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Abstract

In many clinical studies, patients are followed over time with their re-
sponses measured longitudinally. Using mixed model theory, one can char-
acterize these data using a wide array of across subject models. A state-
space representation of the mixed effects model and use of the Kalman
filter allows one great flexibility in choosing the within error correlation
structure even in the presence of missing or unequally spaced observations.
Furthermore, using the state-space approach, one can avoid inverting large
matrices resulting in efficient computation. The approach also allows one
to make detailed inference about the error correlation structure We con-
sider a bivariate situation where the longitudinal responses are unequally
spaced and assume that the within subject errors follows a continuous
first order autoregressive (CAR(1)) structure. Since a large number of
nonlinear parameters need to be estimated, the modelling strategy and
numerical techniques are critical in the process. We developed both a Vi-
sual Fortranr and a SASr program for modelling such data. A simulation
study was conducted to investigate the robustness of the model assump-
tions. We also use data from a psychiatric study data to demonstrate our
model fitting procedure.
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1 Introduction

Longitudinal data are common in randomized clinical trials while patients are followed

over time. In many cases, these data are not equally spaced and always measured with

correlated within subject errors. In the case of equally spaced model, the first order

autoregressive model, AR(1), has been developed for the within subject error structure

(Potthoff and Roy, 1964; Chi and Reinsel, 1989). But if there is no general sample

interval, the error structures need to be modelled as continuous-time first order au-

toregressive (CAR(1)). One approach is fitting a random effects model commonly

used in longitudinal data (Jones and Ackerson, 1990), and combining with state space

approach with Kalman filter to compute the exact likelihood for univariate or multi-

variate responses(Jones, 1993). In this paper, we applied this to fit bivariate unequally

spaced longitudinal measurements with CAR(1) error. Corresponding Visual Fortranr

and SASr IML programs were developed. A simulation study was conducted to vali-

date the analysis and a psychiatric study data was applied to demonstrate the model

fitting strategy.

2 The Mixed Effects Model and Kalman Filter

2.1 The Multivariate Mixed Effects Model

The univariate linear mixed model is usually defined as

yi = Xiβββ + Ziγγγi + εεεi . (2.1.1)

Here yi is a ni × 1 column vector of the observations measured on ith individual, βββ is

a p× 1 vector of regression coefficients and γγγi is a q× 1 random effect vector assumed

to be independently distributed as N(0,B). Xi and Zi are ni × p and ni × q design

matrices for fixed and random effects.
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It is straight forward to extend the model to handle multivariate outcomes. If we

assume for a given individual m distinct measurements are taken at each time and

they are unequally spaced. The observations for different individuals are independent,

and every subject can have different number of time points and observations. The

mixed model for subject i at time j becomes

yij = φφφxij + ψψψizij + uij (2.1.2)

where yij is a vector of m observations for subject i at time tij . Let yi = (yi1, . . . , yin(i)),

we write the model for subject i as

yi = ΦX′
i + ΨiZ

′
i + Ui (2.1.3)

where i = 1, . . . , N , and X′
i = (xi1, . . . ,xin(i)),Z

′
i = (zi1, . . . , zini) are the design

matrices for fixed and random effects. Normally for growth curve models, x′ij and z′ij

can have the forms of (1, tij , t
2
ij , . . . ). Using the “vec” operator to let yi = vec(yi) =

(yi1, . . . , yin(i))
′, βββ = vec(Φ), γγγi = vec(Ψi) and εεεi = vec(Ui), expression (2.1.3) can

be rewritten as

yi = (Xi ⊗ Im)βββ + (Zi ⊗ Im)γγγi + εεεi . (2.1.4)

We assume γγγi is independently distributed across subjects as N(0,B), B is a general

covariance matrix with off-diagonal elements. εεεi is a vector of within individual errors,

we also assume εεεi’s are independent cross individuals and distributed as N(0,Wi).

