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THREE

Models of

Adaptive Forecasting
JACOB MINCER

I. INTRODUCTION

Economic behavior is frequently a response to an anticipated future
rather than to the past or present. Consequently, anticipated rather
than actual values must be assigned to some of the variables in empiri-
cal economic models. Unfortunately, data on anticipatory magnitudes
are scarce. Even when such data are obtainable, as in some surveys,
they pose questions of reliability going beyond matters of sampling or
measurement error. Reliable anticipatory values are those on which
economic agents are, indeed, acting. Ex ante reports of such values
are necessarily imperfect.

In the absence of reliable data or, more commonly, of any antic ipa-
tions data, the economic analyst is forced to ascribe certain methods
of formation of expectations to the subjects of his analysis. The issue
cannot be ignored: The use of current rather than anticipated values
is equivalent to a hypothesis that expectations are largely based on
current magnitudes and do not differ from them in any systematic way.

A more sophisticated approach is to employ realized future values
as proxies for anticipations of them. Such proxies are most appropriate
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when it is believed that economic agents forecast successfully, so that
differences between anticipations and realizations are small.1

The usefulness of the implicit approach is obviously limited. Hence,
the search for explicit models of expectations is a growing preoccupa-
tion of econometricians. In principle, the best model is one that most
closely approximates the effective anticipatory values in economic
behavior. However, to be useful the model must be relatively simple
conceptually and statistically tractable.

In practice, most of the expectational models used in econometric
analyses are extrapolations of current and past values of the time
series, the future value of which is anticipated. In most cases the extra-
polation function is linear: The forecast value of the variable Y is ob-
tained by a weighted sum of past values of the series. Denoting forecast
value by an asterisk, the date at which the forecast is formed (date of
forecast base) by the right-hand subscript, and the date to which the
forecast applies (date of forecast target) by the left-hand subscript, the
extrapolated value for the next future period is: 2

(1) =

The purpose of this paper is to inquire into the applicability and
properties of several classes of forecasting models within the general
class of linear extrapolations (1). The analysis suggests considerations

I This approach, known as the "implicit expectations" model was suggested by Mills
[I]. If implicit forecast errors are not very small, the approach leads to unbiased estima-
tion of parameters only when forecast errors are uncorrelated with realizations. It is
worth noting, however, that the zero correlation assumption suggests inefficient fore-
casting:

If P = forecast, A = realization, and u = forecast error, zero correlation between ii
and A implies a nonzero correlation between a and P. Assuming P = A + a is unbiased.
a regression of A on P yields A = a ÷ /3P + v, with /3 < 1. A corrected forecast P' = a + /3P
is clearly more efficient than P, as a2(v) < cr2(u). Proof: The coefficient of determination

between A and P equals I — —i-—— = I — —i-—, and a2(A) < o-2(P).
cr(P) cr(A)

2 Functions of form (I) arise also in nonforecasting contexts. Thus, an observed value
Z, may constitute a response to the current and past values of the variable While
such distributed lag functions are clearly distinguishable in concept from extrapolation
functions dealt with here, econometric practice has seldom differentiated among them.
For a comprehensive survey of conceptual and practical issues in the application of
both functions in econometric analyses, see Griliches [2].
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which, to some extent, may guide the specification of such models.
These considerations may help in determining when and where
simplicity should be traded for greater realism. On the positive side,
the analysis permits discrimination among several models of expecta-
tional behavior, when actual, albeit imperfect, forecasting data are
available. Empirical illustrations are shown in the conclusion of the
paper.

II. EXPONENTIAL COEFFICIENTS AND LINEAR
EXTRAPOLATION

The specification of expectational models (1) is a specification of the
coefficients The usual though not necessary restrictions are for the
13j to be nonnegative, less than unitary, and—particularly in the fore-
casting context—declining into the past. If V is a trendless series, and
(1) contains no intercept, the coefficients must sum to unity to
produce anunbiased forecast

A widely used extrapolation function of form (1), which obeys the
restrictions listed above, is the "geometrically declining weights," or
exponential forecasting function:

(la) = (1 —

Several reasons account for the popularity of forecasting formula
(1 a):

1. Only one coefficient f3 need be supplied or estimated.
2. The formula is theoretically appealing because it can be derived

from a simple and rather plausible model of expectations adapting to
unforeseen developments:

(2) — = —

According to (2) expectations are formed by error learning; they are
revised in consequence of (and in proportion to) currently experienced
surprises. By successive substitution for the lagged term in (2), and

'If the series is trending with a rate of growth g, the coefficients must sum to (1 + g).
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by a reduction procedure on (1), due to Koyck [3], the two formula-
tions can be shown to be equivalent.

3. More recently, strong support for exponential forecasting (la)
has been adduced from the statistical theory of optimal prediction.4 It
has been shown that such forecasts are optimal linear predictions, in
the sense of minimizing the mean square error of forecast, for certain
types of nonstationary time series.5

The knowledge that exponential extrapolation (la) expresses a type
of adaptive, error-learning behavior, and that it is an optimal fore-

• casting scheme under certain conditions, lends a degree of confidence
to this specification, which is often sound. It is not, of course, a claim
on generality. As yet, the limitations on the appropriateness of ex-
ponential forecasting have not been fully explored.

One way to proceed is to consider the appropriateness of alternative
formulations. A start can be made by inquiring into the applicability
and interpretation of forecasting behavior (I) when the coefficients
do not decline exponentially. Can it still serve as an optimal predictor?
Under what conditions?

The simplest class of time series for which the answer is readily
available has been discussed by Muth [4].

