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ABSTRACT
Omnidirectional videos (ODVs) have gone beyond the passive paradigm of traditional video,
offering higher degrees of immersion and interaction. The revolutionary novelty of this tech-
nology is the possibility for users to interact with the surrounding environment, and to feel a
sense of engagement and presence in a virtual space. Users are clearly the main driving force of
immersive applications and consequentially the services need to be properly tailored to them.
In this context, this chapter highlights the importance of the new role of users in ODV stream-
ing applications, and thus the need for understanding their behaviour while navigating within
ODVs. A comprehensive overview of the research efforts aimed at advancing ODV streaming
systems is also presented. In particular, the state-of-the-art solutions under examination in this
chapter are distinguished in terms of system-centric and user-centric streaming approaches: the
former approach comes from a quite straightforward extension of well-established solutions for
the 2D video pipeline while the latter one takes the benefit of understanding users’ behaviour
and enable more personalised ODV streaming.

KEYWORDS
omnidirectional video, user behaviour, ODV streaming

1.1 Introduction
Over the past few years, the synergistic development of new mobile communication
services (i.e., 5Gmobile networks) and new cutting-edge portable devices (i.e., smart-
phones) have helped for a breakthrough in video streaming services. In this context,
the concept of immersive and interactive communication is spreading, identifying a
completely novel way of communicating with other people and displaying multimedia
content. Traditional remote communications (e.g., television, radio, video calling)
are no more sufficient tools for our society: humans are inherently social, in need of
realistic experiences, and traditional remote communications do not offer such full
sense of immersion and a natural experience/interactions [1]. The impact of realis-
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tic experience in remote communications would interest society on wide levels as it
addresses a compelling need in reducing environmental impact, in enabling remote
working, answering also natural emergencies needs (e.g., reduced travel in pandemic,
tornadoes, etc.). In this context, Virtual Reality (VR) is an example of immersive
technology which has already landed in our everyday life , with an impact ($21.83
Billion in 2021, with a projection of growth to $69.6 Billion by 2028 [2]) across major
economic sectors beyond entertainment, e.g., , e-healthcare, e-education, and cultural
heritage [3].

VR technology refers to a fully digital environment that replaces the real world
and in which the user is immersed, allowing the user to experience a completely new
reality. The revolutionary novelty introduced byVRand immersive technology at large
is indeed to provide viewers with the possibility to interact with the digital surrounding
environment, and with feelings of engagement and presence in a virtual space, even if
they are not physically there [4,5]. Specifically, presence refers to the illusory feeling
experienced by the user of being in a virtual environment different from the physical
one where they are actually located [4]. A condition necessary for presence is the
immersion which refers more to technical properties of the system that are needed to
simulate a realistic virtual environment [6]. Interactivity is instead the possibility
for users to change the virtual environment with their movements [7]. Thus, the role
of user interaction is crucial to “be present” in the virtual world: being able to move
naturally helps the illusion of being in a different place. Novel types of multimedia
content are therefore needed to ensure a sufficient level of immersion, presence,
and interactivity, which are the three crucial factors to guarantee high Quality of
Experience (QoE) in a VR system [8,9]. In particular, omnidirectional videos (ODVs)
(also named 360◦ or spherical videos), which captures a 360◦ scene instantaneously,
are emerged as a new type ofmedia content that promises an immersive and interactive
experience. The viewer is placed at the centre of the virtual space (i.e., viewing
sphere) and provided with a VR device – typically a Head-Mounted Display (HMD)
– he/she experiences a 3-Degree of Freedom (DoF) interaction with the content, by
looking up/down (pitch) or left/right (view) or by tilting their head from side to side
(roll), as shown in Figure 1.1 a. These head rotations enable free navigation within
the immersive scene as the user displays only a restricted Field of View (FoV) of
the environment around themselves, named the viewport, identified by the viewing
direction at any given time (Figure 1.1 b). Hence, the sequence of the user viewing
direction over time can be approximated by projecting the viewport centre on the
viewing sphere (Figure 1.1 c) and it can be used to identify the user behaviour in an
immersive experience. The new type of navigation within the video content shows a
clear evolution of the user’s role from merely passive in traditional video applications
into interactive consumers in VR systems.

The new format as well as the new way of consuming the content open the gate
to many promising VR applications, but also pose completely new challenges. One
key challenge raised from the interactivity level is the high resolution and low-latency
required to ensure a full sense of presence. The user needs to have ultra-low switching
delayswhen changing the displayed viewport to avoid discomfort. This can be ensured
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FIGURE 1.1

Navigation in immersive content: a) rotational head movements (pitch, yaw and roll);
b) navigation system on viewing sphere at generic time instant; c) navigation trajectory
over time.

by sending to all users the entire content at high-quality, assuming that the desired
viewport will be then exported during rendering. This solution is the first one that has
been proposed, extending the well-established and optimized methods for 2D videos
to spherical content. These methodologies are usually user-agnostic and aimed at
improving the overall performance through enhancements in the system. The main
drawback of these solutions is that they are extremely bandwidth-consuming (up to
43 MB/s for 8K spherical video [10]) since the entire ODV content is delivered to
final clients, pushing the available bandwidth to the limit, with a negative impact on
the final quality. In practice, only a small portion (typically around 15% of the entire
video [11]) of the overall content is displayed by the user, making these solutions
extremely inefficient. Recently, more attention has been put on the final users, leading
to personalized systems, which put the user at the center of the system and tailor every
aspect of the coding–delivery–rendering chain to the viewer interaction. For example,
only the predicted content of interest for the final user is pushed into the delivery
network [11]. The main aim of these personalized systems is to optimise the user
QoE but also to overcome ODV streaming limitations, such as reducing bandwidth
and storage usage. However, this comes at the price of requiring the knowledge of user
interactivity patterns in advance. Therefore, inspired by recommender system and 5G
network communities [12–14], we propose to name the first line of improvements as
system-centric streaming while the second one as user-centric streaming. Figure 1.2
shows this proposed taxonomy for ODV streaming solutions and all subcategories that
will be under examination in the following.

In this chapter, we provide an overview of the research efforts that have been
dedicated to advance ODV streaming strategies, with a specific attention to the more
recent user-centric systems. Due to this popularity, many surveys papers [15–24]
have been published already to summarise the main contributions to ODV streaming
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ODV streaming system

System-centric

Viewport-independent Viewport-dependent

Projection-based Tile-based

User-centric

Single-user design Cross-user design

Content-agnostic Content-aware

FIGURE 1.2

Proposed taxonomy of researches related with ODV streaming systems.

systems. Table 1.1 depicts these works visualizing their main topics of interest,
highlighting also the level of investigation across the end-to-end pipeline.

As it is evident from Table 1.1, the majority of existing surveys are deeply focused
on compression, delivery and quality assessment aspects. For instance, Zink et
al. [18] have provided a general overview of the main challenges and the first attempts
of solution per each step of the ODV streaming pipeline, from acquisition to the
final user rendering experience. Chen et al. [15] have mainly explored the most recent
projectionsmethods aimed at improving video coding and transmissions, and reducing
video quality distortions. More insights on system design and implementations have
been described in [17,20,23]. In particular, both Fan et al. [17] and Yaqoob et
al. [20] have examined existing protocols and standards together with optimal ODV
streaming solutions. Ruan et al. [23] have instead investigated solutions for VR
systems but mainly from a network services perspective. Visual quality artefacts have
been deeply investigated by Azevedo et al. [19] describing their sources and features
at each step of the system; authors have also presented an overview of existing tools
for quality assessment (objective and subjective). Similarly, a deep focus on visual
quality assessment, together with attention models and compression, is given by Xu
et al. [22]. Authors have highlighted the importance of predicting where viewers
mainly put their attention during immersive navigation (i.e., saliency maps) to benefit
the entire system since users are the final consumers. They have also partially
addressed the need of understanding behavioural features to help in modelling user
attention presenting the main outcomes from existing navigation dataset analysis.
Following this direction, the recent work presented by Chiarotti [24] has showed
the importance of estimating navigation path also for quality evaluation, neglecting
however the behavioural analysis. To the best of our knowledge, these are the only
existing surveys which explicitly brings out the importance of the new role of users
in ODV streaming applications, and thus the need of understanding their behaviour.
As shown in Table 1.1, behavioural analysis has been highly overlooked. One of the
main contributions of this chapter is to fill in this gap by discussing in-depth the role
of the user in ODV streaming strategies.

The remaining of this chapter is structured as follows: Section 1.2 describes recent
advances in video streaming towards supporting ODV, from services popularisation to
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Table 1.1 Surveys related with ODV streaming systems. Level of investiga-
tion per each topic: mentioned; su�cient; deep.

Survey Acquisition Compression Delivery Rendering Quality Prediction Behavioural
Assessment Analysis

Chen et al. [15]
He et al. [16]
Fan et al. [17]
Zink et al. [18]
Azevedo et al. [19]
Yaqoob et al. [20]
Shafi et al. [21]
Xu et al. [22]
Ruan et al. [23]
Chiarotti [24]
Our chapter

standardising. Section 1.3 provides an overview of coding and delivery strategies for
the system-centric streaming, especially introducing differences between viewport-
independent and viewport-dependent methods. Section 1.4 highlights the role of the
user behaviour in ODV streaming and lists datasets for ODVuser analyses. Section 1.5
describes how such novel interactivity can drastically improve the status quo using
user-centric streaming. To conclude, we present final remarks and highlight new
directions in Section 1.6.

1.2 Streaming Pipeline: Evolution Towards ODV
In this section, we provide an overview of the ODV streaming pipeline. We start
with an historical overview of ODV to contextualize the first steps that opened the
gate to ODV streaming research, which is the main focus of this current chapter, we
then conclude by explaining how key components of the streaming pipeline, from
acquisition to rendering, have evolved and have been standardized to enable ODV
services.

Table 1.2 depicts the historical evolution that led to current technology used on
ODV systems. This evolution has been characterised by three key components: 1)
large-scale utilization of ODV applications; 2) ODV displaying technology; 3) tech-
nological advances in the streaming pipeline. The first service that appeared in
2007 based on omnidirectional content was the Google Maps Street View, which
allows users to virtually navigate on a street using a sequence of omnidirectional im-
ages [25]. After this, the ODV market has grown significantly mainly when YouTube
and Facebook (and Vimeo) allowed the upload and share of 360-degree content on
their platforms in 2015 (in 2017) [29,30,36]. The interest in ODV systems then has
been grown exponentially: for example, BBC and the French cultural network ARTE
used 360-video for immersive documentaries. Now, 360-degree content is widely
used across multiple sectors (e.g., e-culture, entertainment, retail, live sports) ampli-
fied even further from recent attention to metaverse applications. This widespread
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Table 1.2 ODV streaming historical timeline
2007 • Google launches Street View [25]
2011 • ISO publishes MPEG-DASH [26]
2014 • Google launches Cardboard and Facebook acquired Oculus. [27,28]
2015 • YouTube and Facebook social platforms allow ODV upload [29,30]

• MPEG standardised MPEG-DASH SRD to support tiled streaming [31]
2016 • BBC and ARTE begin sharing ODV content [32,33]

• Facebook proposes Pyramid projection [34]
• MPEG standardised HEVC encoding with Motion Constrained Tile Set [35]
• First viewport prediction algorithms

2017 • Vimeo platform allows ODV upload [36]
• YouTube proposes equiangular cubemap projection [37]
• First user navigation datasets for User Behavioural Analyses

2019 • MPEG standardised OMAF [38]
2021 • Facebook promotes VR towards metaverse applications [39]

of ODV services was further pushed by the advances on HMDs: in 2014 Google
proposed a affordable mobile-based HMD called Cardboard, while Facebook made a
two-billion-dollar acquisition of the HMD company Oculus. This has led to an ever-
growing desire for the users to experience ODV systems, highlighting the compelling
need for research advances and even standardising steps on ODV streaming pipeline.
The well known MPEG-dynamic adaptive streaming over HTTP (DASH)–de-facto
streaming solutions standardised in 2011 [26]– has been improved to enable ODV
systems ( italic and blue text in Table 1.2). Moreover, new sphere-to-plane projections
were proposed from Facebook and YouTube, namely pyramid (2016) and equiangular
cubemap (2017), to map the spherical content into 2D domain.

