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The precision of the neural code is commonly investigated using two
families of statistical measures: Shannon mutual information and de-
rived quantities when investigating very small populations of neurons
and Fisher information when studying large populations. These statis-
tical tools are no longer the preserve of theorists and are being applied
by experimental research groups in the analysis of empirical data. Al-
though the relationship between information-theoretic and Fisher-based
measures in the limit of infinite populations is relatively well under-
stood, how these measures compare in finite-size populations has not yet
been systematically explored. We aim to close this gap. We are particu-
larly interested in understanding which stimuli are best encoded by a
given neuron within a population and how this depends on the chosen
measure. We use a novel Monte Carlo approach to compute a stimulus-
specific decomposition of the mutual information (the SSI) for popula-
tions of up to 256 neurons and show that Fisher information can be used
to accurately estimate both mutual information and SSI for populations
of the order of 100 neurons, even in the presence of biologically realistic
variability, noise correlations, and experimentally relevant integration
times. According to both measures, the stimuli that are best encoded are
those falling at the flanks of the neuron’s tuning curve. In populations
of fewer than around 50 neurons, however, Fisher information can be
misleading.

Neural Computation 24, 1740–1780 (2012) c© 2012 Massachusetts Institute of Technology
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1 Introduction

Population coding—the transmission of information by the combined ac-
tivity of many neurons—is known to be a feature of many neural systems.
Both experimentalists and theorists have shown great interest in develop-
ing tools to assess the precision of population codes. Such methods can
be used to help understand the relationship between neural representa-
tions and behavior, as well as between neural activity and environmental
stimuli. Informational measures are also useful for assessing the functional
consequences of changes in neural response properties, such as observed
in sensory adaptation.

Measuring the precision of any neural code involves quantifying how
the activity of a neuron, or neurons, relates to some measurable quantity
in the external world, typically a feature of a presented stimulus or an
observed action. The precision of the code is essentially the degree to which
the neural activity reflects the quantity of interest, but several methods of
quantifying this interdependency exist, and it is not always clear exactly
what they imply or how they relate to each other. For population codes, the
situation is further complicated by the number of neurons involved; in all
but the simplest systems, such as the cricket cercal interneurons we discuss
(Theunissen & Miller, 1991), it is impossible to identify and record from all
cells involved. This means that the measured activity can be only a small
sample of the activity of the population, although the situation is improving
due to the increasing use of multielectrode arrays and two-photon calcium
imaging.

This letter first provides an overview of the principal measures used
to assess coding precision, with emphasis on their intuitive interpretation
and practical application in experimental neuroscience. We then address
some previously unanswered questions regarding the relationship between
Fisher information and Shannon mutual information in populations with a
finite number of neurons. Following the work of Butts and Goldman (2006),
we examine in detail how the stimulus-specific precision of a neuron, and in
particular the identification of the stimuli that are best encoded by a given
cell, depends on the measure used.

1.1 A Probabilistic View of Neural Coding. Before discussing the pre-
cision measures that are the main focus of this letter, it is worth clarifying
in probabilistic terms what is being measured in a typical sensory electro-
physiology experiment. Let us assume that the experiment consists of a
large number of trials in which a stimulus is presented, and the response of
a neuron, the number of action potentials elicited, is recorded over a given
time window. By repeatedly presenting a stimulus, sufficient data can be
gathered to estimate the distribution of the responses; this process can then
be repeated for a range of stimuli. The resulting model is a conditional
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distribution—the distribution p(R|�) of the response R conditioned on the
stimulus �.

Classical single electrode techniques allow the recording of only one, or
very few, cells simultaneously. This means that it is not possible to measure
interdependencies between the activity of cells. In this situation, it is usual to
assume that the activities of each cell are conditionally independent given
the stimulus, that is, that the trial-to-trial variability or noise is indepen-
dent. However, this can lead to under- or overestimation of the precision of
the code (see Averbeck, Latham, & Pouget, 2006). In order to characterize
interneuronal correlations in the variability—“noise correlations”—it is nec-
essary to simultaneously record from multiple cells, for example, through
multielectrode array or two-photon calcium imaging techniques.

1.2 Information Theory. Information theory is a mathematical frame-
work proposed in the 1940s by engineer and mathematician Claude
Shannon (1948). While originally intended as a tool for analyzing telecom-
munications systems, information theory is more generally applicable and
has been widely used in other fields (Cover & Thomas, 2006). In contrast to
many other statistical techniques, information theory does not rely on any
assumptions about the form of distributions or the properties of underlying
processes. It quantifies all forms of probabilistic interdependency between
variables, unlike less general statistics such as the correlation coefficient.

The basic quantity of information theory is information entropy, a mea-
sure of the uncertainty or randomness of a variable. Entropy can be intu-
itively, but very loosely, thought of as a generalization of variance; although
variance has a special relevance to the gaussian distribution, entropy is
equally applicable to any arbitrary distribution. More correctly, entropy is
the amount of information required, on average, to represent the value of
a variable, and, for the purposes of this article, is measured in bits. The
entropy H(�) of a stimulus ensemble � is given by1

H(�) = −
∑
θ∈�

p(θ ) log2 p(θ ). (1.1)

Shannon or mutual information, Imut, is a measure of the informativeness
of one variable about another, for example, a neural response R about a
stimulus �. It is the portion of a variable’s entropy that can be explained by
the other variable; specifically, it is the total entropy minus the conditional

1Since both the stimulus and response variables in our model are continuous, all the
entropies calculated in our analyses are differential entropies. These are largely equivalent
to discrete entropy as described here but are obtained by integrating over a continuous
distribution rather than summing over a discrete distribution. See section B.1 for further
details.
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entropy:

Imut (�, R) = H(R) − H(R|�) = H(�) − H(�|R)

=
∑
θ∈�

p(θ )
∑
r∈R

p(r|θ ) log
p(r|θ )

p(r)
. (1.2)

Uppercase characters � and R represent the stimulus and response ensem-
bles, while lowercase characters (θ, r) represent a single value within the
ensemble.

Mutual information can be used to quantify the information provided
by an entire response ensemble about an entire stimulus ensemble, but it
cannot inform us about the precision with which specific stimuli within
the ensemble are encoded. To address this, several decompositions of the
mutual information have been proposed (see Butts, 2003, for a review), in
particular the stimulus-specific surprise, specific information, and stimulus-
specific information.

Stimulus-specific surprise is the most widely used mutual information
(MI) decomposition. Like all of the stimulus-specific measures described
here, the average of the specific surprise over the stimulus ensemble is
equal to the MI. Equation 1.3 illustrates an intuitive interpretation: the
specific surprise is the reduction in surprise (log reciprocal probability) of
a given stimulus, averaged over the response ensemble:

Isur(θ ) =
∑
r∈R

p(r|θ ) log
p(r|θ )

p(r)
=

∑
r∈R

p(r|θ )

[
log

1
p(θ )

− log
1

p(θ |r)
]

.

(1.3)

The specific surprise was one of the first stimulus-specific measures to be
applied to population coding (Theunissen & Miller, 1991), there referred to
as local transinformation. Confusingly, specific surprise is also referred to in
some articles as stimulus-specific information. Specific information is a mu-
tual information decomposition that quantifies the decrease in uncertainty
about the stimulus due to the observation of a given response:

ISI(r) =
∑
θ∈�

p(θ |r) log p(θ |r) − p(θ ) log p(θ ). (1.4)

The specific information has a unique and advantageous property in that it
is additive (DeWeese & Meister, 1999): the sum over the specific information
associated with a number of individual observations is equal to the specific
information of the whole set considered jointly.

The stimulus-specific information (SSI) is a stimulus-specific develop-
ment of the specific information (Butts, 2003). The SSI is the average specific
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information associated with a given stimulus:

ISSI(θ )=
∑
r∈R

p(r|θ )ISI(r)

=
∑
r∈R

p(r|θ )

[∑
θ ′∈�

p(θ ′|r) log p(θ ′|r) − p(θ ′) log p(θ ′)

]
. (1.5)

In this letter, we discuss both the population SSI (the SSI of the population
as a whole) and the singleton SSI, which is the SSI of a single neuron
considered in isolation. A closely related quantity, the marginal SSI (mSSI)
for a particular neuron within the population, is defined as the difference
between the population SSI and the SSI for the population of remaining
neurons with the neuron of interest removed.

The SSI is a relatively recent development and has not yet been explored
or applied as widely as the specific surprise. The SSI was until recently
considered to be intractable for all but small populations; Butts and Gold-
man (2006) calculated the SSI for a maximum of four neurons. The SSI has
been used to analyze experimental data from single neurons only (Sawtell
& Williams, 2008; Montgomery & Wehr, 2010). In this letter, we demonstrate
that this can be overcome through the use of Monte Carlo integration to
compute the average over the high-dimensional response ensemble.

Specific surprise and SSI are both stimulus-specific decompositions of
the mutual information, so how do they differ? The SSI tells us the aver-
age reduction in uncertainty—about all possible values of stimulus—that
results from the presentation of a given stimulus. The specific surprise is
the average amount by which the surprise of a given stimulus reduces
following the presentation of that stimulus. The SSI could therefore be con-
sidered less stimulus specific than the specific surprise, since it relates to an
observer’s knowledge of the full stimulus ensemble (Butts, 2003).

