3,279 research outputs found

    USING TRAJECTORIES FROM A BIVARIATEGROWTH CURVE OF COVARIATES IN A COXMODEL ANALYSIS

    Get PDF
    In many maintenance treatment trials, patients are first enrolled into an open treatmentbefore they are randomized into treatment groups. During this period, patients are followedover time with their responses measured longitudinally. This design is very common intoday's public health studies of the prevention of many diseases. Using mixed model theory, onecan characterize these data using a wide array of across subject models. A state-spacerepresentation of the mixed model and use of the Kalman filter allow more fexibility inchoosing the within error correlation structure even in the presence of missing and unequallyspaced observations. Furthermore, using the state-space approach, one can avoid invertinglarge matrices resulting in eficient computations. Estimated trajectories from these models can be used as predictors in a survival analysis in judging the efacacy of the maintenance treatments. The statistical problem lies in accounting for the estimation error in these predictors. We considered a bivariate growth curve where the longitudinal responses were unequally spaced and assumed that the within subject errors followed a continuous firstorder autoregressive (CAR (1)) structure. A simulation study was conducted to validatethe model. We developed a method where estimated random effects for each subject froma bivariate growth curve were used as predictors in the Cox proportional hazards model,using the full likelihood based on the conditional expectation of covariates to adjust for the estimation errors in the predictor variables. Simulation studies indicated that error corrected estimators for model parameters are mostly less biased when compared with thenave regression without accounting for estimation errors. These results hold true in Coxmodels with one or two predictors. An illustrative example is provided with data from a maintenance treatment trial for major depression in an elderly population. A Visual Fortran 90 and a SAS IML program are developed

    An Overview of Electricity Demand Forecasting Techniques

    Get PDF
    Load forecasts are extremely important for energy suppliers and other participants in electric energy generation, transmission, distribution and markets. Accurate models for electric power load forecasting are essential to the operation and planning of a utility company. Load forecasts are extremely important for energy suppliers and other participants in electric energy generation, transmission, distribution and markets. This paper presents a review of electricity demand forecasting techniques. The various types of methodologies and models are included in the literature. Load forecasting can be broadly divided into three categories: short-term forecasts which are usually from one hour to one week, medium forecasts which are usually from a week to a year, and long-term forecasts which are longer than a year.  Based on the various types of studies presented in these papers, the load forecasting techniques may be presented in three major groups: Traditional Forecasting technique, Modified Traditional Technique and Soft Computing Technique. Keywords: Electricity Demand, Forecasting Techniques, Soft Computing, Regression method, SVM

    Recursive search-based identification algorithms for the exponential autoregressive time series model with coloured noise

    Get PDF
    This study focuses on the recursive parameter estimation problems for the non-linear exponential autoregressive model with moving average noise (the ExpARMA model for short). By means of the gradient search, an extended stochastic gradient (ESG) algorithm is derived. Considering the difficulty of determining the step-size in the ESG algorithm, a numerical approach is proposed to obtain the optimal step-size. In order to improve the parameter estimation accuracy, the authors employ the multi-innovation identification theory to develop a multi-innovation ESG (MI-ESG) algorithm for the ExpARMA model. Introducing a forgetting factor into the MI-ESG algorithm, the parameter estimation accuracy can be further improved. With an appropriate innovation length and forgetting factor, the variant of the MI-ESG algorithm is effective to identify all the unknown parameters of the ExpARMA model. A simulation example is provided to test the proposed algorithms

    A Survey of Prediction and Classification Techniques in Multicore Processor Systems

    Get PDF
    In multicore processor systems, being able to accurately predict the future provides new optimization opportunities, which otherwise could not be exploited. For example, an oracle able to predict a certain application\u27s behavior running on a smart phone could direct the power manager to switch to appropriate dynamic voltage and frequency scaling modes that would guarantee minimum levels of desired performance while saving energy consumption and thereby prolonging battery life. Using predictions enables systems to become proactive rather than continue to operate in a reactive manner. This prediction-based proactive approach has become increasingly popular in the design and optimization of integrated circuits and of multicore processor systems. Prediction transforms from simple forecasting to sophisticated machine learning based prediction and classification that learns from existing data, employs data mining, and predicts future behavior. This can be exploited by novel optimization techniques that can span across all layers of the computing stack. In this survey paper, we present a discussion of the most popular techniques on prediction and classification in the general context of computing systems with emphasis on multicore processors. The paper is far from comprehensive, but, it will help the reader interested in employing prediction in optimization of multicore processor systems

    Bayesian Lattice Filters for Time-Varying Autoregression and Time-Frequency Analysis

    Full text link
    Modeling nonstationary processes is of paramount importance to many scientific disciplines including environmental science, ecology, and finance, among others. Consequently, flexible methodology that provides accurate estimation across a wide range of processes is a subject of ongoing interest. We propose a novel approach to model-based time-frequency estimation using time-varying autoregressive models. In this context, we take a fully Bayesian approach and allow both the autoregressive coefficients and innovation variance to vary over time. Importantly, our estimation method uses the lattice filter and is cast within the partial autocorrelation domain. The marginal posterior distributions are of standard form and, as a convenient by-product of our estimation method, our approach avoids undesirable matrix inversions. As such, estimation is extremely computationally efficient and stable. To illustrate the effectiveness of our approach, we conduct a comprehensive simulation study that compares our method with other competing methods and find that, in most cases, our approach performs superior in terms of average squared error between the estimated and true time-varying spectral density. Lastly, we demonstrate our methodology through three modeling applications; namely, insect communication signals, environmental data (wind components), and macroeconomic data (US gross domestic product (GDP) and consumption).Comment: 49 pages, 16 figure
    • …
    corecore