It is well known that for model (2.1.4), given covariance matrices B and Wi, the

-2 log(likelihood) is

l =
∑

i

{mni log(2π) + log | (Zi ⊗ Im)B(Zi ⊗ I
¯m)′ + Wi | +

[yi − (Xi ⊗ Im)βββ]′[(Zi ⊗ Im)B(Zi ⊗ Im)′ + Wi]
−1[yi − (Xi ⊗ Im)βββ]}

. (2.1.5)
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The estimate for the fixed effects coefficient βββ is

β̂ββ = {
∑

i

(Xi ⊗ Im)′[(Zi ⊗ Im)B(Zi ⊗ Im)′ + Wi]
−1(Xi ⊗ Im)}−1

× {
∑

i

(Xi ⊗ Im)′[(Zi ⊗ Im)B(Zi ⊗ Im)′ + Wi]
−1yi}

(2.1.6)

and the univariate model is just a special case with m = 1. The maximum likelihood

estimates can be obtained through a nonlinear optimization program with respect

to elements in B and Wi. Since B has to be nonnegative definite, so we perform

a Cholesky decomposition B = U′U and let the optimization program working the

upper triangular matrix U. For most longitudinal data, the error within subjects are

considered to be correlated, to solve this problem, Potthoff and Roy(1964) followed

the idea of Harville(1976) and specified a first order autoregressive within subject error

structure (AR(1)) for equally spaced data. Assuming the errors have mean zero, the

error of subject i at time j can be represented as

εij = φεij−1 + ηij (2.1.7)

where ηηηij ’s are a serial of independent identically distributed random variables with

mean zero. ηηη is usually assumed to be Gaussian. φ is the autoregressive coefficient

between two consecutive errors, in order to make the procedure to be stationary, it is

necessary to confine that −1 < φ < 1. This shows the error is only directly correlated

with the error of one previous observation. A more general form is the autoregressive

moving average model (ARMA(p,q)), where the within subject error with zero mean

is defined as

εij =

p∑

k=1

φkεi(j−k) +

q∑

k=1

θkηj−k . (2.1.8)

Here the error is directly correlated with errors of p previous observations and is a

function of q previous errors.
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2.2 The Kalman filter approach for within subject errors

There are many ways to handle AR or ARMA errors for longitudinal data, but most of

them include reversing a ni×ni matrix during the direct approach for obtaining max-

imum (ML) or restricted maximum likelihood (REML) estimation. The state space

representation and Kalman filter was first introduced to avoid that. Kalman (1960)

and Kalman and Bucy (1961) developed a recursive optimal estimation procedure for

discrete and continuous time state space models. The form of ARMA(p,q) models for

univariate time series observations xt is as follows:

xt =

p∑

k=1

αkxt−k +

q∑

k=1

δkηt−k + ηt (2.2.1)

where ηt is uncorrelated ”white noise” with mean 0 and variance σ2
η per unit time.

Jones (1986) extended this model with a recursive state equation for an arbitrary

continuous time interval, the result is the continuous time ARMA(p,q) model, or the

CARMA model. If we let the state of the process vector be s(t) = (x(t|t), x(t|t +

1), . . . , x(t + m− 1|t))′ where m = max(p, q + 1), then the state equation becomes

s(t) = Fs(t− 1) + Gηηηt (2.2.2)

where F =




0 1 . . . 0
0 0 . . . 0

. . . . . . . . . 1
αm αm−1 . . . α1


 and G =

[
1 g2 . . . gm−1 gm

]
. Here

αm is the autocorrelation coefficient between x(t + m − 1|t) and x(t − 1|t − 1) while

G is the matrix multiplying the standard random inputs. The observation equation

at time t is

εi(t) =
[
1 δ2 . . . δp−1

]×




x(t|t)
x(t + 1|t)

. . .
x(t + m− 1|t)


 + ν(t) (2.2.3)

where δk = 0 for all k > q and ν(t) is the observational error. The state equation

shows how state vectors are correlated with each other while the observation equation
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reveals the relationship of state vectors and observations. For multivariate continuous

time interval, the state space representation in the derivative form is

ds(t)

dt
= Fs(t) + gηηηt, εεε(t) = hs(t) + ννν(t) . (2.2.4)