All information-theoretic measures have one major disadvantage in an
experimental neuroscience context. In order to calculate any of these mea-
sures directly, it is necessary to establish the full joint distribution p(�, R).
In a model, this is relatively simple, but in an experimental context, it is
at best very difficult to record the number of trials necessary to estab-
lish an accurate joint distribution. One method that has been proposed to
avoid the problem of constructing the joint distribution p(�, R) involves
calculating the transmitted information using spike train metrics (Victor &
Purpura, 1997; Victor, 2005). Since this method relies on stimulus-dependent
clustering, it is inherently suited to assessing the classification of discrete
stimuli. Another approach, which is suited to assessing the discrimination
of continuous-valued stimuli, is to estimate the mutual information by cal-
culating the Fisher information, as described in the following section. One
of the goals of this letter is to assess the validity of this approximation.
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1.3 Fisher Information. Fisher information is a statistical measure of
precision commonly used in both theoretical (see Paradiso, 1988; Seung &
Sompolinsky, 1993; Abbott & Dayan, 1999; Wilke & Eurich, 2002; Berens,
Ecker, Gerwinn, Tolias, & Bethge, 2011) and experimental (Jenison &
Reale, 2003; Harper & McAlpine, 2004; Durant, Clifford, Crowder, Price, &
Ibbotson, 2007; Gutnisky & Dragoi, 2008) studies of population coding.
Fisher information J is defined as

J(θ ) = E

[(
∂

∂θ
log p(r|θ )

)2
∣∣∣∣∣ θ

]
. (1.6)

In a population code with gaussian variability, mean response vector (tun-
ing function) f (θ ), and covariance matrix Q(θ ), the Fisher information
about θ is given by

J(θ ) = f ′(θ )TQ(θ )−1 f ′(θ ) + 1
2

Tr
[
Q(θ )−1 Q′(θ ) Q(θ )−1 Q′(θ )

]
. (1.7)

Despite its name, it is not a measure of information in the information-
theoretic sense; its units are those of the reciprocal of variance (e.g., deg−2

for an angular stimulus). Fisher information is perhaps more intuitive than
the information-theoretic measures: its reciprocal defines a lower limit (the
Cramér-Rao bound) on the variance of an unbiased estimator,2 and hence
the smallest achievable standard error. Unfortunately, this level of preci-
sion is not necessarily achievable; the performance of an optimal estimator
approaches the Cramér-Rao bound asymptotically only as the population
size tends toward infinity. Predicting what population size is required for
effective saturation of the bound is nontrivial, and this question has rarely
been addressed in the literature (Bethge, Rotermund, & Pawelzik, 2002; Xie,
2002). Fisher information should therefore be treated with some caution, as
it is not always clear whether it indicates the true coding precision of a
population.

1.4 Linking Fisher and Shannon. Brunel and Nadal (1998) linked
Fisher and Shannon information by proposing IFisher, a new information-
theoretic measure derived from Fisher information. They considered an
optimal estimator �̂(R), computed from R, with a gaussian conditional
distribution p(�̂(R)|�) and variance that saturates the Cramér-Rao bound.
This is equivalent to assuming that the population size is infinite and there-
fore that each estimate θ̂ (r) is based on an infinite number of independent
observations. Given these assumptions, we can determine the conditional

2A function of r that yields an estimate of θ .
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entropy of the estimator from the variance, and hence from the Fisher in-
formation, using the following relation:

h(�̂(R)|� = θ ) = 1
2

log2(2πeσ 2) = 1
2

log2

(
2πe
J(θ )

)
. (1.8)

This gives the conditional entropy for a specific stimulus value θ ; to obtain
h(�̂(R)|�), it is necessary to take the average over the stimulus ensemble:

h(�̂(R)|�) = E�[h(�̂(R)|� = θ )] =
∫

�

p(θ )
1
2

log2

(
2πe
J(θ )

)
dθ. (1.9)

The mutual information of stimulus and estimator is therefore given by

Imut (�, �̂(R)) = h(�̂(R)) −
∫

�

p(θ )
1
2

log2

(
2πe
J(θ )

)
dθ. (1.10)

Using the data processing inequality to relate Imut (�, �̂(R)) and Imut (�, R),

Imut (�, R) ≥ h(�̂(R)) −
∫

�

p(θ )
1
2

log2

(
2πe
J(θ )

)
dθ, (1.11)

and showing that this inequality becomes an equality in the limit of large
N and under certain regularity conditions and that h(�̂(R)) → h(�) in the
limit where the estimator is sharply peaked around its mean value (i.e.,
J(θ ) � 1), Brunel and Nadal show that Imut (�, R) can be approximated by

IFisher = h(�) −
∫

�

p(θ )
1
2

log2

(
2πe
J(θ )

)
dθ, (1.12)

which they call IFisher, since it is defined in terms of Fisher information. To
our knowledge, no assessment of how good this approximation is for finite
populations has previously been made.

In summary, information theory provides us with measures that are very
powerful but can be difficult to apply in practice. Other statistical measures,
such as the Fisher information, are often easier to measure or calculate,
but it is not always clear exactly what they tell us or what the precise
limits of their applicability are. IFisher goes some way toward bridging the
gap between mutual information and Fisher information by allowing their
absolute values to be compared in the special case of an infinite population.

1.5 Applications of Fisher and Shannon Information in Neuroscience.
Information measures tell us about the precision of neural representations
and, through careful selection of what is being measured, can also be used
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to address other questions about neural codes. Here we include a few
examples of the use of Fisher and Shannon information in neuroscience to
illustrate the range of possible applications. For more detailed information
on applications of information measures in the field of neural coding, see
reviews by Borst and Theunissen (1999), Sanger (2003), Averbeck et al.
(2006), Nelken and Chechik (2007), and Quian Quiroga and Panzeri (2009).

Information measures can be used to accurately assess how precision
changes when properties of the neural response change, such as through
adaptation. Fairhall, Lewen, Bialek, and de Ruyter van Steveninck (2001)
recorded from a single motion-responsive neuron in the fly visual system
and used information theory to show that the average information per
spike was maintained through adaptation as the variance of the stimulus
distribution was manipulated. A similar analysis of sound intensity coding
in the mammalian midbrain, this time using Fisher information, showed
that intensity tuning curves adapted to changes in the stimulus statistics,
allowing precision to be maintained across a wide stimulus dynamic range
(Dean, Harper, & McAlpine, 2005). Fisher information has also been used to
measure how adaptive changes in noise correlations affected the precision
of orientation representation by cells in macaque V1 (Gutnisky & Dragoi,
2008). Seriès, Stocker, and Simoncelli (2009) used Fisher information to-
gether with simulated decoding to analyze the reconstruction precision
and bias associated with various models of neural decoding.

The nature of the neural code—which aspects of cell and population
activity are information bearing—is generally unknown. By comparing
the coding precision of various response properties (e.g., firing rate, spike
times, or interspike intervals), information measures can be used to address
this question. An example of this type of analysis is the work of Panzeri,
Petersen, Schultz, Lebedev, and Diamond (2001) on the representation of
whisker stimuli in the barrel cortex of the rat. In this study, information the-
ory was used to examine whether spike times conveyed information about
spatial aspects of the stimulus by computing the time course of information
accumulation following the stimulus presentation for both spike count and
spike times. In this case, spike timing was found to contribute a signifi-
cant amount of information beyond that carried by the spike count alone.
More generally, the inherent temporal precision of a code can be found by
perturbing the spike times by introducing progressively larger amounts of
temporal noise and noting how the precision of the code degrades as a
function of the amount of jitter (Quian Quiroga & Panzeri, 2009).

Informational measures can also be used to examine which aspects of
the stimulus are best encoded—most precisely, represented—by a cell or
population. In this case, the type of code (e.g., spike count versus spike
timing) is fixed, and the amount of information transmitted about various
stimulus properties is compared. Machens, Gollisch, Kolesnikova, and Herz
(2005) used this approach to determine the optimal stimulus ensemble—
the distribution of stimuli that maximized the information transmitted by
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a neuron—for grasshopper peripheral auditory neurons. The optimal stim-
ulus ensemble was found to coincide with grasshopper communication
sounds and not with natural sounds in general, indicating that the commu-
nication calls and auditory system were well matched. Panzeri et al. (2001)
also provide an example of the use of a stimulus-specific surprise to identify
which whiskers are most precisely represented within a given barrel.

Information measures can also be used to determine the optimal ar-
rangement of tuning curves in order to cover a given range of stimuli.
Harper and McAlpine (2004) conducted a theoretical study to determine
the optimal (in terms of Fisher information) frequency tuning for popu-
lations of auditory neurons selective for interaural time difference (ITD).
The study predicted that cells that responded to frequencies below a cer-
tain species-specific threshold were more likely to respond maximally to
ITDs that were outside the range that occurs in nature. This arrangement
leads to the flanks of the tuning curves—the regions of maximum Fisher
information—coinciding with the physiological range of ITDs and was in
agreement with experimental findings in small mammals.

The relationship between neural precision and behavioral performance is
a key area of neural coding research. In order to examine this relationship,
it is necessary to ensure that both measures, neural and behavioral, are
addressing equivalent questions. Fisher information is rather inflexible in
this respect, as it tells us only about the precision of fine discrimination or
stimulus reconstruction, not about coarser discrimination, classification, or
detection tasks. Information-theoretic measures are more flexible as they
can be tailored to suit a particular task by changing the stimulus ensemble.
An alternative approach is to explicitly model a decoder that mimics the
decision required by the task; in this case, the performance of the decoder
can be directly compared to behavioral performance. (See Oram, Földiák,
Perrett, & Sengpiel, 1998 and Quian Quiroga & Panzeri, 2009, for reviews
that cover this approach.)