Let the time series which is being forecast, originate as a linear
function of independent random shocks:

(3) Y, = Et + W,Et_j,

with zero mean and common variance for all €. Exponential forecasting
(la) is optimal for such time series, if and only if all w, are the same
and equal /3. And, whether the it'1 are equal or not, (3) is a sufficient
condition 6 for the optimal forecasting function to be linear in the
values of the series Y1, as is (1). Here:

(4)

In particular, see the works of Muth [4}, Nerlove and Wage [5}, and Whittle [6].
A series is stationary if its auto-covariance matrix is independent of calendar time.

"The linear extrapolation (1) is optimal for a wider class of processes than (3), as was
indicated in note 4 for the exponential case.
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The condition of optimality is that the Of (4) and the w1 of (3) are
related by

(5) = with w0 = 1.

III. THE GENERAL LINEAR ADAPTATION HYPOTHESIS

As assumption (3) illustrates, linear extrapolation (1) can be an optimal
predictor without having exponentially declining weights. But does it,
in that case, cease to represent adaptive, error-learning behavior? The
answer is no. Indeed, all linear forecasts (1) which are optimal under
(3) imply adaptive behavior as optimal forecasting for any number of
spans. However, the revision function (2) describes adaptive behavior
only in the exponential case. In the general case it is replaced by a
set of revision functions, closely resembling (2), but not identical with
it.

Consider optimal predictions for (3) for more than one period ahead.
Start with forecasts made at (t — 2) for target date (t): The smallest
error such a forecast can have is (€, + w1€1_1), as is apparent from as-
sumption (3), because and are not known yet at time (t — 2).

Generally, the minimal forecast error for a k-span forecast is:

(6) Y1 — = €, +

Now, we can show that a forecast at (t — k) for k spans ahead will
achieve this minimal error by substitution for the as yet unknown
values in the extrapolation function (4) by their optimal forecast
values:

Substitute (3) into (4) to obtain:

(4a) = M€,_4, where M, = (w0 = I).

Since €, is not known at (t — I) when the forecast is made, the optimal forecast =

— = Hence M, w.
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(7)

= + + + + /3kYt..k

+ f3k+lYtki +

A succession of substitutions, such as

v* —v — . V* —v _._( ..L..
t—k+1 t—k t—k+1 €t_k+1, t—k+2 C—k — t—k+2 kEt_k+2

and so on, leads to the conclusion that optimality condition (6) is ful-
filled.8

Compare now optimal forecasts made at different dates in the past
for the same future target:

(7a) = + +

and

(7b) = + 132Y1—j +

Subtracting (7b) from (7a) we obtain:

(8' V* — V* — (V — V*
'. / t+1 C t+1 (—1 — 1k t t (—1

Equation (8), which we shall call a one-span revision function, can be
viewed as a description of adaptive expectational behavior. It is, in-
deed, very similar to adaptive equation (2). But note the generality
of (8): It is implied by any optimal linear extrapolation (4) under
model (3), while (2) is implied only by the exponential extrapolation.
Note also the difference: The forecast target in (2) shifts forward just
as the foreèast base does. In (8) the forecast target is fixed, and the
forecast is revised only because the forecast base has moved forward.

In the exponential case, both (2) and (8) must hold, with = /3. It
follows tha! = More generally, exponential forecasting
implies that the same expectations are held for any span in the future.9

Since, in the general case, adaptive hypotheses (2) and (8) are dis-
tinct, they can be applied to distinguish empirically between exponen-
tial and nonexponential expectational behavior.'0

8 In the two-span case: = + /32Y,_2 + 33Y,_3 + . Since =
— and = Y, — €,, it follows that = — = — (e, + /31e1_,).

Condition (6) is fulfilled, as /3, = w by (5). Generalization to k spans is straightforward.
'This result is well known. For example, see Muth [43.
0 See Section V. below.
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Revision functions for k-span forecasts can be derived by the same
procedure as that which produced (8). Subtracting

V* — I V* \ ..L I V* \ _L . . . IV* . . *t+k' t—1 — 1't+k—1 t—1J (—1) ' ' kk' t—1

from
V*—1( y*\+QI t I f-"k' t

yields

(9) c+&.Yt* — = thG+k—1YI" — + —

+• + 13k(Yt —

Since (9) is recursive, repeated substitutions produce:

— V* — (V — V*
t+k I t+k I—i —

7k is a function of the weights
. . . I3k

in the linear autoregressive forecasting function (4). In particular,
we have seen in (8) that for k = 1, = In general, the expression
for the kth span revision coefficient is:"

(11) 7k
= k

13i'k—i, ('Yo = 1).

Now compare (11) with (5). Since y, = $, = w,, it follows that:

(12) wj, for all i = k.

We have reached the following conclusions:
1. The general autoregressive extrapolation (4) is consistent with

an error-learning model of type (10) which uses different revision co-
efficients for different spans in the future.

2. Given observed revision coefficients we can reconstruct the
autoregressive extrapolation which generates the adaptive behavior
by means of identities (5).

3. In the exponential case there is only one adaptation function,
since all revision coefficients are the same. Forecasts and revisions
for all future spans are the same. Adaptation function (2) is equiva-
lent to (8).

4. If the time series can be described by the linear process (3) and
the extrapolation is optimal for it, the revision coefficients y, in equa-

"This result is obtained by straightforward, though laborious, substitutions in (9).
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tiOns (10) must be equal to the coefficients in (3). Thus, there are
as many distinct adaptive equations (10) as there are distinct param-
eters w, in the linear process (3).

If extrapolations are available for more than one span, it is possible
to test whether the extrapolations are optimal by comparing the mean
square errors of the forecasts for each of the available spans with the
revision functions corresponding to these spans.