In this paper, we also consider the random effects in the mixed effects model. Duncan

and Horn (1972) suggested incorporating the random effects in the state space vector,

so the random effect coefficient γγγi was augmented to the state vector, the complete

derivative state representation for subject i is

d

dt

[
si(t)
γγγi

]
=

[
F 0
0 0

] [
si(t)
γγγi

]
+

[
g
0

]
ηi(t)

ξξξi(tj) =
[
h Zi(tj)

] [
si(t)
γγγi

]
+ νννi(tj)

. (2.2.5)

Usually si(t) represents the vector correlated error terms and ξξξi is the observation

subtracting the fixed effects. The vector of Zi(tj) is the jth row of design matrix

Zi. The initial value of state covariance matrix B = U′U must be given and then

optimized by maximum likelihood, so this is basically an empirical Bayes approach.

In order to calculate the continuous time stationary model, Kalman and Bucy

(1961) developed a method through integrating the state equation over the intervals

between observations, with random effects removed, we have

s(tj) = e(tj−tj−1)F · s(tj−1) (2.2.6)

The matrix exponential is defined as

eM = I +

∞∑

k=1

Mk

k!
(2.2.7)

In the multivariate situation, we need to evaluate the matrix exponentials numerically,

so we write F in the diagonal form F = CΛC−1 where Λ is a diagonal matrix of the

eigenvalues. C is the matrix of right eigenvectors of F. Notice that for univariate

AR(1), all these will be scalars. The equation above can be rewritten as

s(tj) = Ce(tj−tj−1)FC−1s(tj−1) (2.2.8)
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If we define s̃(t) = C−1s(t) as a rotated state vector, then the transformed model

becomes

d

dt
s̃(t) = Λs̃(t) + C−1Gηηηt and εεε(t) = Cs̃(t) + ννν(t) . (2.2.9)

Thus, the rotated state can be used in the recursion with the prediction in the interval,

[tj−1, tj ], being

s̃(tj |tj−1) = ΦΦΦ(tj − tj−1)s̃(tj − tj−1) (2.2.10)

where ΦΦΦ(tj − tj−1) = e(tj−tj−1)Λ. The rotated state vector can be used during the

recursive process and then rotated back at the end by the inverse equation s(t) = Cs̃(t).

Besides predicting the state vector over any arbitrary interval, it is also necessary to

compute the prediction error introduced by ηηηt, the complex prediction error over a

time step of length tj − tj−1 is

∫ tj

tj−1

ΦΦΦ(tj − tj−1)C
−1Gηηηtdt (2.2.11)

with covariance matrix

Q(tj − tj−1) =

∫ tj

tj−1

C−1GG′(C∗)−1ΦΦΦ∗(tj − tj−1)dt (2.2.12)

where ‘∗’ denotes the complex conjugate. Let K = C−1GG′(C∗)−1 so that the kth

row and lth column element of Q(tj − tj−1) is

Qkl(tj − tj−1) = Kkl
e(λk+λ∗l )(tj−tj−1) − 1

(λk + λ∗l )
if λk + λ∗l 6= 0

Qkl(tj − tj−1) = Kkl(tj − tj−1) if λk + λ∗l = 0 .

(2.2.13)

By using the rotated state vectors, the state space representation (2.2.5) can be rewrit-

ten as

d

dt

[
s̃i(tj)

γγγi

]
=

[
ΦΦΦ(tj − tj−1) 0

0 I

] [
s̃i(tj−1)

γγγi

]
+

[
G
0

]
ηηηi(t)

ξξξi(tj) =
[
hC Zi(tj)

] [
s̃i(tj)

γγγi

]
+ νi(tj)

(2.2.14)
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where ξξξ(tj) is normal with mean 0 and covariance matrix Q(tj − tj−1). The initial

values of the state vector covariance can be defined as Q(∞), as if the time interval

goes to infinity. The elements of the initial rotated state covariance matrix are

Pr(0|0) = Qkl(∞) = − Kkl

λk + λ∗l
. (2.2.15)

Jones(1993) mentioned that if λk + λ∗l has non-negative real part, then the process is

non-stationary, and the corresponding element will be a diffuse prior. One solution is

to set it to a very large number, like 104 times of the sample variance. All the formulas

above can be applied to both univariate and multivariate models.