1.6 Outline. Both Fisher information and information-theoretic mea-
sures are now widely used for the study of neural codes. These tools are
no longer the preserve of theorists and are being applied by experimen-
tal research groups in the analysis of empirical data. Fisher information
is a particularly accessible tool for experimentalists, as it is generally eas-
ier to calculate than information-theoretic measures in terms of both data
requirements and computational complexity.

While both measures are widely used, studies almost invariably make
use of either Fisher information (when measuring whole populations) or
information theory (for studying single neurons). This leads to difficulties
in comparing the findings of studies based on different measures, since
they are rarely applied to the same cases. Are the two families of measure
interchangeable? Do they ultimately provide the same results as to which
stimuli are best encoded? The answer to this question is, “Sometimes”
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(Butts & Goldman, 2006), but to date, this issue has been examined only for
very small populations (number of neurons N = 4). For most biologically
relevant population codes, the relationship between Fisher and Shannon
information is unclear. Resolving this ambiguity is of crucial importance to
bridge the gap between the Fisher information and information-theoretic
strands of the literature.

In the remainder of this letter, we employ numerical models of simpli-
fied but broadly biologically realistic populations to clarify the link between
Fisher and Shannon information. We also examine in detail the limits of ap-
plicability of Fisher information. How many neurons are required before
IFisher provides a good working estimate of Imut? How does Fisher informa-
tion relate to information-theoretic measures? We go on to show, through
numerical simulation, that Fisher information can be used to obtain the
asymptotic value of SSI in the same way that it can provide the asymptotic
value of Imut.

The Matlab code used to obtain all the results in this article is
available online from ModelDB: http://senselab.med.yale.edu/modeldb/
ShowModel.asp?model=142990.

2 Model Framework

We consider here a population of N sensory neurons encoding a unidimen-
sional circular stimulus variable θ , which represents a direction (e.g., of a
moving bar). Each experiment consists of a number of virtual trials in which
the spike count ri of each neuron over a time interval τ is computed. Each
presentation of a stimulus θ is therefore associated with a response vec-
tor r = [r1, . . . , rN]. For the purposes of this study, information is assumed
to be encoded exclusively by the spike counts; the timing of individual
spikes within the measurement window is disregarded. Although this rep-
resents a simplification, the rate coding model is frequently employed for its
tractability and has been shown to be valid in a number of contexts (Heller,
Hertz, Kjaer, & Richmond, 1995; Tovée, Rolls, Treves, & Bellis, 1993).

The response of each neuron can be represented by a deterministic com-
ponent (the tuning curve) that defines the mean response over many trials
and a random component that models the trial-to-trial variability or noise;
these are described in the following sections. The model framework de-
scribed in sections 2.1 and 2.2 was used in all experiments described in
this letter except for those based on the cricket cercal interneuron model
described by Theunissen and Miller (1991), which we cover in section 2.4.

2.1 Tuning Curves. The mean firing rates of each neuron were modeled
by a circular gaussian function, given here for the ith neuron,

fi(θ ) = fbg + fmax exp

⎡
⎣−1 − cos(θ − φi)(

π
180σ f

)2

⎤
⎦ , (2.1)
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where fmax and fbg are the peak firing rate and stimulus-independent back-
ground firing rate, respectively, both measured in spikes per second; φi is the
preferred stimulus of the ith neuron, θ is the stimulus angle, and σ f is a width
parameter. Unless otherwise stated, the following parameter values were
used in all simulations involving this tuning function: fmax = 50 spikes/s,
σ f = 30◦. In all simulations the neurons’ preferred stimuli were uniformly
distributed around the 360 degree range of the stimulus angle.

2.2 Trial-to-Trial Variability. Trial-to-trial variability was modeled by
a multivariate gaussian distribution,

r ∼ N [τ f (θ ), Q(θ )], (2.2)

where r is the vector of spike counts recorded in response to stimulus θ ,
f (θ ) is the vector of mean neuronal responses defined in the preceding
section, and τ is the integration time over which spike counts are recorded
in each trial. In order to construct the interneuronal covariance matrix Q(θ ),
it is first necessary to establish the variance of each individual neuron and
any correlations in trial-to-trial variability.

A multiplicative model of neuronal variability was used:

σ 2
i (θ ) = Fτ fi(θ ), (2.3)

where F is the Fano factor, the ratio of the spike count variance σ 2
i to the

mean spike count τ fi(θ ) over the time interval τ . This type of model can
be viewed as a generalization of Poisson noise. The Poisson distribution
is rather inflexible; by using a gaussian noise model we gain the ability to
adjust the Fano factor and to model correlations in the trial-to-trial variabil-
ity. In addition, the Fisher information can be found analytically, without
having to resort to time-consuming numerical methods. For this reason,
negative spike counts have not been rectified to zero, as this would render
the variability nongaussian. Using a nonzero background firing rate helps
prevent the occurrence of negative spike counts, and a value of fbg = 10
spikes per second has been used in most simulations.

Correlations in the trial-to-trial variability are defined by a correlation
matrix C. Three forms of the correlation matrix are examined in this letter:

� Independent trial-to-trial variability, that is, uncorrelated noise. C is
the identity matrix,

Ci j = δi j, (2.4)

where δ is the Kronecker delta function.
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� Localized correlations, specifically correlations that decay exponen-
tially as a function of the difference in preferred stimuli. In this case,
C is given by

Ci j = δi j + (1 − δi j) c exp
(

−
|φi − φ j|

ρ

)
, (2.5)

where c is a correlation scaling coefficient and ρ is a correlation range
coefficient. The correlation scales examined here (0 ≤ c ≤ 0.3) cover
most biologically realistic scenarios. Unless otherwise stated, a range
value of ρ = 30 degree, was used, meaning that the extent (in stimulus
space) of the noise correlations and tuning curves was matched.

� Uniform correlations, where every pair of neurons has a trial-to-trial
variability correlation coefficient of c:

Ci j = δi j + (1 − δi j) c (2.6)

Once the correlation matrix has been defined, the covariance matrix is given
by

Qi j(θ ) = F [τ fi(θ )]0.5 Ci j [τ f j(θ )]0.5. (2.7)

A number of factors determine the coding precision of a population,
principally the maximum and minimum (background) mean firing rates,
the level of trial-to-trial variability, and the integration time over which
spike counts are recorded. The Fano factor variability model was used
because it allowed a convenient simplification to be made; increasing F
clearly increases the variability of the response, while increasing τ means
that we average the response over a longer time window and hence reduce
the effective level of variability. In the case of gaussian noise where the
variance is determined by a Fano factor, F and τ have exactly equal and
opposite effects, so we can fully capture the effect of both parameters by
considering only their ratio F/τ , which has units of spikes/s2. Further details
of this simplification are given in section A.1.

We explore F/τ initially in the interval [10−4, 103] spikes/s2, but most of
our analyses extend only up to F/τ = 100 spikes/s2. Since F is commonly
thought to be in the range [1, 3], the highest values of F/τ can be thought
of as corresponding to recording time windows in the region of 10–30 ms.
Some caution is required when applying our model with high values of F/τ .
Very short integration times lead to low mean spike counts and bring the
model into a regime where the gaussian distribution is no longer a good ap-
proximation of the Poisson-like distribution of real neuronal responses. For
this reason, we have restricted most of our analyses to F/τ ≤ 100 spikes/s2.
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2.3 Gain Modulation. To examine the effect of adaptation-like gain
changes on precision, we used the following gain modulation model (Seriès
et al., 2009):

f i
max = fmax

[
1 − β exp

(
−1 − cos(φi − φmod)(

π
180σmod

)2

)]
, (2.8)

where f i
max is the postmodulation peak firing rate of the ith neuron and

fmax is the original peak firing rate common to all neurons. The adapting
stimulus and extent of adaptation (center and width of the modulation
profile) are defined by φmod and σmod, respectively, while β = [0, 1] is the
modulation depth.

2.4 Cricket Cercal System Model. We also reimplemented a model
of the cercal interneurons in the cricket first described by Theunissen and
Miller (1991). The formulation given here is that used by Butts and Goldman
(2006).

The stimulus model is as described above, and the population consists of
four neurons with preferred directions evenly spaced at 90 degree intervals
around the 360 degree stimulus space. The mean response is given by a
rectified cosine tuning curve:

fi(θ ) = cos(θ − φi) − 0.14
0.86

. (2.9)

The standard deviation of the neuronal response is defined as a linear
function of the mean response; hence, the variance is a quadratic function
of the mean (see equation 2.3, where the variance is a linear function of the
mean). The parameter A is a variability scaling factor,

σi = A[0.048 + 0.052 fi(θ )]. (2.10)

The cosine tuning curve and noise are added together and negative values
are rectified to zero, yielding the response spike count:

ri(θ ) = [ fi(θ ) + η]+

η ∼N
(
0, σ 2

i

)
.

The rectification has the effect that the variability becomes nongaussian;
note that this is in contrast to the other simulations described in this letter,
where negative spike counts are not rectified in order to preserve gaus-
sianity. For the cricket cercal system model (see Figure 4) only, Fisher in-
formation is calculated by Monte Carlo integration in order to take into
account the nongaussian response distribution. The SSI calculations for
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Figure 1: A comparison of mutual information and IFisher in a four-neuron pop-
ulation, showing the effect of trial-to-trial variability (noise) and background
activity. (A) Mutual information and IFisher as a function of variability for several
levels of background activity. Increasing the background activity increases the
signal-to-noise ratio and reduces information. IFisher diverges from mutual infor-
mation with increasing F/τ ; background activity accelerates this divergence. At
high levels of variability, both Imut and IFisher flatten out and do not reduce with
further increases in F/τ . Error bars too small to plot (see panel B). (B) Difference
between Imut and IFisher for the same data shown in panel A, together with an
additional case fbg = 10 spikes/s. The maximum standard error across all points
is shown on the plot.

this model assume a gaussian response distribution and are therefore an
approximation.