In parallel, DASH streaming was extended to the tile-based encoding that has
played a key role in viewport dependent streaming. The video content is spatially
cropped in different bitstreams named tiles, each of those independently coded from
the other tiles, allowing for unequal quality levels [40]. This is possible thanks to
the HEVC Motion-Constrained Tile Set (MCTS) technology [35], which eliminates
dependencies between tiles, restricting the encoding of visual objects motion, also
called motion vectors (MV), at tile boundaries. Tiles from different encoding quality
can therefore be combined in a single HEVC bistream and the reconstructed bitstream
is HEVC compliant and requires only a single decoder for the playback. The other
key aspect of tile-based streaming is the DASH Spatial Relationship Description
(SRD) [31], which enables the transmission of only a portion of the video to display
devices. This, in combination with multi-quality tile-based coding allows us to send
at high quality only the portion of interest to the VR user. This will be a key advance
in viewport-dependent streaming technologies (discussed in Section 1.3.2).

These above DASH extensions were then consolidated on Omnidirectional Media
Format (OMAF) [38], the first international standard for storage and distribution of
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ODVs; a result of the efforts of MPEG, 3GPP and VR Industry Forum (VRIF)[41].
OMAF specifies tile-based streaming, ensuring that the OMAF player rewrites the
encoded tiles syntax structures to merge them and decode them as one single bit-
stream [38,42]. Several tools have been proposed to experiment with OMAF: as
encoding tools, the Kavazaar [43] that easily supports tile sets; as players, the Fraun-
hofer OMAF.js1 and Nokia2. OMAF allowed the inclusion of other media types
beyond ODVs such as still images, spatial audio, associated timed text, multiple
viewpoints, and even a 2D video overlayed on the ODV [44]. These technological
advances and standardization pushed research efforts to improve even further the
ODV pipeline to achieve better services in terms of bandwidth, storage, networking
caching, and perceived user quality. In the following, we describe the entire pipeline
from acquisition to rendering to show how this has been adapted from classical 2D
video to ODV streaming. Then, in the following sections, we provide an overview of
the main technological advances mainly from the coding and streaming perspective.
Initial efforts were mainly focused on system-centric streaming, see Section 1.3. At
the same time, some researchers focused their studies on understanding how users
navigate within VR content (bold and green text in Table 1.2). By analysing users’
trajectories, these studies were able to develop viewport prediction algorithms (2016)
and make them available to the community with datasets of user navigation patterns
(2017). These datasets are intensely described in Section 1.4. These initial works
opened the gate to user-centric system research, described in depth in Section 1.5.

1.2.1 Adaptive ODV Streaming Pipeline
We now describe each processing step of the ODV streaming pipeline, focusing
mainly on MPEG-DASH [26]3, and highlighting the main novelties from classical
video streaming pipeline to ODV. Figure 1.3 depicts the adaptive ODV streaming
pipeline, with dash dotted green boxes characterizing the system-centric streaming
(on what we are going to focus on at the moment) and solid line blue boxes identifying
further evolution of ODV streaming toward user-centric ones – described in Section
1.5.

As already discussed in Chapter 3 of this book [46], the first step is the Acquisition,
which is different from the 2D video counterpart due to the spherical nature of the
media format. Most ODV cameras currently capture an entire 360-degree field of
view using multi-sensor systems, in which the final picture is generated from multiple
inputs signals. These signals are then processed by a stitching algorithm where the
overlapping regions between the camera views are aligned and then warped in sphere
surface. To be processed by existing 2D media processing tools, the spherical content
is projected into a planar representation, which is usually called Panorama. This is

1https://github.com/fraunhoferhhi/omaf.js
2https://github.com/nokiatech/omaf
3It is worth mentioning that other ODV streaming protocols (not purely DASH based) have been pro-
posed [45], however we mainly focus on DASH advances as this conceptually covers the majority of the
works.

https://github.com/fraunhoferhhi/omaf.js
https://github.com/nokiatech/omaf
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FIGURE 1.3

System-centric and User-centric ODV streaming pipeline.

the Projection step. The most commonly employed sphere-to-plane projections are
the equirectangular projection (ERP) (Figure 1.4b) and cubemap projection (CMP)
(Figure 1.4c) [47], which are supported by the OMAF standard. The ERP is the
simplest and the most popular projection format , which maps the viewing sphere
onto the panorama through the longitude and the latitude values. However, it is well
known that this project suffers from an unequal sampling of points introduced in the
pole areas, leading to more artifacts and less efficient compression and rendering
tasks at the poles [19]. The other well known projection is the Cubemap, which has
been introduced by the industrial sector initially for the gaming community. In this
projection, the sphere is first mapped to a cube, which is then unfolded and each face
is arranged into the panorama frame. While a lower distortion is achieved with CMP
than with ERP, the project still suffer from unequal distribution of pixels (higher
distribution towards the corners of the cube), which still affects the overall quality
during rendering phase.

Once the content is projected into a 2D plane, it can be processed by the En-
coding step, using the state-of-the-art codec from classical 2D media compression,
such as High-Efficiency Video Coding (HEVC/H.265) [48]. Typically, in DASH,
clients pull the content from the server, instead of being the server pushing it to
clients. Specifically, each content is encoded into multiple resolutions and quality
levels (representations), and each client dynamically selects the best representations
when fetching video segments using HTTP requests. Hence, the encoding step pro-
duces multiple quality levels (representations). Each encoded representation is then
segmented: the Segmenting step breaks the video into temporal chunks (usually 2B
long) and stored at the server side. The different available representations of these
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(a) Sphere (b) ERP (c) CMP

FIGURE 1.4

Widely adopted projections from a) spherical domain to plane: b) ERP and c) CMP.

chunks are described at the server, which in the case of DASH, is done on the DASH
Media Presentation Description (DASH-MPD). The client then selects the most ap-
propriate chunk representation to request, as explained later. DASH streaming was
extended to the tile-based encoding that has played a key role in viewport dependent
streaming. The video content is spatially cropped into different bitstreams named
tiles, each of those encoded at a different coding rates and resolutions independently
from the other tiles. This enables per-tile representations that are stored at the server
[40], providing the client with the freedom to select unequal quality in the ODV.

The chunks created by the encoder are then ingested in a HTTP origin server that
will process clients requests, Delivery step. This origin server is usually inside a con-
tent delivery network (CDN), which is an optimised infrastructure that redistributes
chunks onmultiple servers, ultimately reaching clients locations. At the client site, the
chunks are processed by Segment Decapsulation to extract HEVC bitstream, which is
then decoded in the Decoding step and fed into the playout buffer. In parallel, still at
the decoder side, the Adaptation Logic dynamically decides the best representations to
request for the upcoming chunk. This selection is based on the client connection and
buffer condition as well as the device capabilities. The pipeline ends with Rendering,
which back-projects the decoded planar representation in the spherical geometry and
displays the content of interest to the final user. This content of interest (viewport)
is evaluated in the prior step Viewport extraction, in which the current user viewing
direction is translated into the displayed viewport.

1.3 System-centric streaming
Advances in the streaming pipeline were initially aimed at improving the overall
system performance in terms of consumed bandwidth, storage cost, and networking
reliability metrics. These streaming solutions are defined in this chapter as system-
centric ones as they usually optimize systems design, being usually user-agnostic
(neglecting user behaviour analyses and prediction). In the following, we further
categorize system-centric solutions in viewport-independent and viewport-dependent
streaming. Viewport-independent solutions are themost similar to traditional adaptive
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2D video streaming, in which the entire panorama is encoded and treated equally.
Specifically, each representation available at the server side is encoded with a uniform
quality and resolution across the entire panorama. As a consequence, for any final
client to be able to display VR content at high-quality, the entire panorama will
be downloaded at high quality. This ensures low latency for viewport-switching,
but it is extremely costly in terms of storage and bandwidth usage [49]. Moreover,
it assumes that the whole panorama is equally important, which is clearly not the
case in VR systems. To strike the optimal balance between bandwidth waste and
switching latency, ODV user interactivity needs to be taken into account, leading
to streaming strategies adapting not only to the content but also to users, viewport-
dependent streaming. The key assumption is that not the entire panorama is equally
important since during the navigation users focus more on some areas than others.
In 2012, Alface et al. [50] were the first ones to show that an ideal knowledge of the
user interaction could lead to saving bandwidth, when transmitting only the viewport
(region of interest to the user). In the following, we present in details advances on
both viewport-dependent and viewport-independent streaming solutions.

1.3.1 Viewport-independent streaming
Beyond initial works that applied classical DASH streaming to ODVs [29], recent
works that fall under the viewport-independent framework are mainly focused on
improving the encoding step, overcoming issues related to sphere-to-plane projection.
One goal is to encode the ODV in the spherical domain with no need to project the
content into a bi-dimensional space. For instance, Vishwanath et al. [51] propose
to encode the inter-frame motion vector (MV) directly on the sphere instead of the
planar domain, avoiding distortions during the sphere-to-plane conversion. The
MV is expressed as rotation on the sphere (rotational motion vector) and results
demonstrate good gains compared to standard HEVC 2D video encoding. Also
working on the sphere, Bidgoli et al. [52] propose a representation learning approach
for spherical data. To avoid distortion from planar projection and yet exploit the
benefit of deep learning for features extraction, the authors propose a new sphere
convolution operation to keep the high expressiveness of 2D convolution while having
the advantage of uniform sampling on the sphere. This can lead to better coding
efficiency, as shown in the paper. These aforementioned approaches show promising
use of an on-the-sphere encoding strategy for omnidirectional images.

1.3.2 Viewport-dependent streaming
Viewport-dependent solutions are based on the assumption that the content is not
equally important (spatially), since users require to display only a portion of it.
Therefore, it is clear that a non-uniform streaming should be considered to ensure
higher quality to the areas more likely to be displayed. The adaptation to the viewport
has been implemented in both the projection and the (tile-based) encoding step of
the streaming pipeline. The former (projection-based approach) adapts the bit rate
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(a) Pyramid (b) Truncated Square Pyramid (c) Multi-res. ERP/CMP

FIGURE 1.5

Viewport-dependent projections.

allocation during projection, making this an unequal allocation that prioritizes areas
of interest for the final users. The latter (tile-based approach) has emerged when
tiled based coding was proposed by HEVC encoding MCTS and most of the ODV
works have focused afterwards on tile-based streaming for ODV. We detail these two
approaches in the following.

Projection-based approach
Projection-based approaches (also called viewport-dependent projections [20]) aim
at projecting the spherical content in such a way that the most important areas (most
likely to be displayed) are the least distorted during the projection step of the pipeline.
Selecting unequal levels of encoding rates across the panorama offers better QoE, but
at a price of generating multiple versions of the same panorama (each version with a
different area at high-quality). This impacts the storage cost (higher than the viewport-
independent case) and the caching hit ratio (lower since users might prefer different
versions depending on their focus of attention). Examples of viewport-dependent
projections are the Pyramid projection (Figure 1.5a) and [34], the truncated square
pyramid projection (TSP) (Figure 1.5b) [53]. The first one projects the sphere onto
a pyramid, with an intentional unequal allocation of points – more data points to the
pyramid base. The pyramid is then unwrapped and resized into 2D space (see Figure)
and encoded with classical 2D codec tools. The novelty is that this projection encodes
at the higher quality the area corresponding to the bottom face of the pyramid, which
will be match with the viewing direction of the users. The projection however suffers
from a rapid quality degradation when moving from the bottom face to the lateral
ones. This is obviated in the TSP, a truncated version of the pyramid projection.
Compared to a viewport-independent ERP, Facebook estimated that CMP has 25%
improvement compression efficiency while Pyramid has a 80% gain [34]. With the
ultimate goal of leaning toward more viewport-dependent projections, variations of
the classical ERP and CMP have been proposed. Multi-resolution variants of ERP
and CMP have been presented in [53], in which the content is first projected into the
plane (or the cube) and then re-sized and scaled to fit the rectangular plane, as shown
in the Figure 1.5c. In the final arrangement, some areas have a much larger scale and
sampling, and this should cover ideally the viewport of interest to final users.
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Tiled-based approach

Corbillon et al. [54] proposed an unequal encoding bitrates for ODVs, such that within
the panorama one region of attention is encoded at higher quality. Each user would
then select the version with the high-quality region overlapping with their viewport.
This pillar work has introduced the concept that the content is not spatially equally
important, opening the gate to tile-based approach. Today, it has been improved by
current standardised tiled streaming using the HEVC MCTS, which encodes tiles at
different bitrates and resolutions, creating per-tile representations that are stored at the
server. The key novelty of a tile-based system is that tiles can be independently fetched
by the client at the desired quality level. This creates a more flexible transmission
strategy able to compose the user viewport with higher quality tiles. This higher level
of flexibility however comes at the price of server processing and storage costs (a large
number of representations encoded and made available at the main server), and larger
computational costs for the final user to select the representation to request (larger
search space in the adaptation logic). To overcome these limitations and profit the
most from tile-based strategies, researchers have focused their studies on 1) optimal
design of the tiles at the encoder side; or 2) optimised tiles distribution in the network
delivery (e.g., client adaptation, multi-path and caching).