To integrate the random effects into the recursive procedure, we denote the state

and state transition matrix to be:

S(t) =

[
s̃i(tj)

γγγi

]
ΦΦΦ(δt) =

[
e(Λδt) 0

0 I

]

and the initial state covariance matrix and the covariance matrix of the random input

to the state is

P(0|0) =

[
Pr(0|0) 0

0 σ2B

]
Q(δt) =

[
Qr(δt) 0

0 0

]

The steps of Kalman recursion for continuous time multivariate first order autoregres-

sive model (CAR(1)) can be written as

1. The one-step prediction to next observation time, the state transition matrix

should be diagonal.

S(tj |tj − δt) ←− ΦΦΦ(δt)× S(tj − δt|tj − δt)

2. The covariance matrix for the prediction is

P(tj |tj − δt) ←− ΦΦΦ(δt)P(tj − δt|tj − δt)ΦΦΦ∗(δt) + Q(δt)
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3. The innovation matrix I at time tj for subject i. Set H(tj) ←−
[
C Zi(tij)

]

where C is the right eigenvalue of F as mentioned above.

I(tj) ←−
[
Xi(tj) yi(tj)

]−H(tj)S(tj |tj − δt)

where yi(tj) is the row vector of jth observation, and Xi(tj) is the corresponding

row j of design matrix.

4. The innovation variance is

V(tj) = H(tj)P(tj |tj − δt)H∗(tj) + R(tj)

5. Update the matrix needed to calculate βββ and accumulate the determinant term

in the -2 log(likelihood),

M ←− M + I∗(tj)V
−1(tj)I(tj)

DET ←− DET + ln|V(tj)|

where the matrix M is

[
X̃′X̃ X̃′ỹ
ỹ′X̃ ỹ′ỹ

]

6. Calculate the Kalman Gain,

KG(tj) ←− P(tj |tj − δt)H∗(tj)V
−1(tj)

7. Update the estimated state vector,

S(tj |tj) ←− S(tj |tj − δt) + KG(tj)I(tj)

8. Update the covariance matrix of the state vector,

P(tj |tj) ←− P(tj |tj − δt)−KG∗(tj)KG(tj)V(tj)

For a bivariate CAR(1) model, V(tj) is a 2×2 matrix while in the univariate model,

it is just a scalar. The recursion above should be carried out with double precision to

avoid the accumulation of roundoff errors. The state vector and its covariance matrix

will be re-initialized for every subject while M and DET are accumulated over all

the subjects to compute the overall value of -2 log(likelihood). At the end of each

recursion, one performs a Cholesky factorization of M, and then replaces the upper
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portion of M by
[
T b

]
where X̃′X̃ = T̃′T̃ and b = (T̃′)−1X̃′ỹ. Thus, the

unadjusted regression sums of squares can be obtained as b′b = ỹ′X̃(X̃′X̃)−1X̃′ỹ.

Consequently, the residual sum of squares can be obtained as RSS = ỹ′ỹ − b′b. The

-2 log(likelihood) then becomes

l = nT log(2π) + DET + RSS (2.2.16)

where nT is the total number of observations across all subjects. Notice that in the

last step of the recursive procedure, a subtraction is performed. This operation can

cause the estimated covariance matrix, P(tj |tj), to be negative definite. When that

situation occurs, one must reassign the initial values for the F, B and G matrices.