The mean square error of an optimal forecast of Y1 in (3) for k pe-
nods ahead is:

(13) = + WjEt_l + +

= (1 + + + . + .

where

=

from which

(14)

if M, and are observable, a test of the right-hand equality in (14)
is a test of optimality of the observed forecasts.12

IV. NONEXPONENTIAL FORECASTING AND
STABILITY OF EXPECTATIONS

The pattern of coefficients y, in the adaptive equations (10) describes
the pattern of revisions of future forecasts in response to current sur-
prisés. Implicit in these patterns are notions about stability of ex-
pectations. Thus, y, coefficients declining with span imply greater sta-
bility of long-term than of short-term expectations. That is, longer-
term expectations remain relatiyely unaffected by unforeseen current
developments. Conversely, coefficients increasing with span imply
a greater sensitivity to such developments on the part of long-run

12 Provided the forecasts are extrapolations, and the structure of Y is given by (3).
Actual forecasts are seldom mere extrapolations (see the discussion ri Section IX
of this paper).
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rather than short-run expectations. It would seem, perhaps, that in
the trendless case, or in the case where expectations concerning trends
do not change, the pattern of relatively greater stability of long-term
expectations is more plausible.'3 However, the issue need not be de-
cided a priori. Observed revision equations (10) can, in principle,
provide insights into actual behavior.

The variation of with span i need not be monotonic. The implica-
tions about comparative stability of short- versus long-term expecta-
tions does, however, suggest a special interest in the monotonic cases
over the relevant time span. Let us call convex forecasting behavior
that which manifests itself in declining with span revision coefficients

and concave (or "explosive") that which shows the opposite pat-
tern of coefficients in the revision equations (10).

Suppose we require an expectational model in which long-term ex-
pectations are comparatively more stable. This requirement rules out
concave and exponential forecasting, that is, all linear extrapolation
functions (4) which yield revision equations with fixed or increasing
revision coefficients. What pattern must be imposed on the coefficients

of the extrapolation (4) to yield convex forecasts? Since the
coefficients must decline geometrically in order to yield fixed revision
coefficients must they, in some sense, decline more than exponen-
tially, in order to generate declining The answer is yes, if we
adhere to the restrictions that they must be positive, less than
unitary, and strictly declining.

Convexity can be produced without these restrictions. That is to
say, declining revision coefficients can be achieved with linear ex-
trapolation functions (4) in which some of the 13, can be negative, ex-
ceed unity, and oscillate with j. Since the restrictions are often en-
countered in empirical work, and the pattern of is easier to identify
under such restrictions, we shall employ them for illustrative purposes.

It will be useful first to compare the coefficients of single-span
forecasting functions (4) with the corresponding coefficients of k-span
forecasting functions (7), when the latter is reduced (by successive
substitutions) to a function of past observed values only. Call the co-
efficients (in particular = and consider k = 2. Then, by (7):

The opposite pattern is certainly plausible when current developments lead to
changed beliefs about future trends.
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= + + !33Y11 +

which reduces to:

(15) = + + (/31/32 + + (/31/33 + +•
Here, then:

(15a) /3(2) = + /32, and /3(2) = /31/3) +

Similarly, for k = 3:

= + = 2/31/32 + /33,

and

Q(3) — .L fl _L. 0— P2Pi

And, more generally, for k = i:

(16) /3r = + + + +

Inspection reveals that, forj = 1, expression (16) is exactly the same
as (5) and (11).

Hence:

(17) w4.

In words: The coefficient attached to the forecast base value in the
ith span forecasting function is equal to the ith span revision co-
efficient. Note that this result follows without any restriction on /3).
Note also: 14

(18) = 1 implies = 1, for all k = i.

Expressing the i-span forecast by:

(19)

we conclude that, since = = and = 1, declining revision

coefficients imply that the further we forecast into the future the
lesser the absolute and the relative weight attached to the most re-

14 For i = 2: + = f3, + (I I. The proof for any ifollows

by mathematical induction.
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cent observations and the greater the weights attached to the more
distant observations.

The opposite is true when (and w1) increase with i. It is easily
seen that in the exponential case the weights are the same for all
spans.

This is another way of explaining why, in this case, forecast values
for all future spans are identical.

To repeat: When the (and wj) decline, the coefficients for
the (1 + 1)-span forecasting function are at first smaller but eventu-
ally larger than the corresponding coefficients for the i-span fore-
casting function. If we assume strictly declining withj this property
formally means that:

p(i+1) p(i+1)
(20) < for allj.

13i+1

Using (1 5a) to substitute in the numerator we get, for i = .1:

+ + 13j+2

i j+1

The meaning of (21) is that the forecasting functions, have co-
efficients /3, whose rate of decline diminishes as j increases. When the
inequality sign in (21) is reversed, the increase; when (21) is an
equality, the y, coefficients are constant.

The latter case is, of course, exponential: The rate of decline of
with j is fixed. The extrapolation function is convex when the rate of
decline of diminishes with j, and concave in the opposite case.

Note that inequality (21) is a sufficient condition of convexity. It is
not required by the latter, except under the restriction of strictly de-
clining f3, in the extrapolation function.15

Finally, inequality (21) suggests another way of describing the im-
plications for stability of expectations in each of the three classes:

'5The terms convexity and concavity are derived from the time shape of log as
illustrated in Figure 3-1. But they apply to all forecasts which generate declining (or
increasing) revision coefficients.
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When the forecast is formed at relatively high values of the time
series convex forecasting implies that < The op-
posite is true when the forecast base value is relatively low. More
generally, convex forecasting implies that forecast values for succes-
sive spans trace out a monotonic path (upward or downward) from the
base toward positions of "normalcy." No such "return to normalcy"
is implied by exponential or concave forecasts. Movements away from
normalcy are implied in the latter, and a horizontal path in the former.
This relation between the patterns of and of multispan predictions
is shown in Figure 3-1.