The tile-based encoding strategy directly impacts the server-side storage costs,
hence the compelling need to optimize it for omnidirectional content. Graf et al. [55]
published one of the first works in this direction, showing that different tiling patterns
have a different impact on the server-side costs, with final result that a 6×4 pattern
shows most improvements. Researchers evolved then the studies toward viewport-
dependent tile-based design [56,57]. Ozcinar et al. [56] design an optimal tiling
scheme and the required encoding bitrate levels based on a probabilistic model that
reflects the users interactivity, showing the gain in terms of users’QoE. Still optimizing
the tiles at the server side but with more focus on the storage costs, Rossi et al. [57]
propose an optimization problem at the server side aimed at selecting the optimal
bitrate per tile to be stored at the main server to minimise the quality distortion at
the user side while respecting the storage cost constraint. This optimization has
been done considering non-rectangular and 6-tiles configuration and including users
viewing direction probability in the optimization model.

Instead of optimizing the tile design at the server side, many other works have
been focused on optimizing designs at the user side, studying optimal adaptation logic
in viewport-dependent tile-based solutions. Ashan et al. [58] propose a buffer-based
algorithm to optimize the bitrate of area in the panorama overlapping the users’ view-
port. The main challenge is that this does not simply imply selecting the optimal
representation from the MPD, but it rather needs a mapping from tile’s bitrate to
viewport quality. Other efforts instead focused on adapting the strategy to users’
interaction, exploiting either the knowledge of the viewing direction [59] or proba-
bilistic/ average models such as the heatmap [60]. Fu et al. [59] propose an adaptation
logic based on sequential reinforcement learning (RL), with the agent reward being
the quality experienced by the users. The RL agent implicitly learns the interaction
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model and refines the adaptation logic based on the users’ behaviour, showing a gain
of 12% QoE improvement with respect to non viewport-dependent strategies. Rossi
et al. [60] propose a navigation-aware adaptation logic using a probabilistic heatmap
model. Other parallel researches have improved network aspects such as multi-path,
pre-fetching, decoding offloading, and caching strategies. Duanmu et al. [61] de-
veloped a multi-path video streaming in heterogeneous WiFi and 5G networks. To
efficiently utilize the high bandwidth available in 5G andmaximize the rendered video
quality, their client fetches videos from two networks. The 5G network was used to
pre-fetch high-quality video chunks and re-transmit chunks that cannot be delivered
in time through WiFi. Nguyen et al. [62] also address pre-fetching but using the new
package prioritization feature from HTTP/2 to delivery high-quality tiles. Then, in a
new direction, Nguyen et al. [63] investigated multi-path streaming but for decoding
offloading. They consider a mobile VR device and a PC with access to the stream
server and connected using amillimetre-wave (mmWave) network in the 60GHz band.
At the same time, tiles are fetched and decoded by devices, and the PC shares the
decoded frames via mmWave to the mobile. Such collaborative decoding offloaded
processing costs by 25%, speeding up of the decoding of all tiles. Finally, Maniotis
et al. [64] improves the server cache hit ratio by using a RL framework based on
tiles heatmap, showing an improvement of the proposed viewport-dependent caching
mechanism against other caching schemes such as Least Frequently Used (LFU) and
Least Recently Used (LRU).

The works mentioned so far have shown the gain of proposing viewport-dependent
tile-based streaming and its impact across different steps of the pipeline. However,
limitations still remain in the intrinsic definition of tile-based streaming. For example,
theMCTS restricts the inter-frame prediction of visual objects between tiles, reducing
the encoding efficiency. To obviate this limitation, Son et al. [65] propose new HEVC
extensions to enable inter-frame prediction, when an encoded object has dependency
from outside the tile using the HEVC scalability extension and extracting the object
from an up-sampled version of the base layer. Another limitation of tile-based coding
is the intra-frame redundancy, which is not minimized across tiles. Bidgoli et al. [66]
address this limitation by allowing the encoder to detect reference regions outside
the current fetched tiles. Then, they propose an encoding in which the intra-frame
reference region is at the centre of a requested tile to improve client intra-frame
decoding.

Despite these last limitations, viewport-dependent tile-based streaming has been
widely adopted for ODV streaming. A key aspect across all these works is the user’s
information, expressed for example either via viewport trajectory or heatmap. The
advances made so far have motivated researchers to dig deeper in the study of user’s
behaviour, as discussed in the following section.

1.4 The role of the user in ODV
In the following, we provide an overview on the recent ODVmultimedia datasets made
recently available to our community and the tool developed to perform behavioural
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data analysis from these datasets.

1.4.1 ODV navigation datasets
We provide an overview of the datasets collecting user’s navigation data during
immersive experiences. We summarize these datasets in Table 1.3, and highlight that
they are limited to i) publicly available dataset, with data related to ii)ODVcontent (no
images), and iii) navigation trajectories (i.e., head and/or eye movements). In order to
mimic a real-life condition, VR users cannot display the entire environment around
themself but only a restricted portion (i.e., viewport). Specifically, the sequence of
spatio-temporal points representing the user’s viewing direction over time identifies
users’ attention within an immersive experience. Based on VR device technology, the
user’s viewing direction can be represented either by head or eye movements. The
head movement determines the Field of View (FoV) as the pixel area of ODV, which
is displayed by a given user over time, while the eye movement datasets contain the
specific area within the FoV that captures the user attention and can be classified as
salient.

The navigation trajectories are collected via a three-steps collection procedure:
1) Test Preparation, 2) Subjective Test, and 3) Data Formatting and Storage. The
selection of video content to be used during subjective experiments is one of the first
steps. During test preparation, ODVs are selected based on several criteria: video
length, number of video, content category, features and attributes. Considering the
video sequence length, Ozcinar et al. present [71] the shortest group of video (i.e., 10
sec.) while Duanm et al. [83] have the longest one with sequence in the range of
60-120 seconds. The widest range of ODVs is instead proposed by Xu et al. [76]
with videos of variable length, from 10 up to 80 seconds. Also, in terms of number
of video contents there are various choices: only 5 videos (with 2 more ODVs used
during the training phase) in [67] as opposed to 208 ODVs in [76]. Interestingly, two
of the most recent datasets presented [78,79] integrate previous databases such as [67–
69,73,74,76] and [67,68,77,80,81], respectively. Therefore, they become among the
largest and most heterogeneous ODV datasets currently publicly available. Another
criteria to select ODVs is based on three main categories: Content Genres, Content
Features, and Camera Motion. For instance, authors in [75] select their video only
based on the content Genres, offering mainly sport activities related videos. A wider
range of genres (e.g., music shows, documentaries, short movies, computer animation
and gaming) can be found in most of the publicly available datasets [57,69,70,73].
Other authors choose their content based on attributes such as camera motion

[77], outdoor/indoor scene [74] or amix of all the aforementioned video categories
(i.e., indoor/outdoor scene, fixed/moving camera, and different content genres) [76].
It is worth to mentioning that the most recent dataset presented by Chakareski et
al. [82] is the only one which presents full UHD ODVs.

The second step of the data collection campaign is the subjective test, which
represents the core data collection step. Most of the datasets collect navigation data
during free-task experiments, which means that viewers could move inside the video
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Table 1.3 ODV navigation datasets publicly available. Link to each dataset
can be found in the Bibliography.

Y Reference
Test Preparation Subj. Available Data

ODVs Len. Category Format Others

20
17



Corbillon [67] 5 70s. Content
Genres

59 Quaternion Open source software.

Lo [68] 10 60s. 50 Euler
angles

Saliency and motion
maps.

Wu [69] 18 164-
655s.

Content
Genres

48 Quaternion Free-task and Task ex-
periments.

Xu [70] 48 20-
60s.

Content
Genres

40 Spherical
coord.

VQA task.

20
18



Ozcinar [71] 6 10s. Content
Genres

17 Spherical
coord.

Open source software.

Fremerey [72] 20 30s. - 48 Euler
angles

Open source software.

Xu [73] 58 10-
80s.

Content
Genres

76 Spherical
coord.

HM and EM data.

David [74] 19 20s. Content
Features

57 Spherical
coord.

HM and EM data,
saliency maps.

Zhang [75] 104 20-
60s.

Content
Genres

20F Spherical
coord.

HM and EM data and
heatmaps.

Xu [76] 208 20-
60s.

Content
Genres
and Feat.,
Camera
Motion

31F Spherical
coord.

HM and EM data.

20
19 

Nasrabadi [77] 28 60s. Camera
Motion

60 Quaternion Questionnaire on at-
tention.

20
20


Rossi [57] 15 20s. Content

Genres
31N Spherical

coord.
Data also from Laptop
and Tablet, code ODV
storage optimisation.

Rondón [78] 306 20s-
655s

- ∼42F Spherical
coord.

Aggregation datasets
[67–69,73,74,76].

20
21



Dharmasiri
[79]

88 30-
655s.

- ∼45F Euler
angles �

Aggregation datasets
[67–69,77,80,81], code
video segment cate-
gorization.

Chakareski
[82]

15 36s. Content
Genres

5-
12

Euler
angles

RD characteristics of
full UHD ODVs.

F per video.
N per video and device.
� roll angle was ignored.
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content as they wished. There are, however, a few examples where users were asked
to take some specific actions. For instance, the work presented in [69] proposes two
different experiments: a first set of ODVs are used to identify the natural behaviour
in a free-navigation experiment, while a second one is more specific to VR live
streaming applications. In fact, in the second experiment live recordedODVhave been
used to mimic the case of live-streaming data-tracking, and beyond objective head-
movements trajectories, also subjective perception of the video content was captured.
Similarly, authors [77] study participant’s attention, presence and discomfort levels
by a questionnaire at the end of the vision session. Auxiliary subjective quality
scores were collected also in [70], in which the dataset is used for Visual Quality
Assessment (VQA) tasks. Looking more specifically at the capturing of the objective
data (i.e., , trajectories), there are different types of VR devices that can be used,
such as laptop, tablet and smartphone. Under the assumption that it provides to
most immersive experience, the most widely adopted device is the the head-mounted
display (HMD): a helmet with a display and movement sensor able to adapt the
rendered image to user’s viewing direction. Other datasets however do exist with
data collected by other devices. Duanmu et al. [83] propose navigation trajectories
experienced only on laptop while Rossi et al. [57] collect users trajectories across
multiple devices (tablet and laptop, in addition to HMD) with the main purpose of
studying the effect of the displaying device in the user’s navigation. Moreover, most of
the presented ODV datasets provide the viewers navigation trajectories as a sequence
of head movements over time [67–73]. Even if the head position is a valuable proxy of
the user viewing direction, people can still move their eyes and focus on a specific area
of the displayed viewport keeping the head fixed. Thus for specific applications, such
as visual attention modelling or quality assessment, recording eye gaze movements
during the navigation is equally valuable. Hence, there are also dataset containing
both information [74–76].

The last part of the creation of an ODV dataset is the data formatting and storage
of the collected navigation trajectories in an immersive scenario. Since the navigation
within ODV is restricted to 3-DoF movements (Figure 1.1), only rotational move-
ments are captured neglecting potential translational movements. These rotational
movements can be represented based on several conventions within a spherical sys-
tem: Euler angles (i.e., yaw, pitch and roll), spherical coordinates (i.e., latitude and
longitude), and quaternion. The first two formats are the most common, as shown in
Table 1.3, while quaternion is employed only by [67,77], highlighting the higher accu-
racy and robustness of the quaternion in representing rotational movements. Finally,
some of the current publicly available dataset provide also some other data: software
that have been used to record users’ attention during subjective experiments in or-
der to encourage the community to extend their collected data [67,71,72]; saliency
[74] and motion maps [68]; other algorithms such server storage optimisation and
video segment categorization in [57] and [79], respectively; Rate-Distortion (RD)
characteristics of UHD ODV to correlate with user navigation in [82].
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1.4.2 Behavioural Analysis within ODVs
Most of the above papers present, along with the dataset, a general statistical charac-
terization of users’ behaviour. This has opened the gate to a new research area aimed
at capturing key features that characterize users’ interaction while experiencing ODV.
In the following, we depict the main findings of this prominent area of research on
behavioural analysis. In particular, we distinguish two strands of investigation: a more
traditional one aimed at identifying general behavioural features of users while navi-
gating; and a second one focused on identifying more specific and representative users
features of the users’ behaviour such as users’ similarity based on trajectory-based
data analysis.