3 A Model Fitting Strategy

For bivariate processes where the outcomes are linear functions of time and which

have a CAR(1) error structure, the number of nonlinear parameters that need to be

estimated ranges from 10 to 16. Hence, numerical stability may be a problem if we fit

all of the parameters at once. Also, in most of the cases we considered, the Hessian

matrices for the nonlinear parameters were not positive definite and so significance

testing could not be performed.

The best way to build the model is to start from two independent univariate models

and then add off-diagonal elements to the B, F and G matrices in sequence. The best

model is ultimately selected based on minimizing AIC values. Since two independent

univariate models are initially determined for the response variables, the covariance

between the intercepts and slopes of these two variables are added one at a time in

the B matrix. The matrix, F, is usually not symmetric which means that previous

values of variable 1 as correlated with present values of variable 2 are not necessarily

the same as previous values of variable 2 as correlated with with present values of
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variable 1. The last step in the estimation of these three matrices is the addition of

off-diagonal elements in the G matrix.

Finally, we have found that including an independent observational error matrix,

R, often significantly decreases the AIC value, but it also caused numerical instabilities

in the Kalman recursion. Hence, it is better to fit diagonal elements of R at the end of

the model selection procedure. Due the independent behavior usually associated with

observational errors, it is reasonable to assume there are no off-diagonal elements in

the R matrix under most circumstances.

4 Model Validation by Simulation

We examined characteristics of the bivariate model estimation procedure by use of

a simulation where we employed the IML language in SASr8e. Our procedure for

generating bivariate data with a CAR(1) error structure relied on generating a bivariate

continuous process which was measured at time intervals of unequal length and which

was observed with a Gaussian error structure. First, we generated the numbers of

observations for the subjects as uniformly distributed values ranging from 5 to 20.

Each unequal time interval was simulated from a random exponential distribution

with a scale parameter of 10 and then rounded up to the next highest integer. The

random effects vector, γγγ, which consisted of an intercept and slope for each of two

outcome variables, were created from a multinormal distribution, N(0,B), where the

covariance matrix. To generate the process, B was factorized as B = U′U where U

is an upper triangular matrix. We chose the U to be

U =




1 0.2 0.05 0
0 1 0 0.05
0 0 0.5 0
0 0 0 0.5


 .
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Table 1: simulation results for nonlinear parameters

Parameters F(1,1) F(2,2) F(1,2) G(1,1) G(2,2) U(1,1)
Input value -0.6 -0.4 0.1 1.5 1.5 1
Mean of estimates -0.620 -0.397 0.102 1.518 1.493 0.985
Standard error 0.0845 0.0474 0.0301 0.0956 0.0807 0.116
Parameters U(1,2) U(1,3) U(2,2) U(2,4) U(3,3) U(4,4)
Input value 0.2 0.05 1 0.05 0.5 0.5
Mean of estimates 0.203 0.0574 0.960 0.0576 0.0491 0.487
Standard error 0.185 0.0656 0.157 0.0742 0.0359 0.0410

Table 2: simulation results for linear parameters

Parameters βββ(1,1) βββ(1,2) βββ(2,1) βββ(2,2)
Input value 10 0.8 15 0.6
Mean of estimates 10.005 0.8022 14.995 0.5984
Standard error 0.1367 0.0512 0.1503 0.0494

The fixed effect, βββ, was chosen as

[
10 0.8
15 0.6

]
. The parameters of the time series

were chosen as having a CAR(1) autocorrelation matrix, F =

[−0.6 −0.1
0 −0.4

]
, with

eigenvector C =

[
1 0.5
0 1

]
and eigenvalues ΛΛΛ =

[−0.6 −0.4
]
. The G matrix was

[
1.5 0
0 1.5

]
.

The final simulated responses were computed as Yj = βββTj + γγγTj + Ej where

Tj =
[
1 tj

]′
. Notice that Yj and Ej are 2 × 1 vectors and βββ, γγγ are 2 × 2 matrix.

A total of 500 sets of data were simulated, each consisting of 100 subjects. As was

mentioned above, each subject had 5 to 20 observations.