The relation shown in this figure is illustrated for extrapolation
functions with strictly declining coefficients But it is more general:
Return to normalcy is a tendency in all convex forecasts. And the move-
ment away from normalcy is a phenomenci in all concave forecasting.

Return to normalcy is best defined, in terms of our discussion, as a
tendency to observe a negative correlation between current levels of
Y1 and the direction of the predicted future flow, e.g., —1+1Y7):

(22) — = — + Vt = C + +

where is a residual and is a "normal" level of Y, which changes
slowly. It is here impounded in the constant c.

Since = (22) becomes

V* — — \V ..L
" / t t t

Recall that = by (17). Hence

(24) — t+1Y" = — +

where

(> —

Clearly, b = (Yk — is negative in convex forecasts, positive in
concave forecasts, and zero in exponential forecasts.'6

6The sign of the correlation in (24) depends also on the sign, size, and correlation
of the remainder term v, with the independent variable Y

the remainder term will have little effect. If the autocorrelation is substantial and
positive, as it is more commonly, the relation can be expected to hold more dependably
for low than for high values of k.



MODELS OF ADAPTIVE FORECASTING 95

FIGURE 3-1. Exponential, Convex, and Concave Expectations Hypothetical
Weight Patterns and Forecasts

Patterns of Weights Multiperiod Forecasts

Billion dollars

1-4-1 1+2 1+3 1+4 1+5 1+6
Forecast target periods

Note: in the left panel, the solid line shows the weights in forecasting one period
ahead; the crosses show f3', the weights in forecasting two spans ahead.

Based on CV

Based on XP

I I

Based on CC

Extrapolation base periods
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The return to normalcy as an aspect of stability of expectations
should be distinguished from the usual characterization of expecta-
tional stability by a less than unitary "elasticity coefficient of ex-
pectations" [13 in adaptation function (2)]. Actually, so long as all

in (4) are less than 1 (a generalization of less than unitary elastic-
ity), the forecast value for any span will be intermediate between high
or low values of and normal levels. In this sense, all moving average
extrapolations imply a return to normalcy. Convexity, however, adds a
dynamic aspect to these stability characteristics: The path of expected
movement persists in the direction of normal levels.'7

A phenomenon closely related to the return to normalcy is known in
the literature as regressivity in forecasting. This has been defined as
a negative correlation between predicted change and past change in
the time series.'8 If regressivity is basically a notion that future val-
ues of a series are expected to move in the direction of its mean, then.
a negative correlation in (22) is a better statement of this tendency.'9
If so, we may conclude that regressivity is an implication of convex
forecasting.

- V. STATIONARITY, OPTIMALITY,
AND AGGREGATION

The time series arising from the linear process (3) is stationary,

if o'(Y) = w,' is finite. In that case, the w must converge to

zero. Hence, the revision coefficients derived from an optimal ex-

"need to introduce a return to normalcy feature into a basically exponential ex-
pectational model led Allais [7] to the addition of a separate term to the exponential
extrapolation. Such a "splicing" is unnecessary in convex extrapolations.

For references, see Bossons and Modigliani [8]. Bossons and Modigliani define
regressivity specifically as a negative correlation between — Y,_,) and (Y,_, —

Equation (22) avoids the overlapping term Y,_, in the Bossons-Modigliani defini-
tion. This can produce the appearance of regressivity even when forecasting is

random. Equation (22) also generalizes predicted change to more than one span, and
substitutes "deviation from normal" for "past change."

In proposing optimal predictions of future interest rates, Harberger [9] does, indeed,
formulate regressivity by (22). His optimal forecasts are clearly convex: Compare his
figure 1 [9, p. 137] with our Figure 3-1.
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trapolation must eventually decline, even if they rise or fluctuate at
first. Thus, optimal forecasts of stationary time series are, at least
eventually, convex. However, convex forecasts may be optimal for
structure (3) even when the latter is not stationary. This happens when
the w7 coefficients decline, but do not converge.

It can be shown that convex forecasts are optimal for certain sta-
tionary time series whose stochastic process is somewhat more com-
plex than (3):

Consider the following time series:

(25) = +

= ± + Et,

= 6hUt-h +

and are neither autocorrelated nor intercorrelated; and are
stationary.

For this latent structure of time series, a class of forecasts which
attains a minimal mean square error is a weighted sum of several ex-
ponentially weighted averages of past values of 20

(26) = —
j=0

In terms of the general linear autoregression (4), the coefficients at-
tached to past values are:

(27)

The interesting thing about function (26) is that, provided the X, are
distinct, positive, and less than unity, it is necessarily convex.

Recall the condition of convexity, when 0 < < 1:

(21) < 13i—i . j3.

Applied to (27), the following inequality must hold as a condition of
convexity:

20 See Bailey [10] for derivation.
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(28) C,X(1 — A1)i]
<

C1X1(l — — x)i+1]

Define a, [C1X(l — X.y_1]h12,

b, = [C1X1(l —

By the Schwartz inequality:

a1bi)

Since, in our case, b1 = (1 — it is easily seen that the equality
sign holds only when (1 — A1) is the same for all I (or when n 1).