Traditional Data Analysis
The way in which users typically interact with ODVs has been analysed mainly in
terms of general metrics such as angular velocity, frequency of fixation, and mean
exploration angles. Other than these quantitative metrics, a visual (and qualitative)
tool used to study user’s behaviour in VR is the heatmap, which identifies areas of the
content mostly attended by viewers within a time interval. The investigations based
on these aforementioned metrics have given intuitions to answer some key-questions.
Finding an answer for these issues is indeed a first step towards the design of user-
centric solutions for ODV system. We now summarise the most relevant questions
(from a more generic to a more specific behavioural perspective) and the works that
aimed at answering them.

Where do users usually look at (on average)? Understanding the areas on which
users focus the most within the spherical content is key to optimise the streaming
pipeline via viewport-dependent coding techniques or adaptation logic as described
in Section 1.3.2, and thus ensuring a good final quality. For this reason, many different
researchers at first focused on showing through statistical analysis that users prefer
to look at the equatorial area of ODVs rather than at the poles [67,71,74–76]. For
instance, some [67,71] use heatmaps averaged across users per each content to show
that the users head is densely distributed over time in the equatorial region and in
particular, above 100◦ in terms of latitude. A similar behaviour has been confirmed
by Xu et al. [76] analysing eye movements: the distribution of gaze fixations show
indeed an equatorial tendency, and moreover users move more frequently on the left
and right directions than up and down. Deeper investigations on the equatorial bias
have highlighted that viewers spend more time towards the front center area of ODVs
where typical the main relevant scene is located [70,72,73,83]. Finally, Fremerey et
al. [72] illustrate in their behavioural analysis that users change their viewing direction
only for a short period of time and in general prefer to display the video from a more
central and comfortable position.

How do users actually move over time? The average spatial distribution of users’
attention might not be enough to characterise their behaviour. For example, a deeper
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understanding on how viewers actually navigate over time within the video content
would allow us to distinguish behaviours that can be predicted or not. In detail,
erratic and random navigation within the spherical content is usually challenging to
predict. This is the case of the beginning of the navigation within new ODV, in which
a predominance of exploratory movements has been pointed out highlighting their
randomness, and therefore their difficulty to be anticipated [67,69,79]. However, after
a period in the range of 10-20 seconds, viewers tend to converge to common (andmore
predictable) directions, which typically correspond to the main Focus of Attentions
(FoAs) in the scene. Once users find their main point of interest, they tend to not
move too much [79]. Corbillon et al. [67] show that in a window of 2 seconds, the
95% of analysed subjects stay within a ray of c/2 from the initial position. This more
static and understandable (FoA driven) behaviour make the users’ interaction much
more predictable than the initial explorative phase.

How is the user behaviour affected by VR devices? Since ODVs can be expe-
rienced by different apparatus, a consequent rising question is on the influence of
the selected VR devices on the users interactivity. Focusing on the spatial average
distribution, the device seems to have a small impact on the overall visitation density:
a central and equatorial bias is preserved when navigating via a desktop [83]. Look-
ing at the users’ attention over time, however, a dependency on the device has been
observed. After a highly-exploratory behaviour at the beginning of the immersive
experience (which remains despite the adopted viewing device [84]), a more dynamic
navigation has been observed for users displaying ODVswith a laptop than with HMD
or tablet [57]. For example, this can be related to a lower sense of immersion and
engagement that leads to more explorative movements. Thus, taking into account
different VR devices is relevant and fruitful to understand the difference in terms of
user interactivity. Further analysis has been presented by Broeck et al. [84], focusing
on user experience with heterogeneous VR devices such as HMD, tablet and smart-
phones. In particular, two kinds of omnidirectional video sequences were analysed:
video with a static scene (e.g., recorded with a fixed camera) and moving scene. The
results show that users explore more in the latter type of content. As expected, the
immersion sensation is higher with HMD than other devices while the tablet offers
less immersion. Beyond traditional objective (implicit) metrics such as statistical tool,
VR experience can be analysed through subjective (explicit) metrics such as users’
feedback, and interesting observations can be deduced by comparing implicit and
explicit feedback. In [84], authors interviewed participants querying about their sense
of immersion during the experience. This explicit data matches the more implicit
ones based on users movements since subjects felt more immerse with HMD, despite
being less comfortable than with smartphones.

How is the user behaviour affected by content genres? Similarly to the previ-
ous question, the correlation between users movements and video content has been
analysed from different perspectives. Xu M. et al. [70] show that when the main
objects in the scene are not located in the central area of the video, users are not
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focused in the central area of the content, but they instead follow the FoA. Ozcinar
et al. [71] show a direct correlation between the distribution of fixation points and
the video complexity, in terms of Spatial Information (SI) and Temporal Information
(TI). In particular, the lower is the TI, the greater is the number of fixations located
in the same region. Moreover, the way in which users navigate inside ODVs change
for different video categories [57,85]. For instance, Almquist et al. [85] highlight
that viewers tend to be more uniformly distributed for videos without moving objects.
While Rossi et al. observe that ODVs without a main object in the scene bring users to
have highly exploratory interaction, especially with HMD. On the contrary, the level
of interactivity is not correlated with the viewing device if there is a main focus of
attention in the video which capture user attention [57]. Finally, the correlation be-
tween navigation patterns and the video content is so relevant such that Dharmasiri et
al. [79] use the fixation distribution as a proxy for their video categorization algorithm.

Are users consistent in their navigation? A final and yet important question is
if users tend to navigate in a consistent way. In other words, researchers have studied
the average behaviour of users but also their variance and deviation. Small variance
means that heatmaps can be representative enough of the users’ behaviour, leading to
reliable prediction of the user interaction. A general high consistency among users in
terms of spatial distribution has been identified by general statistical analysis for head
movements. For instance, Xu et al. [70] evaluate a high linear correlation between
heatmaps generated by two random sets of users. A similar outcome has been shown
in [73] where in particular, it has been highlighted that almost 50% of users focus on
the same viewing area among 8 quantized regions of the ODV. These works mainly
focused on summary statistics such as mean and variance of users’ behaviour averaged
across users. Looking at deeper analysis focused on pairwise comparison, authors
in [76] have evaluated the average intersection angle of eye-gaze direction per each
pair of participants across each content. This analysis highlights heterogeneity in
users’ behaviour, in contrast with the observations carried out from the other studies.
This inconsistency suggests the need to go beyond traditional statistical analysis to
better understand the user behaviour within immersive content. Moreover, beyond the
inconsistency just highlighted, it is worth mention that most of the above studies are
focused on behaviours averaged over time – for example heatmaps and eye fixation.
These metrics are highly informative about the spatial behaviour (where do users tend
to look at) but only partially informative about at the temporal behaviour (we can
deduce how much erratic users tend to be, but not really if two users are interacting
similarly). However, deeper temporal analysis is essential to develop reliable users
prediction algorithm, deeper behavioural analysis and enable user-centric systems. In
the following, we then review this second strand of research focused on trajectory-
based data analysis and highlight the key outcomes and novelty that emerge and how
this can lead to user-centric systems.
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Trajectory-based Data Analysis

As emerged in the previous discussion, behavioural analysis based on statistical tools
or heatmap provides a general understanding of user’s behaviour in ODV content
failing in detecting deep insights into users’ attention dynamics, such as how much
viewers interact in harmony among themselves. Specifically, there are still crucial
questions that need to be addressed: “Are users interacting in a similar way? Can
human behaviour be predicted?" Answering to these questions is indeed essential for
many and not trivial tasks. In this context, detecting viewers who are navigating in a
similar waywould help to improve the accuracy and robustness of predictive algorithm
and thus, to personalise the delivery strategy. This information could also be exploited
for identifying key navigation trajectories which can be used either to optimise video
coding or QoE assessment. Beyond immersive video streaming system applications,
being able to detect users who are interacting in a similar way from those who are
not, might be essential for medical purposes such as studying psychiatric disorders
[86,87]. Equipped with this motivation, a new direction of behavioural analysis has
started aimed at identifying behaviour similarities among users, across video content
and/or devices. This has led to the development of new metrics and tools built in the
space-time trajectory domain.

Clustering is one of the most popular and robust techniques to infer data structure
and it has been therefore employed in the context of VR applications. Based on
intuitions from vehicle trajectory prediction, Petrangeli et al. [88] model each user
navigation as independent trajectories in terms of roll, pitch, and yaw angles, and
apply a spectral clustering [89,90] to identify trajectories with similar behaviour over
time. The dominant trajectories, identified by the main clusters, are eventually used
to predict new viewers. While this method is efficient in discovering general trends of
users’ attention, it is not focused on identifying clusters that are consistent in terms of
displayed content; meaning that users in the same group do not necessarily consume
the same portion of ODV. Clustering to perform long-term trajectory predictions is
presented in [91], where authors first adopt awell-known spectral clustering algorithm,
Density-Based Spatial Clustering of Applications with Noise (DBSCAN), to identify
key clusters and trajectories from a set of training samples. Then, when new (test)
users start an ODV streaming session, they are assigned to a specific cluster and future
trajectories are predicted accordingly. This association step is based on viewing
direction comparison measured in the equirectangular plane, neglecting the actual
spherical geometry. Therefore, the clusters identified by both algorithms suffer of
two major shortcomings: 1) not identifying group of users necessarily consuming the
same portion of the ODV; 2) not necessarily considering the spherical geometry into
account. To overcome these limitations, a novel spherical clustering tools specific for
ODV users has been proposed in [92]. This is a graph-based algorithm that is able to
identify groups of viewers based on their consistency in the navigation. In practice,
authors first define a metric to quantify the common displayed portion of the content
(i.e., overlapped viewport) among users; based on this metric, they build a graph
whose nodes are associated to different viewers, and finally, a clustering method
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based on Bron-Kerbosh algorithm is applied to build clusters as cliques (i.e., sub-
graph of inter-connected nodes). Thus, the algorithm detects and groups users only if
they consistently display similar viewports over time while consuming the same ODV
content, and this viewport comparison is done taking into account also the spherical
geometry of the content. Due to its robustness and specificity for VR content, this
tool has been used to analyse navigation patterns in some publicly available datasets
such as [57,77]. The number of total clusters and users per cluster is a proxy of users’
similarity in exploring ODVs: the fewer the clusters, the more users are focused on
a similar area of the video content highlighting a similar behaviour. Both [57,77]
have showed that video characterised by a dominant focus of attention (i.e., moving
objects) are explored in a similar way by users, except few exceptions due to camera
motion [77]. For instance, videos which have a vertical camera motion bring viewers
not to be focused on a specific area but to be distributed on the landscape.

With the idea of developing an objective metric able to assess users’ similarity in
a spatio-temporal domain, Rossi et al. [57] propose a novel affinity metric to quantify
the detected similarities among viewers via the spherical clustering. This is evaluated
as the normalised weighted average of cluster popularity (i.e., how many users per
cluster): 0 when users are not clustered together because highly dispersed in the
navigation; 1 when users share a strong similarity in their trajectories. Equipped
with this tool, they noticed that the affinity between users is highly correlated to
the selected VR device: HMD leads to higher affinity metric than other devices. A
similar outcome has been also identified by authors [93], which directly compare
different prediction models for navigation trajectories collected by different devices
such as HMD, PC and smartphone. Other than showing that exploration done via
desktop is more static than the other devices, it has also been verified a higher
prediction accuracy for HMD users, especially in the near future. Following this
research direction, a novel viewport clustering algorithm as a tool for behavioural
analysis and video categorization has been proposed recently [79]. The main novelty
is to consider multimodal clustering analysis, in which the spherical location of each
viewer is augmented by other modalities as input such as head movement speed and
the percentage of the sphere explored in a given time window. In this way, users in
the same clusters are similar not only in terms of displayed viewport but also for the
style of exploration.

Beyond clustering, other tools have been proposed to understand similarities and
study user predictability. In [94], authors propose to base their behavioural analysis
on tools from information theory such as actual entropy, transfer entropy and mu-
tual information, which quantify randomness and uncertainty in the trajectories of
users. For example, the actual entropy is low for users that experience “repetitive"
behaviour (trajectories) over time, leading to highly predictable users. From a first
intra-behaviour analysis, aimed at studying the behaviour of one single user across
diverse contents, profiling behaviours have been identified: some viewers conserve
similar navigation independently by the video content. Moreover, they also quantify
a more randomness in navigation trajectories within ODVs lacking specific FoA. As
second line of investigation, an inter-user behaviour analysis has also been conducted,
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measuring how informative other users’ behaviour is for a current user. In other
words, the study quantifies how much information about the predictability within a
specific content can be extracted by the navigation of a given group of users. This
analysis is similar to the previous one based on clusters and users’ similarity. How-
ever, the information theory tools capture a more meaningful behaviour and better
quantify viewers similarity during their navigation than metrics based only on the
spatial location of users, such us the spherical clustering proposed in [92].

