7 research outputs found

    Approximate Approximation on a Quantum Annealer

    Full text link
    Many problems of industrial interest are NP-complete, and quickly exhaust resources of computational devices with increasing input sizes. Quantum annealers (QA) are physical devices that aim at this class of problems by exploiting quantum mechanical properties of nature. However, they compete with efficient heuristics and probabilistic or randomised algorithms on classical machines that allow for finding approximate solutions to large NP-complete problems. While first implementations of QA have become commercially available, their practical benefits are far from fully explored. To the best of our knowledge, approximation techniques have not yet received substantial attention. In this paper, we explore how problems' approximate versions of varying degree can be systematically constructed for quantum annealer programs, and how this influences result quality or the handling of larger problem instances on given set of qubits. We illustrate various approximation techniques on both, simulations and real QA hardware, on different seminal problems, and interpret the results to contribute towards a better understanding of the real-world power and limitations of current-state and future quantum computing.Comment: Proceedings of the 17th ACM International Conference on Computing Frontiers (CF 2020

    Computing maximum matchings in temporal graphs

    Get PDF
    Temporal graphs are graphs whose topology is subject to discrete changes over time. Given a static underlying graph G, a temporal graph is represented by assigning a set of integer time-labels to every edge e of G, indicating the discrete time steps at which e is active. We introduce and study the complexity of a natural temporal extension of the classical graph problem Maximum Matching, taking into account the dynamic nature of temporal graphs. In our problem, Maximum Temporal Matching, we are looking for the largest possible number of time-labeled edges (simply time-edges) (e,t) such that no vertex is matched more than once within any time window of Δ consecutive time slots, where Δ ∈ ℕ is given. The requirement that a vertex cannot be matched twice in any Δ-window models some necessary "recovery" period that needs to pass for an entity (vertex) after being paired up for some activity with another entity. We prove strong computational hardness results for Maximum Temporal Matching, even for elementary cases. To cope with this computational hardness, we mainly focus on fixed-parameter algorithms with respect to natural parameters, as well as on polynomial-time approximation algorithms

    Computing maximum matchings in temporal graphs.

    Get PDF
    Temporal graphs are graphs whose topology is subject to discrete changes over time. Given a static underlying graph G, a temporal graph is represented by assigning a set of integer time-labels to every edge e of G, indicating the discrete time steps at which e is active. We introduce and study the complexity of a natural temporal extension of the classical graph problem Maximum Matching, taking into account the dynamic nature of temporal graphs. In our problem, Maximum Temporal Matching, we are looking for the largest possible number of time-labeled edges (simply time-edges) (e,t) such that no vertex is matched more than once within any time window of Δ consecutive time slots, where Δ ∈ ℕ is given. The requirement that a vertex cannot be matched twice in any Δ-window models some necessary "recovery" period that needs to pass for an entity (vertex) after being paired up for some activity with another entity. We prove strong computational hardness results for Maximum Temporal Matching, even for elementary cases. To cope with this computational hardness, we mainly focus on fixed-parameter algorithms with respect to natural parameters, as well as on polynomial-time approximation algorithms

    FPT-Algorithms for the l-Matchoid Problem with Linear and Submodular Objectives

    Full text link
    We design a fixed-parameter deterministic algorithm for computing a maximum weight feasible set under a â„“\ell-matchoid of rank kk, parameterized by â„“\ell and kk. Unlike previous work that presumes linear representativity of matroids, we consider the general oracle model. Our result, combined with the lower bounds of Lovasz, and Jensen and Korte, demonstrates a separation between the â„“\ell-matchoid and the matroid â„“\ell-parity problems in the setting of fixed-parameter tractability. Our algorithms are obtained by means of kernelization: we construct a small representative set which contains an optimal solution. Such a set gives us much flexibility in adapting to other settings, allowing us to optimize not only a linear function, but also several important submodular functions. It also helps to transform our algorithms into streaming algorithms. In the streaming setting, we show that we can find a feasible solution of value zz and the number of elements to be stored in memory depends only on zz and â„“\ell but totally independent of nn. This shows that it is possible to circumvent the recent space lower bound of Feldman et al., by parameterizing the solution value. This result, combined with existing lower bounds, also provides a new separation between the space and time complexity of maximizing an arbitrary submodular function and a coverage function in the value oracle model
    corecore