3 Mutual Information and IFisher

While it is known that mutual information and IFisher are equal for infinite
populations, how they are related in finite populations is less clear. As dis-
cussed in section 1.4, it has been shown (Brunel & Nadal, 1998) that IFisher
forms an upper bound on the mutual information and that the mutual in-
formation approaches this bound asymptotically as N tends to infinity. To
verify this numerically and establish the population size required for IFisher
to provide an accurate estimate of the mutual information, a series of popu-
lation models was examined. In addition, a four-neuron population model
was used to assess the effect of trial-to-trial variability and background
activity in very small populations.

Figure 1 shows how mutual information and IFisher for a very small pop-
ulation (four neurons) vary as a function of the trial-to-trial variability.
Mutual information is almost equal to IFisher when the noise level is low,
even in a population of only four cells, and the difference between the two
measures increases as the variability increases (see Figure 1B). Both mutual
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information and IFisher decrease with increasing variability and are almost
logarithmically proportional to F/τ (see Figure 1A).

Background activity has a similar effect to variability. Since background
activity is uniformly present and gives no information about the stimulus,
it is essentially noise; therefore, increasing the background activity reduces
the signal-to-noise ratio, and this results in lower information values. In-
creased background activity also contributes to the divergence of MI and
IFisher, leading to greater differences between the two measures for a given
level of trial-to-trial variability.

For large values of F/τ (roughly corresponding to integration times of
less than 10 ms with a Fano factor of 1), both Imut and IFisher flatten out and
do not reduce with further increase in variability. In terms of Fisher infor-
mation, this can be understood as the regime within which the trace term
in equation 1.7 is dominant (Shamir & Sompolinsky, 2004). In this regime,
information is encoded primarily by the stimulus-dependent response vari-
ances, as opposed to the mean responses.

In general, IFisher forms an upper bound on the mutual information, as
Brunel and Nadal (1998) showed. However, for very high levels of variabil-
ity combined with background activity, IFisher can be less than the mutual
information (e.g., when fbg = 20 spikes/s in Figure 1), and can even become
negative (unlike the Fisher information, which is inherently nonnegative).
This occurs because the amount of noise in the system is such that the over-
all entropy of the response becomes significantly greater than the stimulus
entropy, while the derivation of IFisher relies on the assumption that the en-
tropies of stimulus and response are approximately equal. IFisher is therefore
best at predicting the mutual information when IFisher is nonnegative and
within the logarithmically proportional regime with respect to F/τ .

Figure 2 shows the effect of population size on Imut and IFisher under a
number of different variability regimes. Figure 2A shows that IFisher is essen-
tially proportional to log N over the range of population sizes examined.
The asymptotic approach of the mutual information to the bound formed
by IFisher is evident in Figure 2B, which shows the difference between the
two measures plotted against N. Increasing the variability F/τ increases the
difference between Imut and IFisher for a given population size. Despite this,
even for the highest level of variability modeled (e.g., equivalent to supra-
Poisson variability F = 3 with a time window of 30 ms), there is a difference
of only 3.5% between the two measures for a population of 50 neurons. For
τ = 300 ms, F = 3, the same relative error is achieved with fewer than 20
neurons.

From a decoding perspective, increasing the population size means that
there are more parallel channels carrying information about the stimulus.
With a greater number of channels, a decoder can better average out the
variability of these channels; hence, coding precision is increased. The in-
formation carried by each channel becomes increasingly redundant as N
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Figure 2: Relationship between mutual information and IFisher in populations
varying in size from 4 to 256 neurons. IFisher is, in most cases, a good approxi-
mation of Imut. The two measures diverge only for small populations (N < 100).
Errors are shown as in Figure 1. (A) Imut and IFisher for various levels of inde-
pendent variability. Imut converges toward IFisher from below with increasing N.
Parameters: fbg = 10 spikes/s. (B) This plot shows the difference between Imut
and IFisher for the same cases as in panel A. (C, D) Absolute values of, and dif-
ference between, Imut and IFisher for various values of c with uniform correlation
structure. Uniform correlations increase coding precision but delay convergence
of Imut and IFisher. Parameters: F/τ = 10 spikes/s2, fbg = 10 spikes/s. (E, F) As per
panels C and D, but with a localized correlation structure. Localized correla-
tions reduce coding precision and delay convergence between Imut and IFisher.
Parameters: F/τ = 10 spikes/s2, fbg = 10 spikes/s.
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increases, so the gain in coding precision diminishes. This is why we ob-
serve that information is approximately proportional to log N rather than N.

The relationship between Imut and IFisher is complicated slightly when
there are interneuronal correlations in the trial-to-trial variability. Figures
2C and 2D show the effect of uniform correlations. The presence of uniform
correlations slightly increases the information conveyed by the population,
but the effect is much less than that of altering the level of variability. The in-
formation increase due to uniform correlations is effectively independent of
population size. The reason for this increase in coding precision can be un-
derstood by considering the extreme case of c = 1. In this scenario, the noise
correlation coefficient for every pair of neurons is 1; therefore, every cell in
the population exhibits exactly the same random noise. The relative firing
rates of the neurons (the profile of activity across the whole population,
determined by the tuning curves) are thus perfectly preserved, allowing
accurate decoding (see Averbeck et al., 2006, for further explanation of how
noise correlations affect the precision of population codes).

Figures 2E and 2F illustrate the effect of localized correlations. In contrast
to uniform correlations, these act to reduce coding precision, although this
effect is again small in comparison to that of variability. In large populations,
the presence of localized correlations can have a marked effect, as it greatly
reduces the rate with which both Fisher and mutual information increase
with log N (Wilke & Eurich, 2002).

In general, both uniform and localized correlations act to increase the
difference between the mutual information and IFisher, although this effect
is small in comparison to that of changing the level of variability. For very
small populations (N < 10), however, uniform correlations actually reduce
the difference. The effects of localized correlations vanish as population size
decreases because the increasing spacing between tuning curves leads to a
general reduction in pairwise correlation coefficients across the population.
The effect of correlations, both uniform and localized, on the difference
between Imut and IFisher is greatest for large populations, in contrast to the
effect of variability, which diminishes with increasing N. As a result of this,
correlations reduce the rate of convergence of the two measures, whereas
variability itself does not.

The three noise correlation scenarios examined here can be seen as ly-
ing on a single continuum, where uniform correlations are equivalent to
localized correlations with infinite range and independent variability cor-
responds to zero range. The correlation range parameter ρ can be varied
continuously, allowing the change in coding precision across this contin-
uum to be explored. It is most useful to consider the correlation range
relative to the width of the tuning curves, as the tuning curve width deter-
mines the extent of activity and the range of signal (as opposed to noise)
correlations present in the population. Figure 3 shows how coding precision
varies across the correlation range continuum. The worst-case scenario in
terms of precision is when the correlation range matches the tuning curve
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Figure 3: The effect of localized correlation range on precision. The main plot
shows how, given a constant correlation strength, IFisher is dependent on the
correlation range parameter ρ. Imut is very similar and has been omitted for
clarity. Introducing short-range correlations reduces coding precision relative
to the uncorrelated noise case (top left), which is equivalent to ρ = 0. Precision
decreases as the noise correlation range increases until it reaches a minimum,
before increasing and converging toward the precision of the uniform correla-
tion case as ρ → ∞. The insets show the normalized tuning curve (solid line)
and the correlation coefficients (a slice through the correlation matrix C; dashed
line) for one neuron. Minimum information occurs where the noise correlation
profile is most closely matched to the tuning curve—where ρ = σ f = 30◦.

width. It has been shown previously how signal and noise correlations with
the same sign, as is the case with localized noise correlations, degrade cod-
ing precision (Latham & Nirenberg, 2005; Averbeck et al., 2006). Our results
can be seen as a logical extension of that principle: maximal degradation
of precision occurs when the signal correlations (tuning curves) and noise
correlations have not only the same sign but the same extent and shape.

4 Which Stimuli Are Most Precisely Represented by a Neuron?

Tuning curves are commonly used to characterize the selectivity of neurons,
but it is not always clear how they should be interpreted. Which stimuli does
a neuron represent? Which does it encode most precisely? Those at the peak
of the tuning curve, where the activity of the neuron is most prominent? Or
those at the steep flanks of the tuning curve, where the level of activity is
most strongly modulated by small changes in the stimulus?
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To address these questions, Butts and Goldman (2006) calculated the
stimulus-specific information for small populations of model neurons (N ≤
4) and showed that the stimuli that are best encoded by a neuron depend
on the level of variability. For neurons operating within a low-noise regime
(see Figure 4B), the best-encoded stimuli lie at the flanks of the tuning
curve (flank coding), while those operating in the high noise regime (see
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Figure 4D) have a single best-encoded stimulus coinciding with the peak
of the tuning curve (peak coding). This property is not unique to the SSI;
the specific surprise also gives similar predictions. This is in contrast to
Fisher information, which always predicts that the best-encoded stimuli lie
at the flanks of the tuning curve. This finding is potentially troublesome
to the field because it suggests that the interpretation of the tuning curve
depends on the measure used to determine the stimulus-specific precision.
To investigate the extent of this issue and its implications for the analysis
of experimental data, we use the SSI to further investigate how trial-to-trial
variability, and also population size, affect which stimuli are most precisely
encoded.