1.5 User-centric ODV streaming
The tools and metrics discussed in Section 1.4.2 enable a deeper understanding and
prediction level of the users’ interaction, opening the gate to personalised and user-
centric systems, Figure 1.3 (light blue and green boxes), where the different steps
of the pipeline are tuned based on single user’s behaviour. In the following, we
review the main contributions that have been proposed toward user-centric systems,
distinguishing the work based on the type of behavioural information: i) extracted
from a single user (single-user design), ii) extracted from multiple users (cross-user
design).

1.5.1 Single-User Designs
A key step in user-centric systems is the prediction of the users’ head movement.
The first and among the simplest technique (and most widely adopted) is based on
the past and current trajectory of a single user, neglecting other viewers and video
content information. Qian et al. [95] have experimentally shown how three simple
logistic regression models, such as average, Linear Regression (LR) andWeighted LR
(WLR) with a moving window of 1 second are able to successfully anticipate the user
behaviour in the next short time window (i.e., 0.5, 1, and 2 seconds). For the first time,
authors are able to prove the potentiality of the prediction. Specifically, giving higher
fetching priority to tiles that most likely will be displayed can reduce the bandwidth
usage up to 80%. Multiple works have followed all adopting such simple predictive
algorithms for user-centric adaptation logic, showing the gain in terms of bandwidth,
re-buffering, and final quality experience by the user. Experimental validation has
been proposed in [96], in which the user-centric adaptation logic has been tested on
real-world 4G bandwidth. Results have shown that the proposed strategy maintains
a good displayed quality (the same achieved when sending the entire panorama)
but with a reduction of bandwidth overload up to 35%. Logistic regression based
on historical data has been used also in [97], in which the adaptation logic for
ODV streaming optimises the optimal representation per tile to request according to
network bandwidth and predicted users’ head movements. Their analysis emphasised
the need of accurately predicting future viewport position for ODV streaming. A
WLR algorithm is considered in a similar framework but in the case of scalable video
coding [98]. Specifically, high-quality representations of tiles within the predicted
viewport are prefetched shortly before being visualised to ensure high quality in the
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displayed content and at the same time to reduce storage costs at the server-side, which
has been an open challenge especially for ODV that is highly data intensive.

Most of these works have shown the potentiality of user-centric systems, but suffer
from poor prediction accuracy in the long-term (mainly due to the lack of other users
and content information). At the same time, the behavioural studies highlighted in
Section 1.4.2 have shown a strong consistency and similarity in the way in which users
navigate ODVs, motivating cross-users designs described in the following subsection.

1.5.2 Cross-User Designs
To breakthrough the limitation of single-user frameworks, a new research direction
has been carried out aimed at exploiting behavioural information from multiple users
to identify and predict the most popular trends in navigating ODVs and develop user-
centric systems accordingly. In the following, we review these efforts first describing
the work that are content-agnostic, mainly based on user cross-users information.
Then, we introduce the content-basedworks, inwhich users’ information is augmented
by content information.

Content-agnostic Designs
At first, linear model (LR) and classical clustering have been widely used to infer
single user behaviour from cross-user information [88,91,99,100]. For example,
with the main intent to improve the long-term users’ viewport prediction, Ban et
al. [99] propose a viewport prediction approach based onK-Nearest-Neighbors (KNN)
algorithm and aimed at combining both behavioural characteristics of the single-user
and those extracted by benchmark viewers. Specifically, the algorithm is composed
of two main steps: i) the user head position is predicted via LR model based on the
historical movements of only the single user under investigation; ii) this prediction is
then used to form the  nearest users set, as the users with the closest viewport centres
previously collected. The  -NN set is used to compute the viewing probability per
tiles. This is one of the proposed methods by Xie et al. [91], aimed at using cross-user
information to identify main clusters of users and then predict new users mimicking
the behaviour of the closest cluster. Per each detected group, the viewing probability
of tiles is then computed and applied to support the viewport prediction during video
playback of new viewers. Even if the prediction is more accurate in a timewindow of 3
seconds and longer, viewers are clustered based on Euclidean distance, neglecting the
actual spherical geometry, resulting in not fully representative clusters. With the idea
of exploiting the spherical geometry, other white-box models have been proposed.
For instance, Hu et al. in [101] use a graph-based approach to improve the accuracy
of viewport prediction in a QoE-optimised ODV streaming system. Authors first
predict tiles in the FoV by a tile-view graph learned from historical users’ navigation
trajectories: a weighted graph is constructed in which each vertex corresponds to a
tile while the weight is given by users’ behaviour. From the constructed graph, a tile
view probability is finally evaluated and used to optimise the downloading bitrate per
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tile in a limited bandwidth system but maximising the users’ quality of experience.
Authors deeply compare their proposed systemwith other algorithms (both navigation
predictive and streaming) reaching 20% improvement in terms of users’ QoE.

Beyond the models discussed above, cross-users data analysis have opened the
gate to deep learning frameworks aimed at inferring non linear interactivity models
from a training dataset of collected trajectories based. These models have been
augmented also by auxiliary losses [80] or by probabilistic models [102,103] or state-
of-the-art transformers [104] aimed at inferring the prediction error. For example, a
Gaussian distribution based on previous immersive navigation experiences is used to
model the distribution of short-term prediction error for new viewers in the system.
This prediction approach is used to improve a viewport-dependent streaming system
following a tile-based streaming approach in [102] and an improved coding technique
(i.e., pyramid projection) to adapt quality distribution based on users’ behaviour
in [103]. Instead, Chao et al. [104] propose a viewport prediction transformer method
for ODV, named 360◦ Viewport Prediction Transformer (VPT360), taking advantage
of transformer architecture [105].

Content-aware Designs
In the previous sections we have described the advances made toward user-centric
systems, in the case in which user behavioural analysis was carried out by looking only
at users data. However, the studies in Section 1.4.2 have shown that users’ attention
is steered by the content as well. Therefore, in the following we review user-centric
designs in which researchers have used both users trajectories and content features to
infer user behaviour.

A very well known metric that maps content features into user attention is the
saliency map, which estimates the eye fixation for a given omnidirectional content.
Since a correlation between saliency map and user trajectory has been empirically
proved in [106], many efforts have been dedicated to study, infer, and exploit saliency
in ODV streaming. Specifically, deep learning frameworks aimed at predicting users
trajectories where augmented by using saliency maps as further input [73,107,108].
Different learning architectures and paradigmswere considered in these studies: Rein-
forcement Learning (RL) based approach looking at the user’s behaviour as sequential
actions taken over time [73]; and recurrent learning approach exploiting the temporal
correlation of users trajectories [107,108]. Xu et al. [73] proposed an RL based
workflow that first estimates the saliency map for each frame and then predicts the
viewport direction based on historical data and predicted saliency. This prediction
is cast as a RL agent that aims at minimizing the prediction loss (dissimilarity be-
tween the predicted and ground-truth trajectories). Its viewport prediction is however
short-term being limited to the next frame only (i.e., about 30ms prediction ahead).
In the case of recurrent neural networks, Nguyen et al. [107] feed a long short-term
memory (LSTM) network with both saliency (inferred by a CNN model) and his-
torical head orientation from users. The learning framework was able to overcome
main limitations such as central saliency bias and single object focus (i.e., ODV
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users quickly scan through all objects in a single viewport). Interestingly, Rondón
et al. [108] show that the historical data points (in terms of past trajectories) and
content features may influence the future trajectories differently based on the predic-
tion horizon. They observe that users trajectory is affected by the content mainly if
toward the end of the trajectory. This is explained by the fact that at the initial phase
of the trajectory users tend to have more erratic (and less content driven) behaviour.
As a consequence, they propose a prediction model that initially prioritises user tra-
jectory inertia, counting more the visual content at a later stage. As a consequence,
they consider both positional features and saliency as two time series to feed to the
LSTM, as opposed to other works that only consider the former ones. In this way,
Rondón et al. sequence-to-sequence method showed better results compared to other
LSTM ones such as Nguyen et al. [107] which do not consider time-dependency in
the saliency maps. These deep learning frameworks have strong potentiality but it
is well known that they are data-hungry, with a tendency of poor training accuracy
or lack of generalisation in the case of the limited datasets. Hence, works have been
also presented in a parallel direction of “shallow" learning frameworks, such as the
one from Zhang et al. [109]. Authors designed their trajectory prediction as a sparse
directed graph problem inferred by past users’ positions, saliency map data, and the
biological human head model (which defines transition constraints on the graph given
the physiological constraints such as impossible head movements).

Beyond saliency maps, other content features have been considered. In the case
of dynamic scenes, for example, saliency might not be representative enough and
content motion can be preferred as a feature. Such motion can be captured from
either optical video flow [110–112] or from individually detected objects’ movements
[113,114]. The optimal flow can be extracted by the well-known differential method
Lucas-Kanade algorithm, as well as by Gaussian mixture models [112]. In [110], the
optical flow as well as the saliency and the past trajectory are input to a LSTM-based
prediction model. User-centric systems that exploit the proposed fixation prediction
network achieve a reduction of both bandwidth consumption and initial buffering time.
Deep learning frameworks have also been considered to extract content features and
favor the temporal prediction of users viewing trajectories. Park et al. [115] implement
a 3D-CNN to extract spatio-temporal features from both saliency and optical flow to
predict future viewing directions. The predicted trajectory is then exploited in a RL
model that determines the downloading order and the downloading bitrate for tile-
based streaming. Xu et al. [111] also exploit the CNN architecture but for predicting
users’ gaze. With this goal in mind, authors created an eye-tracking dataset captured
from dynamic scenes. The computed saliency maps and the content motion maps
are in two spatial scales: at the entire panorama image; and at a sub-image centred
at the current gaze point. Both saliency and motion maps feed a CNN for feature
extraction, and then a LSTM predicts gaze direction using the current time and gaze
point. Moreover, other works use individually detected objects’ movements, mostly
following the success of YOLO (YouOnly LookOnce) [116] for objection recognition
Chopra et al. [113] propose an online regression model based on trajectories of both
users and the main objects, which are extracted online from the detection model. They
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claim that the user’s head movement highly depends on objects trajectories. Their
experiments highlight 34% model weighted given the object’s trajectories. Park et
al. [114] argued that the semantic video information of motion objects (e.g., people,
cars) is also useful to predict the users’ behaviour. Given extracting video semantic
information is a high-computing task, something not common in mobile devices or
HMD, they proposed a server-side analysis shared with clients in DASH MPD files.
The shared information contains objects presented in tiles and the probabilities of
each object being seen given other users viewing them. In other words, objects that
were of interest to most of the users will have higher probability to be followed by a
new user.

1.6 Conclusions and Perspectives
Omnidirectional videos (ODVs) have become widely spread since 2007 with their
first commercial application (i.e., Google street view) and have attracted a growing
attention in the multimedia community. This novel multimedia format has revolu-
tionised how users engage and interact with media content, going beyond the passive
paradigm of traditional video technology, and offering higher degrees of presence and
interaction. Thus, many new challenges have risen over the entire end-to-end commu-
nication chain due to the novel role of the user and the new geometry. For example,
the spherical content need to be efficiently delivered to the viewer taking into account
also the aspect of user-content interaction and bandwidth limitation. In this context,
this chapter presents a summary of research advances in ODV adaptive streaming,
clearly distinguishing works in terms of system-centric and user-centric streaming
solutions. System-centric approaches come from a quite straightforward extension
of well-established solutions for the 2D video pipeline, adding value in the stream-
ing strategy making it user-aware (i.e., tile-based viewport-dependent streaming).
Given the key role of the users, behavioural investigations on how viewers navigate
within ODV have attracted a lot of interest, showing the benefit of understanding
users’ behaviour, and enable personalised ODV streaming solutions (i.e., user-centric
streaming system).

Despite the intense efforts, there are still several potential research directions in
this area. Looking at the streaming pipeline, advances can be done in making ODV
processing steps even more geometry- and user-aware. In the first direction, for
instance, on-sphere encoding methods instead of plane ones has shown promising
results for omnidirectional images [52], and many future works could be done also on
ODVs. Coding efficiency can be improved further also advancing tile-based design.
To the best of our knowledge, user-behaviour, spherical geometry and content motion
are not simultaneously taken into account when optimizing the design of the tiles.
On a parallel direction, viewport prediction research has been experiencing still many
open challenges. Novel approaches are now emerging to improve the prediction
accuracy, considering different information, such as spatial audio and user emotion.
For instance, authors in [117] propose to improve prediction incorporating spatial
audio characteristics of the video content. However, there is a lack of public ODV
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dataset with spatial audio information to enable such direction [118]. Regarding
emotion, there are efforts to enable labelling emoting during VR presentation [119]
to create ground truth for user emotion during immersion in ODV. However, a trained
model with such data can automatically detect emotion from recorded pupils to
perform predictions [120].