Otherwise the convexity of the forecasting function (26) must hold.21
Function (26) may arise as an aggregation phenomenon rather than

as an optimal extrapolation for an assumed type of time series. If in-
dividuals (i = . . . n) forecast exponentially, the aggregated (mar-
ket?) forecast will appear to be convex, in terms of the f3, coefficients,
if not all A1 are identical; 22 similarly if a forecast of an aggregate, say
GNP, was obtained by aggregating sectoral forecasts, each of which
was exponential with different parameter

Note, however, that even if the aggregated function (26) appears to
have convex coefficients /3,,, it does not imply declining revision co-
efficients 'y1: If each individual, or sector forecast is exponential, in-
dividual multispan forecasts are identical for each span. Therefore, the
aggregated (weighted averages) multispan forecasts also remain fixed
regardless of span, and the (aggregated) revision coefficients remain
fixed. Thus, when reported on aggregates, the revision equations (10)
provide better insight into the true nature of forecasting behavior
than the extrapolation function itself.23

21 Intuitively, the conclusion that a linear combination of exponentials is necessarily
convex is perhaps best visualized as follows: Since exponentials are linear in logs, only
geometric averages of exponentials are exponential. Arithmetic averages exceed geo-
metric averages, hence (21) is nonlinear in logs. It is convex, because the arithmetic
average is biased toward the higher and more steeply declining log X,( I — for small
values of j, and again toward the higher and flatter log X(I — for larger values of j.

See Bierwag and Grove [II].
22 If individual forecasting is exponential, the revision coefficient is a weighted average

of the A,. The degree of convexity in the aggregated extrapolation function clearly de-
pends on the variance of A across individuals. Taken together, the extrapolation and
revision functions provide information on the distribution of A, among individuals.
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VI. FORECASTING STOCK OR FLOW VARIABLES

The discussion in the preceding sections suggests that, despite the wide-
spread use and asserted success of the exponential forecasting formula,
convexity may often be a better description of extrapolative expecta-
tions.

Successful exponential forecasting need not be inconsistent with
this conclusion. First, the degree of convexity may not be sufficiently
strong to affect the forecasting errors very much. More important,
the relevant variables which need to be forecast for purposes of man-
agement decisions are often discounted flows of predicted future
values rather than single-span predictions. The redeeming feature of
the exponential forecast is that even when it is unsatisfactory as a
forecast of a single future value, its error as a forecast of a discounted
multispan flow is likely to be much smaller:

Denote the single span prediction of the flow at i by and the
prediction of the stock (converted into the same dimension as a flow
in perpetuity) by Then, exponential forecasting means that
Pt* = This is because = for all i.

(29) = r ± r + (1 ± r)2 +...]
x

(1

When nonexponential forecasting is appropriate but exponential is
used, the exponential forecasts of flows will be too high for near
spans and too low for higher spans, or conversely. Since is a
weighted average of 1+1P,*, the error of using it as a forecast of
will be smaller than the average error of 1÷1P1" as a forecast of

In the case of the consumption function, for example, an incorrect
exponential formulation of "permanent" income may yield errors in
predicting consumption which are only slightly larger than the errors
resulting from a correct convex formulation. At the same time, the

24 Weighted by
(I

The attentuation of error will be greater the lower the dis-

count rate r.



100 ECONOMIC FORECASTS AND EXPECTATIONS

differences in the errors of forecasting the next period's income by the
two forecasting functions could be sizeable. Similarly, even a relatively
poor exponential forecast of the next period's sales may be a relatively
good forecast of the discounted flow of future sales. If the latter de-
cision variable is superior to the former, the incorrectly formulated
forecast may be sufficiently useful.

Equation (29) suggests two important properties of exponential
forecasts of perpetuities (discounted stocks): First, they are the same
as forecasts of single-period flows, and second, the forecast value does
not depend on the discount rate. For example, if permanent income
(Ye) is estimated by exponential extrapolation of past incomes, its
forecast is the same as the forecast of the next period's income, Y, =

More important, the exponential forecast does not depend on
the discount rate, and cannot, therefore, be used to estimate the dis-
count rate: The exponentially declining weights with parameter /3
do not provide any information on the size of the discount rate r.25

When the relevant variable to be forecast is a discounted future
flow, it is natural to raise the question about possible relations between
the discount rate r and the expectational coefficients A small r
denotes "longsightedness" into the future. Similarly, a small means
that a longer past was taken account of in forming expectations. It is
tempting to postulate a positive correlation between the two parame-
ters of behavior: Horizons are both longer or shorter symmetrically
with respect to the future and to the past. And, as discount rates change,
so do expectational coefficients.26 it is clear, however, that no such
connection needs to exist if the extrapolative weights /3, are dictated
exclusively by the structure of the time series, while the size of the
discount rate does not depend on the experienced variations in the
time series.

25 See Friedman's analysis of the consumption function [12] and [13]. In the latter
article Friedman proposes a different expectational interpretation of his estimating pro-
cedure in [12], precisely for the reasons indicated above.

26 A hypothesis which has some resemblance to this one was introduced by. AIlais [7].
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VII. EXTRAPOLATION, AUTONOMOUS FORECASTING,
AND EMPIRICAL INVESTIGATION OF FORECASTING

BEHAVIOR

It is not reasonable to assume that forecasts of a future value of
are based exclusively on extrapolations of that series. We may rep-

resent the actual forecast as consisting of two parts:

(30) = +1Yt + f+kUt,

where is the extrapolative component and an independent
remainder, or autonomous component of the forecast. The autonomous
component presumably utilizes information based on relations with
other series and other objective or subjective data.27

The preceding discussion of forecasting functions refers to the
extrapolative component in (30). Before empirical observations can
be analyzed, we need to know in what way the presence of autonomous
components affects our conclusions. We proceed to an analysis of
revision equations in the presence of autonomous components.