When determining the best-encoded stimuli for a neuron within a popu-
lation, both the marginal SSI and singleton SSI are relevant. The meaning of
the singleton and marginal SSI can be intuitively understood by considering
a scenario where a population is constructed progressively by introducing
one neuron at a time. The singleton SSI and marginal SSI are the contri-
butions to the population SSI from the first and last neurons, respectively.
Because there is redundancy in the information encoded by each neuron,
the actual informational contribution from a single neuron within a pop-
ulation lies somewhere between these bounds (e.g., the shaded regions in
Figure 4).

4.1 The Effect of Variability and Integration Time in Small Popula-
tions. As Butts and Goldman (2006), reported, the stimuli most precisely
represented by a neuron, according to the SSI, can lie at either the peak
or flanks of the tuning curve, depending on the amount of noise present.
Figure 4 illustrates this by showing the marginal and singleton SSI of the
cricket cercal interneuron model for three noise levels. The tuning curves

Figure 4: Model four-neuron population of cricket cercal interneurons as de-
scribed by Theunissen and Miller (1991). This is a reimplementation, using
our model, of the simulations that Butts and Goldman (2006) showed in their
Figure 3. (A) Tuning curves (mean responses) and three levels of trial-to-
trial variability (illustrated as curves of mean plus 1 standard deviation).
(B) Stimulus-specific information for the low-noise case (A = 1). The dotted
line shows the SSI of the whole population, and the shaded region shows the
potential range of the information contribution of a single neuron, bounded
from above by the singleton SSI and from below by the marginal SSI. Fisher
information for a single neuron is shown for comparison. Both the singleton
and marginal SSI indicate that the best-encoded stimuli lie at the flanks of the
tuning curve. (C) Intermediate-noise case (A = 3). Here the singleton SSI is
greatest at the peak of the tuning curve, while the mSSI is greatest at the flanks.
(D) High-noise case (A = 5). In this case, both the singleton and marginal SSI
are greatest at the peak of the tuning curve.
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and variability are shown in Figure 4A.3 Figures 4B to 4D show how the
best-encoded stimuli shift from the flanks of the tuning curve to the peak
of the tuning curve as the noise level is increased. Both the singleton and
marginal SSI undergo this transition, with the marginal SSI transitioning
between peak and flank regimes at a higher noise level (thus, if the sin-
gleton SSI is known to be in the flank coding regime, we can infer that the
marginal SSI, which is more difficult to calculate, is also in the flank regime).
The difference in the peak or flank transition point is due to the fact that the
marginal SSI relates to a four-neuron population, while the singleton SSI is
based on only a single neuron. The presence of more neurons in the popu-
lation increases the coding precision; we examine the effect of population
size further in section 4.2.

Under the flank coding regime, stimulus values can be read out by
matching the firing rate of the neuron with the flanks of the tuning curve.
Under the peak coding regime, it is not the precise level of activity, but
the fact that the neuron’s activity stands out from the background noise,
that conveys most of the information. This is a more robust, but coarser,
indicator of the stimulus value—we know only that it is somewhere close to
the neuron’s preferred stimulus—and this is reflected in the lower absolute
SSI values.

It is important to note that in all three cases, the predictions of Fisher in-
formation and SSI differ. The shapes of the curves are different and indicate
that different stimuli are most precisely encoded. This is a consequence of
the small number of neurons involved: the performance of an optimal de-
coder would not saturate the Cramér-Rao bound, so in this case, the Fisher
information is uninformative.

To further investigate the transition between peak and flank coding in
small populations, we used a four-neuron population model with circu-
lar gaussian tuning curves and Fano factor variability, as described in
sections 2.1 and 2.2. We calculated both the marginal SSI and marginal
specific surprise (Isur) for several levels of variability (F/τ ), so that the
predictions of these closely related measures could be compared (see
Figure 5A). Both measures have similar shapes and absolute values, and
both exhibit a transition from the flank regime to the peak regime with in-
creasing F/τ , although for Isur, the transition occurs at a higher value of F/τ ,
that is, its flank regime is more extensive. It is important to note that the
quantity F/τ represents both noise level (Fano factor) and integration time;
a transition from peak to flank regime could be caused by an decrease in the
Fano factor or, equivalently, by an increase in the time over which spikes
are counted in each trial. At low levels of variability (probably unrealisti-
cally low in biological terms), SSI and Isur are practically indistinguishable.

3Figure 4 is based on results obtained from our reimplementation of the cricket cercal
interneuron model that Butts and Goldman (2006) used, and its layout is based on that of
Figure 3 from their article.
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Figure 5: In small populations (here N = 4), SSI and specific surprise (Isur) can
be either unimodal or bimodal, depending on the level of trial-to-trial variabil-
ity. (A) Marginal SSI and marginal Isur for several levels of variability. SSI and
Isur are very similar at low F/τ values but diverge to some extent as the vari-
ability increases. Both measures undergo a transition from bimodal (greatest on
the flanks of the tuning curve) to unimodal (greatest at the peak of the tuning
curve) as the variability increases. This occurs slightly earlier for the SSI. Param-
eters: independent variability, fbg = 10 spikes/s. Error bars show the worst-case
standard error for each measure. (B) Marginal SSI peak-to-flank ratio (PFR) for
several levels of background activity fbg, with independent variability. Alter-
ing the level of background activity has a pronounced effect on the transition
between low-noise (Ipeak/I f lank < 1) and high-noise (>1) regimes, with higher
fbg causing the transition to occur at a lower level of variability. For clarity,
error bars have been omitted where the standard error is less than 0.02 bits.
(C) Marginal SSI PFR for various values of c, with uniform correlation struc-
ture. Uniform correlations improve coding precision, delaying the transi-
tion from flank to peak regime to greater levels of variability compared to
the independent case. Parameters: fbg = 10 spikes/s. Error bars omitted when
S.E. < 0.02 bits.
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Although the two measures differ more at higher F/τ values, their shapes
are qualitatively similar. Fisher information differs from both SSI and Isur
in all four cases. While the shape of the singleton Fisher information, and
hence its indication of best-encoded stimulus, remains identical across the
four levels of variability, its absolute value varies by two orders of magni-
tude (not shown). Even in the lowest-variability case (F/τ = 0.1 spikes/s2),
where all three measures indicate flank coding, the best-encoded stimuli
predicted by Fisher information and the Shannon information measures
differ. Again, this is due to the small size of the population: four neurons
are insufficient for the Fisher information to accurately predict the shape of
the SSI or specific surprise.

Figure 5B shows the effect of altering the background firing rate upon the
level of variability at which the transition between peak and flank coding
occurs. The shape of the marginal SSI is summarized by its peak-to-flank
ratio (PFR); this is defined as the ratio of the SSI at the preferred stimulus
(tuning curve peak) to its value at the maxima of the Fisher information
(flanks of the tuning curve).4 A PFR value of 1 indicates the point at which
the SSI has three peaks of approximately equal value and is therefore at the
transition between the peak and flank regimes. PFR values of less than 1
correspond to the flank coding regime, and values greater than 1 indicate
the peak coding regime.

In the absence of background activity ( fbg = 0), the population remains
within the flank coding regime up to F/τ ≈ 30 spikes/s2 (equivalent to
τ ≈ 33 ms for F = 1). Introducing a small amount of background activ-
ity ( fbg = 5 spikes/s, 10% of fmax) has a pronounced effect, with a transition
to the peak coding regime now occurring at F/τ ≈ 3.5 spikes/s2 (equiva-
lent to τ ≈ 285 ms, F = 1). Further increases in baseline activity continue to
shift the peak-to-flank transition to lower F/τ values. This is in line with the
findings of Wilke and Eurich (2002), who noted a rapid decrease in Fisher in-
formation at low levels of background activity. When fbg = 0, neurons with
preferred stimuli that differ from θ by more than about 3σ f have essentially
zero activity and hence zero variance. Increasing fbg causes these neurons—
approximately half of the population in this case—to fire at fbg spikes/s and
to have a rate variance of F fbg (spikes/s)2, thus substantially increasing the
variability of the population as a whole.

Figure 5C illustrates the effect of uniform correlations in trial-to-trial
variability on the peak-to-flank transition. Uniform correlations improve

4The SSI f lank value does not necessarily correspond to the local maximum of the SSI, as
the peaks of the SSI and Fisher information become aligned only as N → ∞. The PFR can
therefore be subject to fluctuations as parameter sweeps cause local SSI features to move
across the stimulus value at which SSI f lank is calculated. The advantage of calculating
the PFR in this way is that it is necessary to compute the SSI only at two predetermined
points, as opposed to over the entire range of the stimulus variable.
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coding precision and shift the regime transition to greater F/τ values relative
to the uncorrelated case, although this is less pronounced than the shift
caused by small levels of background activity.

4.2 The Effect of Population Size. As demonstrated by Butts and Gold-
man (2006) and described in the preceding section, in very small popula-
tions, the SSI can predict either flank or peak coding, depending on the
amount of noise, noise correlation, and the time over which spikes are
counted. To date, this has not been investigated in populations larger than
four neurons. Here we address the effect of population size on the stimuli
that are best encoded by a neuron. Do both peak and flank regimes occur in
larger populations? How does population size affect the transition between
regimes?