As emerged in Section 1.4.2, an increasing interest in modeling and understanding
users’ behaviour inODVsystems has been shown recently. Even if some key-questions
have been addressed, there are still open issues. For instance, a better understanding of
common behavioural information among users is still missing and could be eventually
exploited in a proper tool that identifies ODV viewers’ profiling. A user profile is a
collection of information that describes the behavioural features of a user and that is
used to identify key behaviours. In the ODV context, users’ profiles can be utilized
for different purposes such as enabling new modalities for viewport prediction and
streaming services optimised for users’ profiles. Of strong interest for industry would
be the live-streaming scenarios (e.g., live sports) in which users’ profile might have a
high impact especially in reducing the cold-start problem in online prediction models.
Even if user profiling can benefit for providing better services, it raises significant
concerns toward user privacy. Some very recent works have been focused on this
specific issue, aiming at developing user-centric solutions that are privacy-compliant.
For instance, Wei et al. point out two directions to protect user viewport [121]. First,
by using the federated learning method during training, only the model parameters
are sent to the prediction server. Another way is obfuscating the real user position
by performing a normalised number of camouflaged tile requests. Their experiments
have shown that the scale of camouflaged requests is determinant in achieving better
prediction, and users might decide such scale of data sharing (trade off between
privacy and service personalisation).

Finally, it is also worth to mentioning the growing interest for volumetric video.
This content, also known as holograms, will completely revolutionize the way we
communicate. Moving from 3-DoF to 6-DoF systems, the user is not more limited to
head movements (as in omnidirectional content) but can perform freely body move-
ments among holograms, dynamically changing the both perspective and proximity
from which he/she sees them. Research challenges linked to volumetric visual data
are still numerous and in their infant phase, as discussed in part IV of this book [122].
Volumetric signals are typically represented as dynamic polygon meshes or point
clouds. Therefore, the regular pixel-grids (frames in traditional multimedia content)
or the sphere-based acquisition pattern (typical of 360◦ contents) are left to more
abstract data structure. With volumetric videos, a collection of colour points infor-
mation evolving over time is acquired, with no hard constraints on the preservation
of geometry over time. Even if the signal has a completely different structure, volu-
metric videos share some common challenges with omnidirectional content such as a
large volume of data, ultra-low delay application and the uncertainty of user requests.
Thus, all the studies done for the user-centric system in ODV and presented in this
work can be exploited in a new solution for a more immersive system with volumetric
representation.



28 CHAPTER 1 Streaming and User Behaviour in Omnidirectional Videos

Bibliography
[1] J. G. Apostolopoulos, P. A. Chou, B. Culbertson, T. Kalker, M. D. Trott, S. Wee, The road to

immersive communication, Proceedings of the IEEE 100 (4) (2012) 974–990.
[2] I. Grand View Research, Virtual Reality Market Size, Share & Trends Analysis Report By Tech-

nology (Semi & Fully Immersive, Non-immersive), By Device (HMD, GTD), By Component
(Hardware, Software), By Application, And Segment Forecasts, 2021 - 2028, [Online] https:
//www.grandviewresearch.com/industry-analysis/virtual-reality-vr-market (2021).

[3] C. Flavián, S. Ibáñez-S ánchez, C. Orús, The impact of virtual, augmented and mixed reality
technologies on the customer experience, Journal of business research 100 (2019) 547–560.

[4] M. Slater, M. V. Sanchez-Vives, Enhancing our lives with immersive virtual reality, Frontiers in
Robotics and AI 3 (2016) 74.

[5] J. L. Rubio-Tamayo, M. Gertrudix Barrio, F. García García, Immersive environments and virtual
reality: Systematic review and advances in communication, interaction and simulation, Multimodal
Technologies and Interaction 1 (4) (2017) 21.

[6] M. V. Sanchez-Vives, M. Slater, From presence to consciousness through virtual reality, Nature
Reviews Neuroscience 6 (4) (2005) 332–339.

[7] M.-L. Ryan, Immersion vs. interactivity: Virtual reality and literary theory, SubStance (1999)
110–137.

[8] J. Mütterlein, The three pillars of virtual reality? investigating the roles of immersion, presence,
and interactivity, in: Proceedings of the 51st Hawaii international conference on system sciences,
2018.

[9] A. Perkis, C. Timmerer, S. Baraković, J. B. Husić, S. Bech, S. Bosse, J. Botev, K. Brunnström,
L. Cruz, K. De Moor, et al., QUALINET white paper on definitions of immersive media experience
(IMEx), European Network on Quality of Experience in Multimedia Systems and Services, 14th
QUALINET meeting (online) (2020).

[10] M. T. Vega, J. van der Hooft, J. Heyse, F. De Backere, T. Wauters, F. De Turck, S. Petrangeli,
Exploring New York in 8K: an adaptive tile-based virtual reality video streaming experience, in:
Proceedings of the 10th Multimedia Systems Conference, ACM, 2019, pp. 330–333.

[11] B. Han, Mobile immersive computing: Research challenges and the road ahead, Communications
Magazine 57 (10) (2019) 112–118.

[12] P. Cremonesi, F. Garzotto, R. Turrin, User-centric vs. system-centric evaluation of recommender
systems, in: IFIP Conference on Human-Computer Interaction, Springer, 2013, pp. 334–351.

[13] R. Stankiewicz, P. Cholda, A. Jajszczyk, Qox: What is it really?, Communications Magazine 49 (4)
(2011) 148–158.

[14] M. Agiwal, A. Roy, N. Saxena, Next generation 5G wireless networks: A comprehensive survey,
Communications Surveys & Tutorials 18 (3) (2016) 1617–1655.

[15] Z. Chen, Y. Li, Y. Zhang, Recent advances in omnidirectional video coding for virtual reality:
Projection and evaluation, Signal Processing 146 (2018) 66–78.

[16] D. He, C. Westphal, J. J. Garcia-Luna-Aceves, Network Support for AR/VR and Immersive Video
Application: A Survey, in: Proceedings of the 15th International Joint Conference on e-Business
and Telecommunications, Science and Technology Publications, 2018, pp. 359–369.

[17] C.-L. Fan, W.-C. Lo, Y.-T. Pai, C.-H. Hsu, A Survey on 360◦ Video Streaming: Acquisition,
Transmission, and Display, ACM Computing Surveys 52 (4) (2019) 1–36.

[18] M. Zink, R. Sitaraman, K. Nahrstedt, Scalable 360° Video Stream Delivery: Challenges, Solutions,
and Opportunities, Proceedings of the IEEE 107 (4) (2019) 639–650.

[19] R. G. d. A. Azevedo, N. Birkbeck, F. De Simone, I. Janatra, B. Adsumilli, P. Frossard, Visual
Distortions in 360° Videos, IEEE Transactions on Circuits and Systems for Video Technology

https://www.grandviewresearch.com/industry-analysis/virtual-reality-vr-market
https://www.grandviewresearch.com/industry-analysis/virtual-reality-vr-market


1.6 Conclusions and Perspectives 29

30 (8) (2020) 2524–2537.
[20] A. Yaqoob, T. Bi, G.-M.Muntean, A survey on adaptive 360◦ video streaming: Solutions, challenges

and opportunities, IEEE Communications Surveys & Tutorials 22 (4) (2020) 2801–2838.
[21] R. Shafi, W. Shuai, M. U. Younus, 360◦ Video Streaming: A Survey of the State of the Art,

Symmetry 12 (9) (2020) 1491.
[22] M. Xu, C. Li, S. Zhang, P. Le Callet, State-of-the-art in 360◦ video/image processing: Perception,

assessment and compression, IEEE Journal of Selected Topics in Signal Processing 14 (1) (2020)
5–26.

[23] J. Ruan, D. Xie, Networked VR: State of the Art, Solutions, and Challenges, Electronics 10 (2)
(2021) 166.

[24] F. Chiariotti, A survey on 360-degree video: Coding, quality of experience and streaming, Computer
Communications 177 (2021) 133–155.

[25] Google, Street View’s 15 favorite Street Views, [Online] https://blog.google/products/maps/
street-views-15-favorite-street-views/ (2020).

[26] I. Sodagar, The MPEG-DASH Standard for Multimedia Streaming Over the Internet, IEEE Multi-
Media 18 (4) (2011) 62–67.

[27] Meta, Facebook to Acquire Oculus, [Online] https://about.fb.com/news/2014/03/facebook-
to-acquire-oculus/ (2014).

[28] Google, Open sourcing google cardboard, [Online] https://developers.googleblog.com/2019/
11/open-sourcing-google-cardboard.html (2019).

[29] Google, A new way to see and share your world with 360-degree video, [Online] https:

//blog.youtube/news-and-events/a-new-way-to-see-and-share-your-world/ (2015).
[30] Meta, Insights from a year of 360 videos on facebook, [Online] https://facebook360.fb.com/

2017/02/16/insights-from-a-year-of-360-videos-on-facebook/ (2017).
[31] ISO Central Secretary, Spatial relationship description, generalized URL parameters and other

extensions, Standard Tech. Rep., ISO/IEC 23009-1:2014/Amd 2, International Organization for
Standardization, Geneva, CH (2015).

[32] BBC, Click: How we made BBC’s first fully 360-degree show, [Online] https://www.bbc.com/
news/technology-35752662 (2016).

[33] DigitalTV Europe, Arte launches virtual reality TV app, [Online] https://

www.digitaltveurope.com/2016/01/14/arte-launches-virtual-reality-tv-app/ (2016).
[34] E. Kuzyakov, D. Pio, Next-generation video encoding techniques for 360◦ video and VR, [Online]

https://engineering.fb.com/2016/01/21/virtual-reality/next-generation-video-

encoding-techniques-for-360-video-and-vr/ (2016).
[35] Y.-K. Wang, M. K. Hendry, Viewport dependent processing in VR: partial video decoding, in:

Proceedings of the 116th MPEG Meeting of ISO/IEC JTC1/SC29/WG11, MPEG, Vol. 116, 2016,
[Online] https://mpeg.chiariglione.org/meetings/116.

[36] Vimeo, Vimeo 360: A home for immersive storytelling, [Online] https://vimeo.com/blog/post/
introducing-vimeo-360/ (2017).

[37] Google, Improving VR videos, [Online] https://youtube-eng.googleblog.com/2017/03/

improving-vr-videos.html (2017).
[38] M. M. Hannuksela, Y.-K. Wang, An Overview of Omnidirectional MediA Format (OMAF), Pro-

ceedings of the IEEE 109 (9) (2021) 1590–1606.
[39] Facebook, Introducing meta: A social technology company, [Online] https://about.fb.com/

news/2021/10/facebook-company-is-now-meta/ (2021).
[40] J. Le Feuvre, C. Concolato, Tiled-based adaptive streaming usingMPEG-DASH, in: Proceedings of

the 7th International Conference on Multimedia Systems, MMSys ’16, Association for Computing
Machinery.

https://blog.google/products/maps/street-views-15-favorite-street-views/
https://blog.google/products/maps/street-views-15-favorite-street-views/
https://about.fb.com/news/2014/03/facebook-to-acquire-oculus/
https://about.fb.com/news/2014/03/facebook-to-acquire-oculus/
https://developers.googleblog.com/2019/11/open-sourcing-google-cardboard.html
https://developers.googleblog.com/2019/11/open-sourcing-google-cardboard.html
https://blog.youtube/news-and-events/a-new-way-to-see-and-share-your-world/
https://blog.youtube/news-and-events/a-new-way-to-see-and-share-your-world/
https://facebook360.fb.com/2017/02/16/insights-from-a-year-of-360-videos-on-facebook/
https://facebook360.fb.com/2017/02/16/insights-from-a-year-of-360-videos-on-facebook/
https://www.bbc.com/news/technology-35752662
https://www.bbc.com/news/technology-35752662
https://www.digitaltveurope.com/2016/01/14/arte-launches-virtual-reality-tv-app/
https://www.digitaltveurope.com/2016/01/14/arte-launches-virtual-reality-tv-app/
https://engineering.fb.com/2016/01/21/virtual-reality/next-generation-video-encoding-techniques-for-360-video-and-vr/
https://engineering.fb.com/2016/01/21/virtual-reality/next-generation-video-encoding-techniques-for-360-video-and-vr/
https://mpeg.chiariglione.org/meetings/116
https://vimeo.com/blog/post/introducing-vimeo-360/
https://vimeo.com/blog/post/introducing-vimeo-360/
https://youtube-eng.googleblog.com/2017/03/improving-vr-videos.html
https://youtube-eng.googleblog.com/2017/03/improving-vr-videos.html
https://about.fb.com/news/2021/10/facebook-company-is-now-meta/
https://about.fb.com/news/2021/10/facebook-company-is-now-meta/


30 CHAPTER 1 Streaming and User Behaviour in Omnidirectional Videos

[41] ISO Central Secretary, Information technology — Coding of audio-visual objects — Part 12: ISO
base media file format (2020).