Expression (30) refers to a one-span forecast. If forecasts for longer
spans are obtained recursively, that is, by substitution of intervening-
span forecasts for as yet unknown values of so that:

(31) t+kYt = + 132(t÷k_2Ft) + . . +
+ /3k+lYt...j + • . . +

then the general term of (30) for k spans is:

(32)

t+kFt = t+kYt* + YJ(t+k_Jut) (Yo = 1, and Yk

= k

/3j7k—j).

Revision functions (10) now become:

(33) t÷kFt — = 'Yk(Yt —

+ + +• +

where = 1+kUt — E+kUt_I.

27 See Chapter 1 of this volume, pp. 23 if.
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It is possible to conceive of expectational behavior in which multi-
span forecasting is recursive only in the extrapolative component.
The autonomous component is then superimposed. In such a case ex-
pression (30) generalizes directly for any span k:

— V*J..
'. I t+k t — i-

And the revision functions (33) become:

(33a) t+kFt — t+kFt_l = — + IXkV + Yk

1 1 (—1

Even if expectational behavior is not described by (30a), empirical
data which we take as representing F may contain some systematic
nonforecasting components 28 or, more commonly, measurement er-
rors. Revision equation (33a) would then be interpreted as reflecting
extrapolation observed with some error.

If data on forecasts are available for several spans, empirical esti-
mates of revision equations can be used to ascertain important fea-
tures of expectational behavior:

1. Estimated coefficients 7k indicate whether expectational behavior
is exponential, convex, or concave.

2. The extrapolation function can be reconstructed from the
coefficients.

3. The coefficient of determination in revision equations (33) is
less than unity, because of the presence of nonextrapolative com-
ponents in forecasts. Its size reflects the importance of revisions of
autonomous components or of change in nonforecasting components
in the observed revisions of F.

It is of interest to note that, under model (3 1), the residual vari-
ance in empirical regressions of the revision functions increases with
span, as the right-hand term in (33) cumulates. This is not true in (33a),
where the residual variance grows or declines together with the co-
efficients 7k' thus decreasing in convex forecasting.

Denoting the forecast error (Y1 — 1F,_1) = €, and assuming are
uncorrelated over spans and of equal variance, we can derive coeffi-
cients of determination for the various spans of the revision functions
(33):

Such as the liquidity premium in forward interest rates. See Kessel [14].
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(34) = + (1 + yf + + +

Hence, coefficients of determination in empirical revision equations
for span k are given by

3( 5)
1 — 1 + + + +

Putting k = 1 into (34) makes it possible to replace the unobservable
cr(€). 1

term in (35) by the observable
2

1 — Rf' since

Yi

—

— —

which yields:

— .!.(36)

Clearly, declines as k increases in convex and in exponential
forecasts. It may increase, though it need not, in concave forecasts.
If the revision functions are interpreted as (33a) rather than (33),
the coefficients of determination follow:

(35a) 2 •' =
— Rk yl.cr2(v) +

o-2(v) ± .

Assuming that and do not vary systematically with k, it
follows from (35a) that R2 declines with increasing span in convex
forecasts (even though the residual variance declines), increases in
concave forecasts, and remains unchanged in exponential forecasting.

Taking models (33) and (33a) together—and they are not mutually
exclusive if a nonforecasting component is present in the data on F—
it appears that the coefficient of determination in the revision equations
is most likely to decline in convex forecasts, remain constant in ex-
ponential forecasts, and increase in concave forecasting.

lf empirical data on forecasts are available for two spans only, dis-
crimination between exponential and nonexponential forecasting can
still be achieved by a comparison of estimated revision functions (8)
with (2):
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(8) — +1F1_1 = /31(Y1 —

(2) — = —

If forecasting is exponential, the two equations should yield the same
results. However, estimated should be greater than /3 if forecast-
ing is convex, and smaller than /3 if concave.

To see this, perform a Koyck-type reduction in the general case:

= +

(1 — /31)1F2_1.= (1 — + .)

Subtracting, we obtain:

(2') =/31(Y—2F1_1) + [132 —(1

+ [/33 — (1 — 132) /32]Y1_2.

In the exponential case, all terms beyond the first on the right-hand
side of (2') vanish, yielding adaptive equation (2). However, in the
convex case, lagged terms of enter with negative coefficients [since
/32 — /3k)], and in the concave case, with positive coefficients.

With positive serial correlation in Y usually present, leaving out the
lagged terms [that is, using (2) instead of (2')] will make the estimated
/3 smaller than in the convex case, larger in the concave case.

If data are available for one span only, equation (2') can, in principle,
still serve the purpose: Convexity is suggested by significant lagged
terms with negative coefficients, concavity by the same terms with
positive coefficients. No lagged terms appear in the exponential case.

THE TERM STRUCTURE OF INTEREST RATES

Revision equations (10) were first introduced into the empirical
literature by Meiselman [15] in his study of the term structure of
interest rates. While previous research based on adaptive hypothesis
(2) was invoked to justify the use of (10), the distinction between the
two formulations of adaptive behavior received no attention in that
study.29

Meiselman tested the hypothesis that the "forward" rate t+kFf is

29 The expectational aspects of the term structure are intensively explored within the
present framework by Stanley Diller in Chapter 4 of this volume, in this section we
draw on some of his findings.
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a forecast of the future (spot) rate Af+k, by means of empirically fitted
revision functions (10), for k = 1, 2, . . . , eight spans. The fact that
good fits were obtained is consistent with a hypothesis that forward
rates embody linear autoregressive forecasts of future spot rates. They
also embody autonomous forecasting components, as well as nonfore-
casting components such as liquidity premia. The existence of the
nonextrapolative component in the forward rate creates correlations
that are less than one in Meiselman's revision function. This com-
ponent is responsible for the weakening of the Meiselman correlations
as the span increases. As Diller shows (Table 4-1), the pattern of
decline in R2 is closely predictable on the assumption of recursive
multispan forecasting, as in our equation (36).