By using Monte Carlo integration (Metropolis & Ulam, 1949) to compute
the SSI and specific surprise (see section B.2), we were able to extend the
analysis of Butts and Goldman to populations of up to 256 neurons. Such a
sampling approach is necessary because the dimensionality of the response
distribution is equal to the number of neurons, so any algorithm that ex-
haustively integrates over this distribution quickly becomes intractable as
the population size increases. In order to validate our Monte Carlo ap-
proach, we first replicated (see Figure 4) the results shown in Figure 3 of
Butts and Goldman (2006), which describe the SSI for the cricket cercal
interneurons and were obtained using quadrature integration. Because of
the similarity between the SSI and specific surprise, the unique advantages
of the specific information (on which the SSI is based), and due to the
Monte Carlo estimate converging more rapidly for the SSI than for the spe-
cific surprise (because it averages over the stimulus ensemble), we leave
aside the specific surprise and focus on the SSI for the remainder of the
letter.

We used the SSI to examine how the best-encoded stimulus of a neuron
is affected by the size of the population that it exists within. Figure 6A
shows the marginal SSI for populations of various sizes; all curves are
normalized to allow comparison. The mSSI shows a transition from the peak
coding to the flank coding regime with increasing N, and the shape of the
mSSI approaches the shape of the Fisher information as N becomes larger,
although the units and absolute values of the two measures are different.

The transition between peak and flank regimes with N is shown in Fig-
ure 6B for several levels of variability, using the peak-to-flank ratio to sum-
marize the shape of the marginal SSI. For very low levels of variability
(F/τ = 0.1 spikes/s2), the population operates in the flank regime at all
population sizes, but at more realistic noise levels, a transition occurs. The
population size at which this happens depends on the level of variabil-
ity: more noise means that a larger population size is required before the
population moves into the flank coding regime.
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Figure 6: Marginal SSI and marginal SSI peak-to-flank ratio (PFR) in popula-
tions of various sizes. The stimulus value that is most precisely encoded by a
neuron varies with population size. Maximum information occurs at the flanks
of the tuning curve in large populations but can occur at the peak or flanks in
small populations, depending on the level of variability. (A) Marginal SSI for var-
ious population sizes with independent variability. This plot illustrates the tran-
sition of greatest SSI from peak to flank of the tuning curve and toward the shape
of the singleton Fisher (heavy dashed line). Parameters: F/τ = 10 spikes/s2,
fbg = 10 spikes/s. Error bar: worst case across all N, θ . (B) PFR versus N for
various levels of independent variability. The F/τ = 10 spikes/s2 case corre-
sponds to the SSI curves in panel A. Increasing variability delays the transition
(SSIpeak/SSI f lank = 1) to greater population sizes. Parameters: fbg = 10 spikes/s.
Error bars < 0.02 bits omitted. (C) The effect of correlated variability on marginal
SSI; localized correlations bring the neuron closer to the peak regime, while uni-
form correlations have the opposite effect. Singleton Fisher information shown
for comparison. At this population size, the mSSI has not yet converged to
the shape of the Fisher information. Parameters: N = 16, F/τ = 10 spikes/s2,
fbg = 10 spikes/s. Error bar: worst case across all N, c. (D) PFR curves show-
ing the effect of correlated variability. Localized correlations increase PFR,
corresponding to reduced coding precision, while uniform correlations have
the opposite effect. Parameters: F/τ = 10 spikes/s2, fbg = 10 spikes/s. Error bars
< 0.02 bits omitted.
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For sufficiently large populations (approximately N > 50), variability
no longer determines the coding regime and no (qualitative) discrepancy
exists between the measures. Both measures predict that neurons operate
in the flank coding regime (for τ in the range [10, 30] ms given F in the
range [1, 3]). Population size, along with trial-to-trial variability, is therefore
an important determinant of the coding properties of individual neurons
within a population.

Figures 6C and 6D show the effect of correlations. In line with other
findings, uniform correlations increase precision and drive the population
toward the flank coding regime, while localized correlations have the op-
posite effect. Figure 6D shows the effect on the PFR and transition point;
localized correlations decrease the PFR and shift the transition between
peak and flank regimes to lower N, while localized correlations have the
opposite effect. The effect of localized correlations on the PFR is greatest
at moderate population sizes around the regime transition, while uniform
correlations have the greatest effect in small populations. To understand
this difference, recall that the effect of localized correlations on precision
is negligible in very small populations and increases with population size
(see Figure 2E), whereas the effect of uniform correlations does not vary
with population size (see Figure 2C).

4.3 SSIFisher. As described in section 1.4, IFisher allows us to make quan-
titative comparisons between Fisher information and Shannon mutual in-
formation when considering overall coding precision, but when dealing
with stimulus-specific precision, only qualitative comparisons have previ-
ously been possible. Qualitatively, Figure 6A suggests that the shape of
the marginal SSI converges toward the shape of the singleton Fisher infor-
mation as the population size goes to infinity. To allow this convergence
to be investigated quantitatively (i.e., using the same units), we propose a
new measure: SSIFisher. SSIFisher is a stimulus-specific decomposition of IFisher;
more specifically, it is the SSI of an optimal gaussian-distributed estimator
that saturates the Cramér-Rao bound (a formal definition is given in section
A.2). SSIFisher is an approximation of the SSI, in the same way that IFisher is an
approximation of the mutual information. Here we consider the marginal
SSIFisher (mSSIFisher), which is calculated in the same way as the marginal SSI
but is based on SSIFisher rather than the SSI itself.

Figure 7A shows mSSI, mSSIFisher, and Fisher information together for
several population sizes. Fisher information is shown on a separate scale
for ease of comparison, and the scales are adjusted such that the maximum
of SSI and SSIFisher is level with the maximum Fisher information. The three
curves converge with increasing N; in the case of SSI and SSIFisher, this
convergence is to the same absolute value, which equals Fisher information
up to a multiplicative constant. The SSIFisher, like the SSI, undergoes a peak-
to-flank transition with increasing N. Interestingly, the transition occurs
later in SSIFisher than in the SSI itself, which is surprising as SSIFisher is
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Figure 7: Marginal SSI converges toward marginal SSIFisher as population size
increases. (A) Marginal SSI, marginal SSIFisher, and singleton Fisher information
for populations of different sizes. The scales of the y-axes are adjusted so that
the maximum value of mSSI, mSSIFisher is aligned with the maximum value of
the Fisher information. Parameters: independent variability, F/τ = 10 spikes/s2,
fbg = 10 spikes/s. Error bar: worst case across θ . (B) Convergence of marginal SSI
and marginal SSIFisher for various parameter values. The y-axis quantity is de-
fined as 
mSSI = RMS(mSSI−mSSIFisher )

RMS(mSSI) , where RMS denotes the root mean square.
Case A: localized correlations, c = 0.3, F/τ = 10 spikes/s2, fbg = 10 spikes/s.
Case B: independent variability, F/τ = 10 spikes/s2, fbg = 10 spikes/s. Case C:
independent variability, F/τ = 1 spikes/s2, fbg = 10 spikes/s. Case D: indepen-
dent variability, F/τ = 1 spikes/s2, fbg = 0 spikes/s. Error bars < 5% relative
error omitted. (C) Convergence of Imut and IFisher roughly parallels the conver-
gence of mSSI and mSSIFisher. 
in f = |Imut−IFisher|

Imut
Parameter values are the same as

in panel B for each case. Error bars < 5% relative error omitted.
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derived from Fisher information, which relates to an upper bound on coding
precision.

The convergence of mSSI and mSSIFisher roughly parallels that of mu-
tual information and IFisher, but the latter converge more quickly. Figures 7B
and 7C show the difference between Shannon and Fisher information-based
measures, as a proportion of the Shannon information, for stimulus-specific
(SSI, SSIFisher) and overall (Imut, IFisher) quantities, respectively. It can be seen
that convergence occurs at approximately the same rate for both sets of
measures and that the relationships of the four variability cases are similar
on both plots. Note that the scales on the two plots are different; the propor-
tional difference between Imut and IFisher is less than that between SSI and
SSIFisher. This is due to differences in what is being measured: the marginal
measures compared by 
mSSI relate to the rate of change of overall infor-
mation with respect to N rather than the absolute value.

4.4 Summary. For large populations (more than around 50 neurons
and for integration times down to around 10–30 ms), both Fisher infor-
mation and the marginal SSI indicate that neurons provide information
primarily about stimuli at the flanks of their tuning curves. Even for large
populations, there is some difference between the shapes of Fisher informa-
tion and marginal SSI, but this diminishes as the population size increases.
Smaller populations, however, can operate in either the flank coding regime
or a peak coding regime where neurons convey most information about
stimuli at the peaks of their tuning curves. Here, the regime depends on
the level of trial-to-trial variability (noise), integration time window, the
amount and structure of noise correlations, and population size. Increased
noise, the presence of localized noise correlations, and reduced popula-
tion size all drive the system toward the peak-coding regime. Conversely,
decreased noise, uniform noise correlations, and larger population sizes
have the opposite effect, moving the population toward the flank coding
regime. For small, noisy populations—those operating in the peak coding
regime—Fisher information gives a misleading indication of which stimuli
are best represented by a neuron. This discrepancy between best-encoded
stimulus predictions (mSSI versus Fisher) reflects the divergence of over-
all coding precision (Imut versus IFisher) in small populations described in
section 3.

5 Gain Modulation

Gain modulation due to adaptation or attention-like processes is an of-
ten observed phenomenon in sensory neurons (see Wark, Lundstrom, &
Fairhall, 2007). We applied the principles introduced above to examine the
functional consequences of adaptation-like localized negative gain modula-
tion, using the model described in section 2.3. Reducing the overall activity
of the population is equivalent to reducing the signal-to-noise ratio, so the
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negative gain modulation causes a reduction in Imut and IFisher. This is well
understood, so our investigation focused on the stimulus-specific precision:
Does adaptation affect the representation of the adapting stimulus itself or
adjacent stimuli on the flanks of the affected tuning curves? Is the coding
precision of the adapted stimulus increased, decreased, or unchanged?

