693 research outputs found

    Spherical clustering of users navigating 360{\deg} content

    Full text link
    In Virtual Reality (VR) applications, understanding how users explore the omnidirectional content is important to optimize content creation, to develop user-centric services, or even to detect disorders in medical applications. Clustering users based on their common navigation patterns is a first direction to understand users behaviour. However, classical clustering techniques fail in identifying these common paths, since they are usually focused on minimizing a simple distance metric. In this paper, we argue that minimizing the distance metric does not necessarily guarantee to identify users that experience similar navigation path in the VR domain. Therefore, we propose a graph-based method to identify clusters of users who are attending the same portion of the spherical content over time. The proposed solution takes into account the spherical geometry of the content and aims at clustering users based on the actual overlap of displayed content among users. Our method is tested on real VR user navigation patterns. Results show that our solution leads to clusters in which at least 85% of the content displayed by one user is shared among the other users belonging to the same cluster.Comment: 5 pages, conference (Published in: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)

    Streaming and User Behaviour in Omnidirectional Videos

    Get PDF
    Omnidirectional videos (ODVs) have gone beyond the passive paradigm of traditional video, offering higher degrees of immersion and interaction. The revolutionary novelty of this technology is the possibility for users to interact with the surrounding environment, and to feel a sense of engagement and presence in a virtual space. Users are clearly the main driving force of immersive applications and consequentially the services need to be properly tailored to them. In this context, this chapter highlights the importance of the new role of users in ODV streaming applications, and thus the need for understanding their behaviour while navigating within ODVs. A comprehensive overview of the research efforts aimed at advancing ODV streaming systems is also presented. In particular, the state-of-the-art solutions under examination in this chapter are distinguished in terms of system-centric and user-centric streaming approaches: the former approach comes from a quite straightforward extension of well-established solutions for the 2D video pipeline while the latter one takes the benefit of understanding users’ behaviour and enable more personalised ODV streaming

    Human-centric quality management of immersive multimedia applications

    Get PDF
    Augmented Reality (AR) and Virtual Reality (VR) multimodal systems are the latest trend within the field of multimedia. As they emulate the senses by means of omni-directional visuals, 360 degrees sound, motion tracking and touch simulation, they are able to create a strong feeling of presence and interaction with the virtual environment. These experiences can be applied for virtual training (Industry 4.0), tele-surgery (healthcare) or remote learning (education). However, given the strong time and task sensitiveness of these applications, it is of great importance to sustain the end-user quality, i.e. the Quality-of-Experience (QoE), at all times. Lack of synchronization and quality degradation need to be reduced to a minimum to avoid feelings of cybersickness or loss of immersiveness and concentration. This means that there is a need to shift the quality management from system-centered performance metrics towards a more human, QoE-centered approach. However, this requires for novel techniques in the three areas of the QoE-management loop (monitoring, modelling and control). This position paper identifies open areas of research to fully enable human-centric driven management of immersive multimedia. To this extent, four main dimensions are put forward: (1) Task and well-being driven subjective assessment; (2) Real-time QoE modelling; (3) Accurate viewport prediction; (4) Machine Learning (ML)-based quality optimization and content recreation. This paper discusses the state-of-the-art, and provides with possible solutions to tackle the open challenges

    Data2MV - A user behaviour dataset for multi-view scenarios

    Get PDF
    The Data2MV dataset contains gaze fixation data obtained through experimental procedures from a total of 45 partic- ipants using an Intel RealSense F200 camera module and seven different video playlists. Each of the playlists had an approximate duration of 20 minutes and was viewed at least 17 times, with raw tracking data being recorded with a 0.05 second interval. The Data2MV dataset encompasses a total of 1.0 0 0.845 gaze fixations, gathered across a total of 128 exper- iments. It is also composed of 68.393 image frames, extracted from each of the 6 videos selected for these experiments, and an equal quantity of saliency maps, generated from aggregate fixation data. Software tools to obtain saliency maps and generate complementary plots are also provided as an open- source software package. The Data2MV dataset was publicly released to the research community on Mendeley Data and constitutes an important contribution to reduce the current scarcity of such data, particularly in immersive, multi-view streaming scenarios.info:eu-repo/semantics/publishedVersio
    • …
    corecore