Meiselman's revision equations show continuously declining esti-
mates of revision coefficients y1 from .703 in the first span to .208 in
the eighth span. This pattern is clearly consistent with convex fore-
casting.30

While the pattern of eight revision coefficients constitutes more
comprehensive evidence of convex forecasting, it might be of interest
to illustrate the discrimination between hypotheses of exponential and
nonexponential forecasting, using only the first revision equation in a

It is also interesting to note that the revision coefficients (y,) in Meiselman's Table
I seem to decline almost geometrically. If the coefficients for the more remote spans are
disregarded, the pattern can be approximated by a straight line in logs (as noted by
Meiselman, p. 21).

(24a) Ig y, = a + i log y

with a close to unity, so that:

(24b)

If such an approximation is imposed, it turns out that the linear autoregressive extra-
polation which would give rise to such revision coefficients is of a very simple form:

(24c) ,÷,A7 = p' A,.

And, in terms of forward rates:

(24d) ,÷,F, = A, + u,.

Proof: Recall (11)

Substituting (24b) into (II) yields 13, = y,, all other = 0. In a recent article, Pye [16]
shows that Meiselman's revision coefficients could have been produced by a particular
first order Markov chain. This is equivalent to result (24c) which is a first order auto-
regression. See also L. Telser [17].
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comparison with adaptive equation (2). The results were:

(2\ — — IA — \ D2—
k / t+i — . .' '.'-, Li j, it —

(2) — = .558 — R2 = .774.

As expected in convex forecasting, the regression coefficient in (8)
exceeds the regression coefficient in (2). Equation (2) also shows a
weaker fit and a larger residual variance, while the variance of the
dependent variable is smaller than in (8).

Diller finds suggestions of convex forecasting also in other bodies
of interest rate data. However, Conard [18, Table 10] reports a study
of government securities in which neither revision coefficients nor
(the very high) coefficients of determination change with span. If these
data reflect forecasting behavior, then according to (35a) the findings
suggest exponential extrapolation, without autonomous components.

BUSINESS FORECASTS

In a recent NBER study of short-term economic forecasting, Victor
Zarnowitz [19] compiled and analyzed a variety of recent forecasts of
aggregate economic activity in the United States. The forecasts come
from a variety of sources.3' Most of them are predictions of the next
year's business, but some include forecasts of several semiannual or
quarterly spans.

One of the conclusions of Zarnowitz's study is that these forecasts
in part represent extrapolations of the past. In order to ascertain
whether business forecasts are better characterized as exponential,
concave, or convex, regressions were fit to the two alternative forms
of revision functions (2) and (8).

Columns 1 to 4 in Table 3-1 show results of fitting the shifting-target
function (2); columns 5 to 8 are results of fitting the fixed-target func-
tion (8).

Clear patterns of convexity are visible in GNP forecast G, for which
five spans are available. Otherwise, the evidence is unclear. Since the
business forecasts contain apparently sizeable autonomous com-
ponents, the correlations are not strong.32

" For a detailed description, see [19, Chapter 1].
32 Another reason is that the forecast base values contain errors of measurement.

Forecasters use preliminary available data which are subject to revision. Data revisions
are, in effect, a part of the forecasting error. For a discussion of this issue, see Rosanne
Cole, Chapter 2 of this volume.
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TABLE 3-1. Relations Between Forecast Revisions and Forecast Errors, Selected
Forecasts of GNP and Plant and Equipment Outlays for Spans Varying From Three
to Eighteen Months a

Revision Function (2) Revision Function (8)
Regressions of Constant-Span Revisions Regressions of Reduced-Span Revisions

Span of Span of
Forecast, First and
in Months Coefficient Span of• Coefficient

(before and of Correlation Revised of Correlation
after Intercept Regression Coefficient Forecast Intercept Regression Coefficient

Line revision) a b r (in months) a. b. r.
(I) (2) (3) (4) (5) (6) (7) (8)

GNP Forecasts: C

I 3 5.07 2.034 .668 3:0 —I.57 .892 .428
(2.25) (.684)

2 6 6.68 1.391 .463 6:3 0.54 .814 .365

(2.65) (.803) (2.07) (.627)

3 9 8.44 .253 .106 9:6 0.72 .657 .319

(2.35) (.7 14) (1.94) (.588)

GNP Forecasts: D

4 6 12.87 —.050 —.037 12:6 9.07 —.112 —.131

(4.54) (.359) (2.86) (.227)

GNP Forecasts: G

5 6 I2.23 .265 .250 6:0 —3.77 .565 .551

(2.40) (.256) (2.00) (.214)
6 9 13.23 —.063 —.063 9;3 —2.97 .422 .528

(2.33) (.249) (1.59) (.170)
7 12 14.15 —.226 —.211 12:6 —1.07 .289 .329

(2.45) (.262) (1.94) 1.207)
8 15 14.51 .372 —.306 15:9 —1.17 .070 .074

(3.04) (.334) (2.49) (.274)
9 18 14.81 —.452 —.368 18:15 —.13 —.041 —.042

(2.99) (.330) (2.56) (.281)

Anticipations of Plant and Equipment Outlays )OBE-SEC)

tO 3 .66 1.033 .548 6:3 .13 .675 .609
(.16) (.228) (.09) (.127)

Period covered: 1952-11 through 1964-Ill. The ligures in parentheses are standard errors.