Population Fisher information and population SSI were calculated for
108 model populations with different combinations of population size, tun-
ing curve width, modulation width, and modulation depth. The shape of
both Fisher information and SSI for the population depends mainly upon
the relative width of the tuning curves and modulation profile (the function
defining the maximum response rates for each neuron; see Figure 8). When
the modulation profile is narrower than the tuning curves, both Fisher in-
formation and SSI have a double trough shape, with the coding precision of
stimuli adjacent to the adapting stimulus reduced, while the representation
of the adapting stimulus itself remains relatively unaffected (see Figure 8A,
bottom left panel).5 Hol and Treue (2001) observed a similar effect in a
human psychophysical study. They observed that adaptation had no effect
on the discrimination threshold at the adapting stimulus but increased the
threshold for neighboring stimuli on both sides.

As the modulation width is increased relative to the tuning curve width,
the representation of the adapting stimulus becomes progressively less pre-
cise relative to neighboring stimuli (bottom center panel, in this example,
σmod = σ f ). Ultimately, as the modulation width is increased beyond the
tuning curve width, the adapting stimulus becomes the least precisely rep-
resented stimulus and coding precision increases with distance from the
adapter (top right panel).

Although the shapes and values of the population Fisher information
and SSI in Figure 8A are different, the coding precision that they imply is
the same. Figure 8B shows the population SSI and SSIFisher for the same six
cases. In all cases the SSI and SSIFisher are very similar. This is to be expected
given the size of the population (N = 128). With this number of neurons
the performance of the code is close to saturating the Cramér-Rao bound
and the two measures are close to equal. The slight difference between
SSI and SSIFisher in the immediate neighborhood of the adapting stimulus
(the bottom of the trough) may be due to low response firing rates, which

5The extreme case for this scenario is an infinitesimally narrow modulation profile.
In this case, the gain modulation would affect only a single neuron, and the singleton
Fisher information of this cell would effectively be subtracted from the population Fisher
information, leading to the double trough shape with the representation precision of the
adapting stimulus unchanged and that of neighboring stimuli (those lying on the slopes
of the modulated tuning curve) reduced. As the modulation width is increased, more
neurons are affected and the troughs and central peaks begin to cancel out, eventually
resulting in a single trough with the maximum reduction in coding precision occurring
at the adapting stimulus itself.
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Figure 8: The effect of adaptation-like gain modulation on stimulus-specific
coding precision. (A) Population SSI and Fisher information for various com-
binations of tuning curve width (σ f ) and modulation profile width (σmod). SSI
and Fisher are normalized so that their maximum values coincides on the plots.
Similarly, zero for both measures coincide at the bottom of each plot. A single
unmodulated tuning curve is shown, along with the modulation profile, to al-
low the widths to be visualized. The shape of both SSI and Fisher information
is dependent on the relative width of modulation and tuning curves. When
σmod < σ f , a double trough shape is produced. The closer the two widths, the
less pronounced the central peak. For σmod > σ f , there is a single trough with
the least precise coding occurring at the center of the modulation (the “adapt-
ing” stimulus). Parameters: modulation depth 90%, independent variability,
N = 128, F/τ = 5 spikes/s2, fbg = 10 spikes/s. (B) Population SSI and SSIFisher for
the same cases shown in panel A. Both measures are plotted on the same scale.
Although the values and shapes of SSI and Fisher shown in panel A differ, they
indicate the same precision: SSIFisher and SSI are almost equal across all stim-
ulus values. (C) Trough shapes for population SSI and Fisher converge with
increasing N, but the shapes of both functions are largely independent of N for
large populations. Measures are normalized such that maximum and minimum
values are aligned. Parameters as above, σ f = 20◦.
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locally increase the signal-to-noise level and delay convergence of the two
measures.

Figure 8C illustrates the convergence of the shape of the population SSI
and Fisher information as the population size is increased. In the same way
that singleton Fisher information is usually in agreement with the marginal
SSI, we find here that population Fisher information in most cases predicts
the same pattern of stimulus-specific precision as the population SSI. For
large populations (N > 32), the shapes of the two measures are very similar.
Differences are observed only within a restricted domain, where N is small
and the modulation width is narrow relative to the tuning curve width.
In these cases, Fisher information overestimates, relative to the SSI, the
representation precision for the adapting stimulus.

6 Discussion

Information theory provides a powerful and general set of tools for as-
sessing the precision of neural codes, but information-theoretic measures
are difficult to compute for experimentally characterized populations due
to the large number of observations required. Fisher information is an al-
ternative statistical measure of precision that is generally easier to com-
pute but specifies an upper bound on coding precision that is achieved
only in infinite populations. Brunel and Nadal (1998) showed that IFisher,
an information-theoretic measure derived from Fisher information, could
provide an estimate of the mutual information Imut in infinite populations
(given certain conditions). However, how these two measures are related
in finite populations had not previously been investigated. By numerically
simulating neural populations of various sizes and levels of variability, we
found that the mutual information is well approximated by IFisher (3.5% er-
ror) in populations with more than approximately 50 neurons, even with
high variability and small time windows (e.g., F = 3 and τ = 30 ms). For
populations with fewer neurons, IFisher tends to overestimate the mutual in-
formation, and this disparity is greater for smaller populations. Increasing
the amount of trial-to-trial variability (noise) or reducing the time window
over which spikes are counted increases the difference between Imut and
IFisher, but it does not change the rate at which the two measures converge
as a function of population size. Noise correlations slightly increase the dif-
ference between the two measures and delay their convergence, but these
effects are small in comparison to those of population size or noise level.

We next addressed a related question: Which stimuli are best encoded
by a neuron operating within a population? Those that elicit the maximum
response, corresponding to the peak of the tuning curve, or those coinciding
with the flanks? We compared the predictions of Fisher information to
those of the marginal SSI, a stimulus-specific decomposition of mutual in-
formation. Butts and Goldman (2006) found that in very small populations,
the most precisely encoded stimulus indicated by the marginal SSI was



Fisher and Shannon Information in Finite Neural Populations 1771

dependent on the level of variability and sometimes conflicted with the
predictions of Fisher information. Neurons operating in the peak coding
regime have also been found experimentally, using the SSI to analyze single
neurons (Montgomery & Wehr, 2010). Using a novel Monte Carlo approach
to computing the SSI, we extended the analysis of Butts and Goldman to
populations of up to 256 neurons. We found that the shape of the mSSI
converges toward that of the Fisher information as the population size
increases, and consequently, both measures predict the same best-encoded
stimulus in large populations. Discrepancies occur only within a restricted
domain of small populations (approximately N < 50) combined with high
levels of trial-to-trial variability or short integration times. Under these
conditions, the mSSI indicates peak coding, whereas Fisher information, as
in all cases, indicates flank coding. Outside this limited domain, both mea-
sures indicate that neurons operate in the flank coding regime. Decreasing
variability, increasing integration time, and uniform noise correlations drive
the system toward the flank coding regime, while localized correlations
have the opposite effect. This dependence upon integration time means that
the best encoded stimulus for an individual neuron is a dynamic property:
neurons will operate in the peak coding regime immediately following
stimulus presentation and transition to flank coding as time progresses.

As with any other modeling study, our analysis has a number of limita-
tions. Perhaps most important, the results are specific to fine discrimination
and estimation tasks, as Fisher information is defined as a very local mea-
sure of precision around a particular stimulus value. This limitation also
applies to the information-theoretic measures, since the stimulus ensemble
was constructed in such a way as to simulate an estimation or fine dis-
crimination task in order for the SSI and Imut to be comparable to Fisher
information and IFisher. For detection tasks, and probably also for coarse
discrimination tasks, neurons best encode stimuli at the peak of their tun-
ing curves. Fisher information is not applicable to these tasks, but other
measures, such as Chernoff distance (Kang, Shapley, & Sompolinsky, 2004),
can be used to estimate the mutual information as a function of the dis-
crimination coarseness (the distance between stimuli). We also assume that
information is carried by a rate code; in cases where this assumption does
not hold, the tuning curves and rate variability do not necessarily determine
the best-encoded stimuli, as additional information about other stimuli may
be conveyed by spike timing. In addition, all models were based on broadly
tuned neurons; we did not investigate how tuning curve width contributes
to determining the coding regime.

Some other studies addressing the validity of Fisher information have
asked: What are the properties of population codes that are optimal in terms
of Fisher information? Tuning curves optimized to give maximal Fisher in-
formation would not resemble those observed experimentally (Bethge et al.,
2002). If the tuning curves are constrained to be bell shaped, maximizing
the Fisher information of a population means that tuning curve width is
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dependent on population size and narrow in large populations. This is due
to the fact that Fisher information increases as the tuning function width is
decreased, up to the point where the overlap of neighboring tuning curves
is insufficient to give full coverage of the stimulus space (Berens et al.,
2011). These studies also found that Fisher-optimal population codes are
often suboptimal in terms of other measures. Our work does not contradict
the findings of these studies but addresses a separate question: When can
Fisher information be used to assess the precision of population codes that
have been characterized experimentally? Our model neurons are broadly
tuned, in line with experimental findings (see Clifford, 2002), and the width
does not vary with population size. While Fisher information appears to
be a poor tool for assessing the optimality of population codes, our results
suggest that it is a valid measure of discrimination accuracy, albeit with
limitations.

