away from the user by providing a library of exact analysis in which the computer handles the error estimates. Previously, we [Krebbers/Spitters 2011] provided a fast implementation of the exact real numbers in the Coq proof assistant. Our implementation improved on an earlier implementation by O'Connor by using type classes to describe an abstract specification of the underlying dense set from which the real numbers are built. In particular, we used dyadic rationals built from Coq's machine integers to obtain a 100 times speed up of the basic operations already. This article is a substantially expanded version of [Krebbers/Spitters 2011] in which the implementation is extended in the various ways. First, we implement and verify the sine and cosine function. Secondly, we create an additional implementation of the dense set based on Coq's fast rational numbers. Thirdly, we extend the hierarchy to capture order on undecidable structures, while it was limited to decidable structures before. This hierarchy, based on type classes, allows us to share theory on the naturals, integers, rationals, dyadics, and reals in a convenient way. Finally, we obtain another dramatic speed-up by avoiding evaluation of termination proofs at runtime.Comment: arXiv admin note: text overlap with arXiv:1105.275

    Sound and Automated Synthesis of Digital Stabilizing Controllers for Continuous Plants

    Get PDF
    Modern control is implemented with digital microcontrollers, embedded within a dynamical plant that represents physical components. We present a new algorithm based on counter-example guided inductive synthesis that automates the design of digital controllers that are correct by construction. The synthesis result is sound with respect to the complete range of approximations, including time discretization, quantization effects, and finite-precision arithmetic and its rounding errors. We have implemented our new algorithm in a tool called DSSynth, and are able to automatically generate stable controllers for a set of intricate plant models taken from the literature within minutes.Comment: 10 page

    A Dynamic Logic for Configuration

    No full text

    Fast Automatic Verification of Large-Scale Systems with Lookup Tables

    Get PDF
    Modern safety-critical systems are difficult to formally verify, largely due to their large scale. In particular, the widespread use of lookup tables in embedded systems across diverse industries, such as aeronautics and automotive systems, create a critical obstacle to the scalability of formal verification. This paper presents a novel approach for the formal verification of large-scale systems with lookup tables. We use a learning-based technique to automatically learn abstractions of the lookup tables and use the abstractions to then prove the desired property. If the verification fails, we propose a falsification heuristic to search for a violation of the specification. In contrast with previous work on lookup table verification, our technique is completely automatic, making it ideal for deployment in a production environment. To our knowledge, our approach is the only technique that can automatically verify large-scale systems lookup with tables. We illustrate the effectiveness of our technique on a benchmark which cannot be handled by the commercial tool SLDV, and we demonstrate the performance improvement provided by our technique
    corecore