The results of our simulations for the nonlinear and linear parameters are sum-

marized in Tables 1 and 2, respectively. Each table consists of the true value and the

mean and standard errors of over all the 500 simulated sets of data.

The simulation results show that both the nonlinear and linear estimates are fairly

close to their true value. The standard errors of the off-diagonal elements estimates are
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larger than on-diagonal elements for both F and U matrix, so estimating interactions

between two variables is less stable compared to other nonlinear and linear parameters.

However, there were about 30 sets of the data in which the Kalman recursion did

not converge initially. Accordingly, by changing the initial values of the nonlinear

parameters, all of them converged successfully.

5 A Bivariate Example

Maintenance therapies in late life depression (MTLD) (Reynolds et al, 1999) were

treatments for patients aged 60 to 90 years old who had depression. The study con-

sisted of three phases. The first was an acute treatment phase where 187 patients with

recurrent depression were enrolled and treated with a full dose of nortriptyline (NT)

and weekly interpersonal psychotherapy (IPT) to achieve a remission of depressive

symptoms. The maximum length of this phase was 26 weeks. The patients’ responses

were measured by Hamilton Depression Rating Scale (17-item). Among all the patients

initially enrolled, only those who achieved “full remission” (HDRS score = 10 for 3

consecutive weeks) were eligible to enter the next phase. Two response variables were

selected to represent the recovery pattern. The first was the General Life Functioning

(GLF) score, which measured the patients’ quality of life profiles and was an important

indicator for treatment response. The second response was the blood test results for

NT concentration, which was an indicator of the patients’ metabolism and also was a

measure of compliance of their medicine taking. These two measurements were taken

at the time the participants came for their weekly treatment. Because patients often

missed their appointments for various reasons, the observations are unequally spaced.

Moreover, these two variables are most likely to be correlated.

Following the model building strategy previously described, we first fit two uni-
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Table 3: Summary of Models

Fixed effect Nonlinear parameters included AIC value
linear G11, G22, F11, F22, B11, B22, B33, B44, B13, B24 32031.19
quadratic G11, G22, F11, F22, B11, B22, B33, B44, B13, B24 31897.51
quadratic G11, G22, F11, F22, B11, B22, B33, B44, B13, B24, B12 31897.23
quadratic G11, G22, F11, F22, B11, B22, B33, B44, B13, B24, B12, B34 31898.01
quadratic G11, G22, F11, F22, B11, B22, B33, B44, B13, B24, B34 31897.49
quadratic G11, G22, F11, F22, F12, B11, B22, B33, B44, B13, B24, B12 31883.82
quadratic G11, G22, F11, F22, F21, B11, B22, B33, B44, B13, B24, B12 31891.91
quadratic G11, G22, F11, F22, F21, F12, B11, B22, B33, B44, B13, B24, B12 31885.56
quadratic G11, G22, G21, F11, F22, F12, B11, B22, B33, B44, B13, B24, B12 31885.56
quadratic G11, G22, G12, F11, F22, F12, B11, B22, B33, B44, B13, B24, B12 31885.56
quadratic G11, G22, F11, F22, F12, B11, B22, B33, B44, B13, B24, B12, R11, R22 31762.89

variate models separately and found that quadratic models for the fixed effect yielded

the best results. The random effects contained intercepts and slopes to accommodate

general situations. The value of -2 log(likelihood) associated with the independent

univariate models was 31865.51. Next, the off-diagonal elements of the B, F and G

matrices were added in the model one by one. We found that by the addition of only

B(1, 2) and F(1, 2), the AIC value was minimized. Finally, adding the observational

error term, R, further lowered the AIC. The results of model selection are summarized

in table 3:

The last model displayed above had the lowest AIC value and the resulting au-

toregressive matrix F was F =

[−0.01587 0.0016194
0 −0.07935

]
and the eigenvalue vector,

C =

[
1 −0.02551
0 1

]
.