VIII. OPTIMALITY, ONCE AGAIN

In the early sections of this paper the formal generation of optima!
forecasts was exclusively determined by assumptions about the sto-
chastic structure of time series. This was a matter of mathematical
and expositional simplicity. In genera!, an optimal formulation of
forecasts depends not only on the stochastic structure of time series
but also on the criterion of optimization, that is, on the "loss function"
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of the forecast error. Minimization of an economically motivated loss
function need not yield the same results as, for example, the mean
square error criterion.

In particular, minimizing the cost of error may lead to convex fore-
casting even when the mean square error criterion implies concavity,
or conversely.33 We have seen that convex forecasting means larger
revisions of short-term than of long-term expectations, in response to
current (unexpected) developments. If short-term plans are based on
short-term expectations, and if economic considerations lead to greater
flexibility in the short run than in the long run, such considerations may
lead to convex forecasting. For example, if revisions of (short-run)
production schedules are less costly than those of (longer-run) capital
investment plans, economic optimization would influence the forma-
tion of convex forecasts of future demand.34

We noted previously (p. 90) that, if multispan forecasts are available,
the revision coefficients of equation (10) not only provide a means for
testing the form and reconstructing the extrapolation function (4), but
also for ascertaining whether the extrapolation function is optimal,
provided the time series can be described by the stochastic process
(3). When the forecasts consist of extrapolations only, the answer is

obtained by testing the equality (14)
=

M1' where is the

mean square error of the ith span forecast. If the equality holds, then
= in (3), and forecasting behavior is indeed optimal in the mean

square error sense. If the equality does not hold, forecasting behavior
may still be optimizing, but either (3) is false or forecasters follow a
different optimization criterion.

The test becomes less meaningful in the presence of nonextrapola-
tive components in forecasting. To the extent that these components
are either nonforecasting (e.g., measurement errors) or ineffective as
forecasting components, they enter the mean square errors M1.

The contribution of autonomous components to the size of forecast-
ing error was observed to increase relative to that of extrapolation
with increasing span in the NBER collection of business forecasts. We

In this case, the revision coefficients in (10) are no longer equal to the coefficients
w1 in the latent structure (3), even if such a structure could be assumed.

As another example, Harberger [9] advocates convex forecasting of future interest
rates in optimal planning schemes.
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may infer from this pattern that, even if equality (14) held for pure
extrapolations, the addition of autonomous components augments the
numerator — M1) more than the denominator (M1). Hence, esti-

mates of
M1÷1—

would exceed estimates of and by an increasing

proportion with increasing span. If the ratios while differing

from nevertheless vary in the same direction, this is consistent
with a weak hypothesis of optimization, in the sense that convex (con-
cave) forecasting is used because the true series itself is convex
(concave).

M
M

of forward interest rates with cor-

responding in Meiselman's revision equations.

TABLE 3-2. Observed and Predicted Revision Coefficients in Forward Rates

Span 1 1 2 3 4 5 6 7 8

Observeda .50 .28 .16 .10 .08 .06 .06 .04

Predictedb M1..1 — M,
.99 .90 .87 .60 .52 .42 .24 .34

"y, are regression coefficients in Meiselman revision equations.
Calculated using residual variances in the regressions of on from Diller's Table 4-21.

this volume. The residual variances are, in effect, mean square errors adjusted for bias.

The observed
M1

do, indeed, decline as the though they

are larger and decline more slowly. Here the joint hypothesis of opti-
mizing forecasting in a linear time series process (3) cannot be rejected.

No comparable statements can be made about the business fore-
casts analyzed by Zarnowitz. The forecasts are prima facie not opti-
mal, since they vary by forecaster for the same time series.

IX. CONCLUSION

Can we learn from available forecast data how these forecasts were
generated? The analysis presented above arises from an attempt to
answer this question. The answer is positive, to a degree believed to be
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useful, provided forecasts are available for several successive future
periods at a given time.

When direct forecast data are not available, empirical insights on
how expectations are formed should provide some guidance for speci-
fication of expectational forms in econometric models. The usual
procedure in this usual case has been to assume a simple extrapolation
value for the expectational magnitude on which the observed behavior
is based. This extrapolation is often a naive projection of past values
or past changes in them, or a more sophisticated geometrically weighted
or exponential extrapolation. In addition to relative simplicity, the
following claims have been put forth on behalf of the exponential ex-
trapolation: That it represents a type of error-learning forecasting
behavior, and that it is an optimal predictor, in the mean square error
sense, in certain nonstationary time series.

In this paper we have shown that wide classes of nonexponential
extrapolations can also be interpreted as error-learning behavior, and
that they can be optimal in types of time series for which the ex-
ponential is not optimal. For example, the extrapolation which is opti-
mal for certain stationary linear processes is not exponential but
convex, at least in some range. Convex forecasts have properties of
regressivity, a behavioral characteristic often desired in the specifica-
tion of the model.

We also recognize that forecasts or anticipations do not consist
exclusively, or even mainly, of extrapolations. We have shown that
revision functions (10), which relate revisions of forecasts to the last
observed error of forecast, permit not only an analysis of the type of
extrapolation embedded in the forecast but also an analysis of the
nature and importance of nonextrapolative components in the observed

The diagnostic usefulness of the analysis developed in this paper is
illustrated more concretely in Diller's investigation of the term struc-
ture of interest rates in the following chapter.
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