[42] T. Thanh Le, J.-B. Jeong, S. Lee, J. Kim, E.-S. Ryu, An Efficient Viewport-Dependent 360 VR
System Based on Adaptive Tiled Streaming, in: Computers, Materials and Continua, Vol. 66, Tech
Science Press, 2021, pp. pp.2627 – 2643.

[43] M. Viitanen, A. Koivula, A. Lemmetti, A. Ylä-Outinen, J. Vanne, T. D. Hämäläinen, Kvazaar:
Open-source hevc/h.265 encoder, in: Proceedings of the 24th ACM International Conference on
Multimedia, 2016, [Online].
URL http://doi.acm.org/10.1145/2964284.2973796

[44] K. K. Sreedhar, I. D. D. Curcio, A. Hourunranta, M. Lepistö, Immersive media experience with
MPEG OMAF multi-viewpoints and overlays, in: Proceedings of the 11th Multimedia Systems
Conference, ACM, pp. 333–336.

[45] H. S. Kim, S. B. Nam, S. G. Choi, C. H. Kim, T. T. K. Sung, C.-B. Sohn, HLS-based 360 VR using
spatial segmented adaptive streaming, in: IEEE International Conference on Consumer Electronics,
2018, pp. 1–4.

[46] T. Maugey, Acquisition, representation and rendering of omnidirectional videos, in: Immersive
Video Technologies, Elsevier, 2022.

[47] D. Pio, E. Kuzyakov, Under the hood: Building 360 video, [Online] https:

//engineering.fb.com/2015/10/15/video-engineering/under-the-hood-building-

360-video/ (2015).
[48] G. J. Sullivan, J.-R. Ohm, W.-J. Han, T. Wiegand, Overview of the High Efficiency Video Coding

(HEVC) Standard, IEEE Transactions on Circuits and Systems for Video Technology 22 (12) (2012)
1649–1668.

[49] S. Afzal, J. Chen, K. K. Ramakrishnan, Characterization of 360-degree videos, in: Proceedings of
the Workshop on Virtual Reality and Augmented Reality Network, ACM, 2017, p. 1–6.

[50] P. R. Alface, J.-F. Macq, N. Verzĳp, Interactive omnidirectional video delivery: A bandwidth-
effective approach, Bell Labs Technical Journal 16 (4) (2012) 135–147.

[51] B. Vishwanath, T. Nanjundaswamy, K. Rose, Rotational motion model for temporal prediction in
360◦ video coding, in: 19th International Workshop on Multimedia Signal Processing, IEEE, 2017.

[52] N. M. Bidgoli, R. G. d. A. Azevedo, T. Maugey, A. Roumy, P. Frossard, OSLO: On-the-sphere
learning for omnidirectional images and its application to 360-degree image compression, arXiv
preprint arXiv:2107.09179 (2021).

[53] K. K. Sreedhar, A. Aminlou, M. M. Hannuksela, M. Gabbouj, Viewport-adaptive encoding and
streaming of 360-degree video for virtual reality applications, in: International Symposium on
Multimedia, IEEE, 2016, pp. 583–586.

[54] X. Corbillon, A. Devlic, G. Simon, J. Chakareski, Optimal set of 360-degree videos for viewport-
adaptive streaming, in: Proceedings of the 25th International conference on Multimedia, ACM,
2017, pp. 943–951.

[55] M. Graf, C. Timmerer, C. Mueller, Towards bandwidth efficient adaptive streaming of omnidirec-
tional video over HTTP: Design, implementation, and evaluation, in: Proceedings of the 8th ACM
on Multimedia Systems Conference, ACM.

[56] C. Ozcinar, J. Cabrera, A. Smolic, Visual attention-aware omnidirectional video streaming using
optimal tiles for virtual reality, IEEE Journal on Emerging and Selected Topics in Circuits and
Systems 9 (1) (2019) 217–230.

[57] S. Rossi, C. Ozcinar, A. Smolic, L. Toni, Do users behave similarly in VR? Investigation of the user
influence on the systemdesign, ACMTransactions onMultimediaComputing, Communications, and
Applications 16 (2) (2020) 1–26, [Online] https://github.com/V-Sense/VR_user_behaviour.

[58] S.Ahsan, A.Hourunranta, I. D.D. Curcio, E.Aksu, FriSBE: adaptive bit rate streaming of immersive

http://doi.acm.org/10.1145/2964284.2973796
http://doi.acm.org/10.1145/2964284.2973796
http://doi.acm.org/10.1145/2964284.2973796
https://engineering.fb.com/2015/10/15/video-engineering/under-the-hood-building-360-video/
https://engineering.fb.com/2015/10/15/video-engineering/under-the-hood-building-360-video/
https://engineering.fb.com/2015/10/15/video-engineering/under-the-hood-building-360-video/
https://github.com/V-Sense/VR_user_behaviour


1.6 Conclusions and Perspectives 31

tiled video, in: Proceedings of the 25th Workshop on Packet Video, ACM, 2020, pp. 28–34.
[59] J. Fu, X. Chen, Z. Zhang, S.Wu, Z. Chen, 360SRL: A Sequential Reinforcement Learning Approach

for ABR Tile-Based 360 Video Streaming, in: International Conference on Multimedia and Expo,
IEEE, 2019, pp. 290–295.

[60] S. Rossi, L. Toni, Navigation-aware adaptive streaming strategies for omnidirectional video, in: 19th
International Workshop on Multimedia Signal Processing, IEEE, 2017, pp. 1–6.

[61] F. Duanmu, E. Kurdoglu, Y. Liu, Y.Wang, View direction and bandwidth adaptive 360 degree video
streaming using a two-tier system, in: International Symposium on Circuits and Systems, IEEE,
2017, pp. 1–4.

[62] M.Nguyen, D.H.Nguyen, C. T. Pham, N. P.Ngoc, D.V.Nguyen, T. C. Thang, An adaptive streaming
method of 360 videos over HTTP/2 protocol, in: 4th NAFOSTED Conference on Information and
Computer Science, IEEE, 2017, pp. 302–307.

[63] D. V. Nguyen, T. T. Le, S. Lee, E.-S. Ryu, SHVC tile-based 360-degree video streaming for mobile
VR: PC offloading over mmWave, Sensors 18 (11) (2018) 3728.

[64] P. Maniotis, N. Thomos, Viewport-Aware Deep Reinforcement Learning Approach for 360◦ Video
Caching, IEEE Transactions on Multimedia (2021).

[65] J. Son, D. Jang, E.-S. Ryu, Implementing Motion-Constrained Tile and Viewport Extraction for
VR Streaming, in: Proceedings of the 28th SIGMMWorkshop on Network and Operating Systems
Support for Digital Audio and Video, ACM, 2018, pp. 61–66.

[66] N. M. Bidgoli, T. Maugey, A. Roumy, Fine granularity access in interactive compression of 360-
degree images based on rate-adaptive channel codes, IEEE Transactions on Multimedia 23 (2020)
2868–2882.

[67] X. Corbillon, F. De Simone, G. Simon, 360-degree video headmovement dataset, in: Proceedings of
the 8th onMultimedia Systems Conference, ACM, 2017, pp. 199–204, [Online] https://doi.org/
10.1145/3193701.

[68] W.-C. Lo, C.-L. Fan, J. Lee, C.-Y. Huang, K.-T. Chen, C.-H. Hsu, 360◦ video viewing dataset in
head-mounted virtual reality, in: Proceedings of the 8th on Multimedia Systems Conference, ACM,
2017, pp. 211–216, [Online] https://doi.org/10.1145/3192927.

[69] C. Wu, Z. Tan, Z. Wang, S. Yang, A dataset for exploring user behaviors in VR spherical video
streaming, in: Proceedings of the 8th onMultimedia Systems Conference, ACM, 2017, pp. 193–198,
[Online] https://doi.org/10.1145/3192423.

[70] M. Xu, C. Li, Y. Liu, X. Deng, J. Lu, A subjective visual quality assessment method of panoramic
videos, in: International Conference on Multimedia and Expo, IEEE, 2017, pp. 517–522, [Online]
https://github.com/Archer-Tatsu/head-tracking.

[71] C. Ozcinar, A. Smolic, Visual attention in omnidirectional video for virtual reality applications,
in: 2018 Tenth international conference on quality of multimedia experience, IEEE, 2018, pp. 1–6,
[Online] https://github.com/cozcinar/omniAttention.

[72] S. Fremerey, A. Singla, K. Meseberg, A. Raake, AVtrack360: An open dataset and software record-
ing people’s head rotations watching 360◦ videos on anHMD, in: Proceedings of the 9thMultimedia
Systems Conference, ACM, 2018, pp. 403–408, [Online] https://github.com/acmmmsys/2018-
AVTrack360.

[73] M. Xu, Y. Song, J. Wang, M. Qiao, L. Huo, Z. Wang, Predicting head movement in panoramic
video: A deep reinforcement learning approach, IEEE Transactions on pattern analysis and machine
intelligence 41 (11) (2018) 2693–2708, [Online] https://github.com/YuhangSong/DHP.

[74] E. J. David, J. Gutiérrez, A. Coutrot, M. P. Da Silva, P. L. Callet, A dataset of head and eye
movements for 360◦ videos, in: Proceedings of the 9th Multimedia Systems Conference, ACM,
2018, pp. 432–437, [Online] https://salient360.ls2n.fr/datasets/.

[75] Z. Zhang, Y. Xu, J. Yu, S. Gao, Saliency detection in 360◦ videos, in: Proceedings of the European

https://doi.org/10.1145/3193701
https://doi.org/10.1145/3193701
https://doi.org/10.1145/3192927
https://doi.org/10.1145/3192423
https://github.com/Archer-Tatsu/head-tracking
https://github.com/cozcinar/omniAttention
https://github.com/acmmmsys/2018-AVTrack360
https://github.com/acmmmsys/2018-AVTrack360
https://github.com/YuhangSong/DHP
https://salient360.ls2n.fr/datasets/


32 CHAPTER 1 Streaming and User Behaviour in Omnidirectional Videos

conference on computer vision, 2018, pp. 488–503, [Online] https://github.com/xuyanyu-shh/
Saliency-detection-in-360-video.

[76] Y. Xu, Y. Dong, J. Wu, Z. Sun, Z. Shi, J. Yu, S. Gao, Gaze prediction in dynamic 360 immersive
videos, in: Proceedings of the Conference on Computer Vision and Pattern Recognition, IEEE,
2018, pp. 5333–5342, [Online] https://github.com/xuyanyu-shh/VR-EyeTracking.

[77] A.T.Nasrabadi, A. Samiei, A.Mahzari, R. P.McMahan, R. Prakash,M.C. Farias,M.M.Carvalho, A
taxonomy and dataset for 360◦ videos, in: Proceedings of the 10th Multimedia Systems Conference,
ACM, 2019, pp. 273–278, [Online] https://github.com/acmmmsys/2019-360dataset.

[78] M. F. R. Rondón, L. Sassatelli, R. Aparicio-Pardo, F. Precioso, A unified evaluation framework for
head motion prediction methods in 360◦ videos, in: Proceedings of the 11th Multimedia Systems
Conference, ACM, 2020, pp. 279–284, [Online] https://gitlab.com/miguelfromeror/head-
motion-prediction/tree/master.

[79] A. Dharmasiri, C. Kattadige, V. Zhang, K. Thilakarathna, Viewport-aware dynamic 360◦ video
segment categorization, in: Proceedings of the 31st Workshop on Network and Operating Systems
Support for Digital Audio and Video, ACM, 2021, pp. 114–121, [Online] https://github.com/
theamaya/Viewport-Aware-Dynamic-360-Video-Segment-Categorization.

[80] Y. Bao, H. Wu, T. Zhang, A. A. Ramli, X. Liu, Shooting a moving target: Motion-prediction-based
transmission for 360-degree videos, in: International Conference on Big Data, IEEE, 2016.

