9 research outputs found

    Analysing the information contributions and anatomical arrangement of neurons in population codes

    Get PDF
    Population coding—the transmission of information by the combined activity of many neurons—is a feature of many neural systems. Identifying the role played by individual neurons within a population code is vital for the understanding of neural codes. In this thesis I examine which stimuli are best encoded by a given neuron within a population and how this depends on the informational measure used, on commonly-measured neuronal properties, and on the population size and the spacing between stimuli. I also show how correlative measures of topography can be used to test for significant topography in the anatomical arrangement of arbitrary neuronal properties. The neurons involved in a population code are generally clustered together in one region of the brain, and moreover their response selectivity is often reflected in their anatomical arrangement within that region. Although such topographic maps are an often-encountered feature in the brains of many species, there are no standard, objective procedures for quantifying topography. Topography in neural maps is typically identified and described subjectively, but in cases where the scale of the map is close to the resolution limit of the measurement technique, identifying the presence of a topographic map can be a challenging subjective task. In such cases, an objective statistical test for detecting topography would be advantageous. To address these issues, I assess seven measures by quantifying topography in simulated neural maps, and show that all but one of these are effective at detecting statistically significant topography even in weakly topographic maps. The precision of the neural code is commonly investigated using two different families of statistical measures: (i) Shannon mutual information and derived quantities when investigating very small populations of neurons and (ii) Fisher information when studying large populations. The Fisher information always predicts that neurons convey most information about stimuli coinciding with the steepest regions of the tuning curve, but it is known that information theoretic measures can give very different predictions. Using a Monte Carlo approach to compute a stimulus-specific decomposition of the mutual information (the stimulus-specific information, or SSI) for populations up to hundreds of neurons in size, I address the following questions: (i) Under what conditions can Fisher information accurately predict the information transmitted by a neuron within a population code? (ii) What are the effects of level of trial-to-trial variability (noise), correlations in the noise, and population size on the best-encoded stimulus? (iii) How does the type of task in a behavioural experiment (i.e. fine and coarse discrimination, classification) affect the best-encoded stimulus? I show that, for both unimodal and monotonic tuning curves, the shape of the SSI is dependent upon trial-to-trial variability, population size and stimulus spacing, in addition to the shape of the tuning curve. It is therefore important to take these factors into account when assessing which stimuli a neuron is informative about; just knowing the tuning curve may not be sufficient

    Moth olfactory receptor neurons adjust their encoding efficiency to temporal statistics of pheromone fluctuations

    Full text link
    The efficient coding hypothesis predicts that sensory neurons adjust their coding resources to optimally represent the stimulus statistics of their environment. To test this prediction in the moth olfactory system, we have developed a stimulation protocol that mimics the natural temporal structure within a turbulent pheromone plume. We report that responses of antennal olfactory receptor neurons to pheromone encounters follow the temporal fluctuations in such a way that the most frequent stimulus timescales are encoded with maximum accuracy. We also observe that the average coding precision of the neurons adjusted to the stimulus-timescale statistics at a given distance from the pheromone source is higher than if the same encoding model is applied at a shorter, non-matching, distance. Finally, the coding accuracy profile and the stimulus-timescale distribution are related in the manner predicted by the information theory for the many-to-one convergence scenario of the moth peripheral sensory system

    Mutual information measure of visual perception based on noisy spiking neural networks

    Get PDF
    Note that images of low-illumination are weak aperiodic signals, while mutual information can be used as an effective measure for the shared information between the input stimulus and the output response of nonlinear systems, thus it is possible to develop novel visual perception algorithm based on the principle of aperiodic stochastic resonance within the frame of information theory. To confirm this, we reveal this phenomenon using the integrate-and-fire neural networks of neurons with noisy binary random signal as input first. And then, we propose an improved visual perception algorithm with the image mutual information as assessment index. The numerical experiences show that the target image can be picked up with more easiness by the maximal mutual information than by the minimum of natural image quality evaluation (NIQE), which is one of the most frequently used indexes. Moreover, the advantage of choosing quantile as spike threshold has also been confirmed. The improvement of this research should provide large convenience for potential applications including video tracking in environments of low illumination

    Bayesian Computations in Noisy Spiking Neurons

    Get PDF
    The world is stochastic and chaotic, and organisms have access to limited information to take decisions. For this reason, brains are continuously required to deal with probability distributions, and experimental evidence confirms that they are dealing with these distributions optimally or close to optimally, according to the rules of Bayesian probability theory. Yet, a complete understanding of how these computations are implemented at the neural level is still missing. We assume that the “computational” goal of neurons is to perform Bayesian inference and to represent the state of the world efficiently. Starting from this assumption, we derive from first principles two distinct models of neural functioning, one in single neuron and one in neural populations, which explain known biophysics and molecular processes of neurons. The models we propose suggest a new original interpretation for various neural quantities. Action potentials, which are usually considered the paramount form of communication between neurons, in our model of single neuron dynamics are reinterpreted as an internal communication channel. On the contrary, intracellular calcium concentration is interpreted as the most explicit representation of the external world inside the neuron. Specifically, we propose that calcium level represents the log-odds probability ratio of a particular hidden state in the world. Furthermore, we reinterpret synaptic vesicle release as a sampling process, which simulates the external world given all the available information. Finally, the neural population dynamics we propose interpret spontaneous neural activity as a process of sampling from the prior world statistics. This enables the system to implement a Markov Chain Monte Carlo algorithm that produces inference by sampling. The proposed models generate various observable predictions, which match experimental results about synaptic vesicle release, short-term synaptic potentiation, ions channels open probability, intracellular calcium dynamics and propagation, spike rate adaptation and neural receptive fields
    corecore