Since the scheduled time interval between visits was 7 days, a discrete time autore-

gressive coefficients matrix between visits of every weeks can be written as

ΦΦΦ(7) =

[
1 −0.02551
0 1

] [
e−0.01587×7 0

0 e−0.07935×7

] [
1 −0.02551
0 1

]−1

=

[
0.895 0.0082

0 0.574

] (5.1)
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From the estimates of the F and ΦΦΦ matrices, we can see that the correlations of

the errors between consecutive weekly visits are quite high for both variables and that

the GLF score has less variability than do the NT levels. In addition, since the upper

right hand corner of the F matrix is nonzero and the component in the lower left hand

corner is 0, the GLF score is affected by both the GLF and NT levels of the previous

time, but the NT level is only affected by earlier results of NT levels. So the “driving

force” of these two measurements is the NT level. In other words, the NT level could

cause the GLF score to change, but is not a feedback system where both observations

affect each other. It is difficult to obtain such a relationship between two response

variables through the use of traditional mixed models. The matrix multiplying the

random input into the state equation was

G =

[
1.0618 0

0 11.6104

]

The variance-covariance matrix of random effects was

B = U′U =




6.3267 −14.571 0.01992 0
−14.571 131.285 −0.04587 −0.42174
0.01992 −0.04587 0.000075 0

0 −0.42174 0 0.003121




Finally, the observational error was

R =

[
9.4305 0

0 15.813

]
,

and the fixed effects were estimated as

Parameters Intercept Slope Quadratic term

GLF score 37.203 0.09665 -0.000287

NT levels 74.915 0.22885 -0.000963

From the estimates of the fixed effects, both variables show an upward trend and

get flatter over time, indicating an improving and stabilizing process. But some of the

elements of the variance–covariance matrix for the random effects are quite large, so

that there was much variation between individuals in addition to the common trend.
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Specific predictions can be made for each individual based on the model estimations

above.

6 Discussion

Using the Kalman filter to compute the likelihood for a bivariate growth curve was

introduced by Jones (1993) and its use for computing a bivariate mixed model was also

employed by Tan (1993). Until now, however, not many programs and applications

have been developed. This may be due to the poor numerical stability of the multi-

variate Kalman filter. Theoretically, a multivariate ARMA(p, q) model can be fit by

the same algorithm, but numerically, it is very complicated because of the instability

of the procedure and difficulty of finding universal minimum with too many unknown

parameters.

Part of the numerical instability comes from the last step of the Kalman filter which

involves a subtraction of one matrix from another which produces a new variance–

covariance matrix for the state. However, one can not guarantee that for each time,

a positive-definite matrix will be produced. So with a non-positive-definite variance

matrix, the recursion will quickly disintegrate. We found that it happened more often

when the initial values for the nonlinear parameters were far away from their true

values. Consequently, good guesses for the initial parameters, especially the B and

G matrices, are very important. Otherwise, one could try a “grid search” of different

initial values. In addition, introducing an observational error R in the early stages

of model fitting could increase the instability of the algorithm. Thus, it is better to

include this term at the end of the estimation process after all other parameters have

been selected. Usually, the more unknown parameters that need to be estimated, the

more difficult it is for the procedure to converge. We found that if the number of
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nonlinear parameters was more than 15, then the procedure was often very unstable.

One ultimate solution for this problem of numerical instability might be found in

Bierman (1977) who suggested implementing the Kalman filter in a factorized form

while sacrificing efficiency in computing time. But Bierman’s algorithm was only

implemented for a univariate model. Thus, some theoretical work still needs to be

done to extend his procedure to fit multivariate models.

Despite all of these problems, the Kalman filter is still a useful tool for fitting

multivariate growth curve models. Its use allows one to avoid inverting matrices

with large dimensions and it also gives estimates of both the cross correlation and

autocorrelation associated with two response variables. Also, both fixed and random

effects can be easily estimated. Future work is to improve the numerical stability, so

that this approach can handle more complicated models.
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