[81] Y. Guan, C. Zheng, X. Zhang, Z. Guo, J. Jiang, Pano: Optimizing 360◦ video streaming with a
better understanding of quality perception, in: Proceedings of the ACM Special Interest Group on
Data Communication, 2019, pp. 394–407.

[82] J. Chakareski, R. Aksu, V. Swaminathan, M. Zink, Full UHD 360-Degree Video Dataset and
Modeling of Rate-Distortion Characteristics and Head Movement Navigation, in: Proceedings of
the 12th Multimedia Systems Conference, ACM, 2021, pp. 267–273.
URL https://alabama.app.box.com/v/8k-360-dataset

[83] F. Duanmu, Y. Mao, S. Liu, S. Srinivasan, Y. Wang, A subjective study of viewer navigation behav-
iors when watching 360-degree videos on computers, in: International Conference on Multimedia
and Expo, IEEE, 2018, pp. 1–6.

[84] M. V. d. Broeck, F. Kawsar, J. Schöning, It’s all around you: Exploring 360◦ video viewing
experiences on mobile devices, in: Proceedings of the 25th International conference onMultimedia,
ACM, 2017, pp. 762–768.

[85] M. Almquist, V. Almquist, V. Krishnamoorthi, N. Carlsson, D. Eager, The prefetch aggressiveness
tradeoff in 360◦ video streaming, in: Proceedings of the 9thMultimedia Systems Conference, ACM,
2018, pp. 258–269.

[86] K. Srivastava, R. C. Das, S. Chaudhury, Virtual reality applications in mental health: Challenges
and perspectives, Vol. 23, Wolters Kluwer–Medknow Publications, 2014.

[87] R. F. Martin, P. Leppink-Shands, M. Tlachac, M. DuBois, C. Conelea, S. Jacob, V. Morellas,
T. Morris, N. Papanikolopoulos, The Use of Immersive Environments for the Early Detection and
Treatment of Neuropsychiatric Disorders, Frontiers in Digital Health 2 (2021) 40.

[88] S. Petrangeli, G. Simon, V. Swaminathan, Trajectory-based viewport prediction for 360-degree
virtual reality videos, in: International Conference on Artificial Intelligence and Virtual Reality,
IEEE, 2018, pp. 157–160.

[89] S. Atev, G. Miller, N. P. Papanikolopoulos, Clustering of vehicle trajectories, IEEE transactions on
intelligent transportation systems 11 (3) (2010) 647–657.

[90] A. Y. Ng, M. I. Jordan, Y. Weiss, On spectral clustering: Analysis and an algorithm, in: Advances
in neural information processing systems, 2002, pp. 849–856.

[91] L. Xie, X. Zhang, Z. Guo, CLS:A cross-user learning based system for improvingQoE in 360-degree
video adaptive streaming, in: Proceedings of the 26th international conference onMultimedia, ACM,

https://github.com/xuyanyu-shh/Saliency-detection-in-360-video
https://github.com/xuyanyu-shh/Saliency-detection-in-360-video
https://github.com/xuyanyu-shh/VR-EyeTracking
https://github.com/acmmmsys/2019-360dataset
https://gitlab.com/miguelfromeror/head-motion-prediction/tree/master
https://gitlab.com/miguelfromeror/head-motion-prediction/tree/master
https://github.com/theamaya/Viewport-Aware-Dynamic-360-Video-Segment-Categorization
https://github.com/theamaya/Viewport-Aware-Dynamic-360-Video-Segment-Categorization
https://alabama.app.box.com/v/8k-360-dataset
https://alabama.app.box.com/v/8k-360-dataset
https://alabama.app.box.com/v/8k-360-dataset


1.6 Conclusions and Perspectives 33

2018, pp. 564–572.
[92] S. Rossi, F. De Simone, P. Frossard, L. Toni, Spherical clustering of users navigating 360◦ content, in:

International Conference on Acoustics, Speech and Signal Processing, IEEE, 2019, pp. 4020–4024.
[93] T. Xu, B. Han, F. Qian, Analyzing viewport prediction under different VR interactions, in: Proceed-

ings of the 15th International Conference on Emerging Networking Experiments And Technologies,
ACM, 2019, pp. 165–171.

[94] S. Rossi, L. Toni, Understanding user navigation in immersive experience: an information-theoretic
analysis, in: Proceedings of the 12th International Workshop on Immersive Mixed and Virtual
Environment Systems, ACM, 2020, pp. 19–24.

[95] F. Qian, L. Ji, B. Han, V. Gopalakrishnan, Optimizing 360◦ video delivery over cellular networks, in:
Proceedings of the 5th Workshop on All Things Cellular: Operations, Applications and Challenges,
ACM, 2016, pp. 1–6.

[96] S. Petrangeli, V. Swaminathan, M. Hosseini, F. De Turck, An HTTP/2-Based Adaptive Streaming
Framework for 360◦ Virtual Reality Videos, in: Proceedings of the 25th international conference
on Multimedia, ACM, 2017, pp. 306–314.

[97] D. V. Nguyen, H. T. Tran, A. T. Pham, T. C. Thang, An optimal tile-based approach for viewport-
adaptive 360-degree video streaming, IEEE Journal on Emerging and Selected Topics in Circuits
and Systems 9 (1) (2019) 29–42.

[98] A. T. Nasrabadi, A. Mahzari, J. D. Beshay, R. Prakash, Adaptive 360-degree video streaming using
scalable video coding, in: Proceedings of the 25th international conference on Multimedia, ACM,
2017, pp. 1689–1697.

[99] Y. Ban, L. Xie, Z. Xu, X. Zhang, Z. Guo, Y. Wang, Cub360: Exploiting cross-users behaviors for
viewport prediction in 360 video adaptive streaming, in: International Conference on Multimedia
and Expo, IEEE, 2018, pp. 1–6.

[100] A. T. Nasrabadi, A. Samiei, R. Prakash, Viewport prediction for 360◦ videos: a clustering approach,
in: Proceedings of the 30thWorkshop on Network and Operating Systems Support for Digital Audio
and Video, ACM, 2020, pp. 34–39.

[101] M. Hu, J. Chen, D. Wu, Y. Zhou, Y. Wang, H.-N. Dai, TVG-Streaming: Learning User Behaviors
for QoE-Optimized 360-Degree Video Streaming, IEEE Transactions on Circuits and Systems for
Video Technology (2020).

[102] L. Xie, Z. Xu, Y. Ban, X. Zhang, Z. Guo, 360ProbDASH: Improving QoE of 360 Video Streaming
Using Tile-based HTTP Adaptive Streaming, in: Proceedings of the 25th International conference
on Multimedia, ACM, 2017, pp. 315–323.

[103] Z. Xu, X. Zhang, K. Zhang, Z. Guo, Probabilistic viewport adaptive streaming for 360-degree
videos, in: International Symposium on Circuits and Systems, IEEE, 2018, pp. 1–5.

[104] F.-Y. Chao, C. Ozcinar, A. Smolic, Transformer-based Long-Term Viewport Prediction in
360◦ Video: Scanpath is All You Need, in: 23th International Workshop on Multimedia Signal
Processing, IEEE, 2021.

[105] T.Wolf, J. Chaumond, L. Debut, V. Sanh, C. Delangue, A. Moi, P. Cistac, M. Funtowicz, J. Davison,
S. Shleifer, et al., Transformers: State-of-the-art natural language processing, in: Proceedings of
the Conference on Empirical Methods in Natural Language Processing: System Demonstrations,
ACL, 2020, pp. 38–45.

[106] A. D. Aladagli, E. Ekmekcioglu, D. Jarnikov, A. Kondoz, Predicting head trajectories in 360◦ virtual
reality videos, in: International Conference on 3D Immersion, IEEE, 2017, pp. 1–6.

[107] A. Nguyen, Z. Yan, K. Nahrstedt, Your Attention is Unique: Detecting 360-Degree Video Saliency
in Head-Mounted Display for Head Movement Prediction, in: Proceedings of the 26th international
conference on Multimedia, ACM, 2018, pp. 1190–1198.

[108] M. F. R. Rondon, L. Sassatelli, R. Aparicio-Pardo, F. Precioso, Track: A new method from



34 CHAPTER 1 Streaming and User Behaviour in Omnidirectional Videos

a re-examination of deep architectures for head motion prediction in 360-degree videos, IEEE
Transactions on Pattern Analysis and Machine Intelligence (2021).

[109] X. Zhang, G. Cheung, Y. Zhao, P. Le Callet, C. Lin, J. Z. G. Tan, Graph learning based head
movement prediction for interactive 360 video streaming, IEEE Transactions on Image Processing
30 (2021) 4622–4636.

[110] C.-L. Fan, J. Lee, W.-C. Lo, C.-Y. Huang, K.-T. Chen, C.-H. Hsu, Fixation prediction for 360° video
streaming in head-mounted virtual reality, in: Proceedings of the 27th Workshop on Network and
Operating Systems Support for Digital Audio and Video, Association for Computing Machinery,
New York, NY, USA, 2017, p. 67–72.

[111] Y. Xu, Y. Dong, J. Wu, Z. Sun, Z. Shi, J. Yu, S. Gao, Gaze prediction in dynamic 360° immersive
videos, in: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018, pp.
5333–5342.

[112] X. Feng, V. Swaminathan, S. Wei, Viewport prediction for live 360-degree mobile video streaming
using user-content hybrid motion tracking, Vol. 3, ACM, 2019, pp. 1–22.

[113] L. Chopra, S. Chakraborty, A. Mondal, S. Chakraborty, PARIMA: Viewport Adaptive 360-Degree
Video Streaming, in: Proceedings of the Web Conference, ACM, 2021, pp. 2379–2391.

[114] J. Park, M. Wu, K.-Y. Lee, B. Chen, K. Nahrstedt, M. Zink, R. Sitaraman, SEAWARE: Semantic
Aware View Prediction System for 360-degree Video Streaming, in: International Symposium on
Multimedia, IEEE, 2020, pp. 57–64.

[115] S. Park, M. Hoai, A. Bhattacharya, S. R. Das, Adaptive streaming of 360-degree videos with
reinforcement learning, in: Proceedings of the IEEE/CVF Winter Conference on Applications of
Computer Vision, 2021, pp. 1839–1848.

[116] A. Farhadi, J. Redmon, Yolov3: An incremental improvement, in: Computer Vision and Pattern
Recognition, Springer Berlin/Heidelberg, Germany, 2018, pp. 1804–2767.

[117] F.-Y. Chao, C. Ozcinar, L. Zhang, W. Hamidouche, O. Deforges, A. Smolic, Towards Audio-Visual
Saliency Prediction for Omnidirectional Video with Spatial Audio, in: International Conference on
Visual Communications and Image Processing, IEEE, 2020, pp. 355–358.

[118] T. L. Pedro Morgado, Nuno Vasconcelos, O. Wang, Self-supervised generation of spatial audio for
360◦ video, in: Proceedings of the 32nd International Conference on Neural Information Processing
Systems, ACM, 2018, p. 360–370.

[119] T. Xue, A. E. Ali, T. Zhang, G. Ding, P. Cesar, RCEA-360VR: Real-time, Continuous Emotion
Annotation in 360◦ VR Videos for Collecting Precise Viewport-dependent Ground Truth Labels,
in: Proceedings of the International Conference on Human Factors in Computing Systems 2021,
ACM, 2021, pp. 1–15.

[120] L. J. Zheng, J. Mountstephens, J. Teo, Four-class emotion classification in virtual reality using
pupillometry, Journal of Big Data 7 (1) (2020) 1–9.

[121] X. Wei, C. Yang, FoV Privacy-aware VR Streaming (2021). arXiv:2110.10417.
[122] M. Quach, G. Valenzise, D. Tian, F. Dufaux, Geometry-based pcc + video-based pcc, in: Immersive

Video Technologies, Elsevier, 2022.

http://arxiv.org/abs/2110.10417

	1 Streaming and User Behaviour in Omnidirectional Videos 
	1.1 Introduction
	1.2 Streaming Pipeline: Evolution Towards ODV
	1.2.1 Adaptive ODV Streaming Pipeline

	1.3 System-centric streaming
	1.3.1 Viewport-independent streaming
	1.3.2 Viewport-dependent streaming

	1.4 The role of the user in ODV
	1.4.1 ODV navigation datasets 
	1.4.2 Behavioural Analysis within ODVs

	1.5 User-centric ODV streaming
	1.5.1 Single-User Designs
	1.5.2 Cross-User Designs

	1.6 Conclusions and Perspectives