Our findings have two main implications for the experimental charac-
terization of neurons. First, Fisher information can be used to obtain ap-
proximations of both Imut and mSSI for neurons within large populations.
As such, it is a reliable indicator of both coding precision and best-encoded
stimuli for discrimination or reconstruction. In cases where it appears that
the population size is well above the N ≈ 50 threshold (e.g., hundreds of
cells), Fisher information can be safely used given the limitations we have
discussed. Second, for smaller populations where the number of neurons
is known or can be accurately estimated, it is feasible to compute the SSI
(and even the marginal SSI) if the tuning curves, trial-to-trial variability,
and pairwise correlations can be modeled. It is then possible to determine
whether neurons are operating in the peak or flank coding regime. The
question as to which coding regimes the brain operates in is an interesting
one, and cannot yet be answered in most cases because it depends in part
on the size of the population involved in the relevant computation, which
is generally unknown.

There has been much interest in calculating Fisher information from ex-
perimental data, and there are several possible approaches to estimating it,
depending on the data available. The simplest method of obtaining Fisher
information is to compute it directly from the tabular conditional response
distribution p(r|θ ) by numerically evaluating equation 1.6 (as in Dean et al.,
2005). Measuring p(r|θ ) directly is feasible only for single neurons or very
small populations, so the population Fisher information can be obtained
by this method only in the case of uncorrelated noise. Alternatively, it is
possible to use experimental data to construct a model of tuning curves and
variability and then to compute Fisher information from the model (as in
Durant et al., 2007). Independent noise is typically modeled as a Poisson
or univariate gaussian distribution and correlated noise by a multivariate
gaussian distribution. While the best-encoded stimuli in large populations
can be identified by computing the singleton Fisher information, computing
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the population Fisher information under a gaussian variability model re-
quires knowledge of the stimulus-dependent covariance matrix Q(θ ). The
measurement of Q(θ ) represents the most challenging obstacle to comput-
ing the population Fisher information, as this requires many trials and
simultaneous recording of multiple neurons. In addition, any inaccuracies
will be amplified when Q(θ ) is inverted to obtain Q−1(θ ) (see equation 1.7).
It is not yet clear what the best method of determining the covariance matrix
is or how many trials are required to measure Q(θ ) with sufficient accuracy
to obtain a reasonable estimate of the Fisher information; more work is
required to establish the answers to these open questions. Additionally, the
level of noise correlations present in the brain is a matter of active debate
(Ecker et al., 2010); in cases where trial-to-trial variability is effectively un-
correlated, the process of calculating the population Fisher information is
greatly simplified.

The problem of determining the covariance matrix can be avoided by
using a decoding approach. This involves constructing a function that esti-
mates the stimulus given single-trial response spike counts for each neuron
in the population. The variance of this estimator θ̂ (r) over many trials can
then be used to determine a lower bound on the Fisher information:

J(θ ) ≥ 1

Var(θ̂ (r))
. (6.1)

This approach has been used in theoretical studies (Seriès, Latham, &
Pouget, 2004; Beck, Ma, Kiani, Hanks, Churchland et al., 2008; Chelaru
& Dragoi, 2008). With this method, the most difficult part of the analysis
is constructing an efficient estimator; this can be done using a number of
machine learning techniques, and the quantity of data required to train the
estimator will depend on the method used.

However the Fisher information is obtained, it tends to be much less
difficult to calculate than information-theoretic measures such as the SSI
in terms of both data requirements for experimentalists and computational
complexity for numerical modelers. Although we have focused on the SSI,
we have also shown that specific surprise gives similar predictions as to the
best-encoded stimuli. Other stimulus-specific decompositions of the mutual
information are possible, in particular the local information or stimulus
information density proposed by Bezzi, Samengo, Leutgeb, and Mizumori
(2002). Under the uniform stimulus distribution used in our model, the latter
measure approaches the specific surprise (up to a multiplicative constant),
so its predictions in the cases examined here are likely to be very close to
those of specific surprise.

An important direction for future research is to examine how coding
accuracy and best-encoded stimuli depend on the coarseness of discrimi-
nation. We have shown that large populations probably operate in the flank
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coding regime for fine discrimination tasks, and it is clear that the peak cod-
ing regime is relevant for very broad discrimination, where entirely separate
groups of neurons are activated in response to the stimuli. What happens
between these two edge cases has yet to be investigated. The stereotypical
nature of most population code models points to further open questions.
Most theoretical work to date has assumed that population codes are based
on regular arrays of uniform unimodal tuning curves. What effect does het-
erogeneity of tuning curve width or shape have on the coding regime? The
peak and flank coding regimes discussed here are specific to bell-shaped
tuning curves. For monotonic tuning functions, high Fisher information
corresponds to steeply sloping regions of the curve; this is equivalent to the
flank coding regime. It is not clear what the best encoded stimulus is for
monotonic tuning curves and tasks other than fine discrimination. In fu-
ture work, our intention is to extend the current study to monotonic tuning
curves and other behavioral tasks besides fine discrimination.

7 Conclusion

We have shown that it is feasible to compute the SSI for populations con-
sisting of hundreds of neurons using Monte Carlo integration. This means
that the SSI has the potential to be used to analyze experimental results at
the population level, as well as for single neurons. Although the full set of
results presented in this letter represents considerable computational effort,
calculating the SSI for a single empirically determined model, even with
200 neurons, requires at most a day or so of computing time on a desktop
computer.

The predictions of the SSI and Fisher information converge rapidly as a
function of the number of neurons in the population. The exact pattern of
convergence depends on the parameters of the chosen model. However, we
found that for populations larger than around 50 neurons, they are quali-
tatively identical, even with high levels of variability or short integration
times. The stimuli that are best encoded are then always those falling at
the flanks of the tuning curves. This indicates that there is no need to go to
very large population sizes for the SSI and the Fisher information to yield
similar predictions. Marginal SSI and Fisher information differ only over a
restricted domain (small temporal windows, small populations, high noise),
which seems to roughly correspond to the range where Fisher information
“fails” (i.e., where the Cramér-Rao bound is not saturated by maximum-
likelihood or other optimal decoders; Bethge et al., 2002; Xie, 2002).

Correlations in the trial-to-trial variability (noise correlations) have a
relatively minor effect on the convergence of information-theoretic and
Fisher-based measures. The 50-neuron guideline threshold for qualitative
convergence holds in the presence of biologically realistic levels of correla-
tion, whether uniform or localized.
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Appendix A: Mathematical Supplement

A.1 Justification for Use of F/τ. The response spike counts are dis-
tributed as a multivariate gaussian with mean τ f (θ ) and covariance Q(θ ):

r(θ ) ∼ N [τ f (θ ), Q(θ )],

where the covariance matrix is defined as

Qi, j(θ ) = F [τ fi(θ )]α Ri, j [τ f j(θ )]α

= Fτ 2α fi(θ )α Ri, j f j(θ )α.

Collecting the nonscalar terms as P(θ ),

Pi, j(θ ) = fi(θ )α Ri, j f j(θ )α,

gives the following expressions for Q(θ ), its inverse, and its derivative with
respect to θ :

Q(θ ) = Fτ 2αP(θ ),

Q(θ )−1 = 1
Fτ 2α

P(θ )−1,

Q′(θ )= Fτ 2αP′(θ ).

The Fisher information is given by (this is the same as equation 1.7, but
the integration time τ is stated explicitly rather than being included in the
mean response term):

J(θ ) = τ f ′(θ )TQ(θ )−1τ f ′(θ ) + 1
2

Tr
[
Q(θ )−1 Q′(θ ) Q(θ )−1 Q′(θ )

]
.

Separating out the scalar terms as above, we have:

J(θ )= τ f ′(θ )T 1
Fτ 2α

P(θ )−1 τ f ′(θ )

+1
2

Tr
[

1
Fτ 2α

P(θ )−1 Fτ 2αP′(θ )
1

Fτ 2α
P(θ )−1 Fτ 2αP′(θ )

]
.

= τ 2−2α

F
f ′(θ )TP(θ )−1 f ′(θ ) + 1

2
Tr

[
P(θ )−1 P′(θ ) P(θ )−1 P′(θ )

]
.
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Thus, for Fano factor variability (i.e., when α = 0.5), F and τ appear in the
expression for Fisher information only in the ratio τ/F:

J(θ ) = τ

F
f ′(θ )TP(θ )−1 f ′(θ ) + 1

2
Tr

[
P(θ )−1 P′(θ ) P(θ )−1 P′(θ )

]
.

A.2 Stimulus-Specific IFisher. The stimulus-specific IFisher (SSIFisher) is
the SSI of an optimal gaussian estimator θ̂opt(r) with variance equal to the
Cramér-Rao bound:

IssiF (θ )=
∑

θ̂opt (r)∈�

p(θ̂opt(r)|θ )

×
[ ∑

θ∈�

p(θ |θ̂opt(r)) log p(θ |θ̂opt(r)) − p(θ ) log p(θ )

]

where p(θ |θ̂opt(r)) =
p(θ̂opt(r)|θ )p(θ )∑

θ∈� p(θ̂opt(r)|θ )p(θ )

and (due to the Cramér-Rao bound) p(θ̂opt(r)|θ ) = N (θ, J(θ )−1)

Appendix B: Implementation Details

B.1 Differential Entropy and Continuous Mutual Information.

H(X) =−
∑
x∈X

p(x) log p(x). (B.1)

h(X) = −
∫

X
p(x) log p(x) dx. (B.2)

Shannon entropy, equation B.1, can be calculated only for discrete variables.
Differential entropy, equation B.2, is a generalization of Shannon entropy
to continuous-valued random variables but unfortunately does not retain
all of the useful properties of Shannon entropy. In particular, differential
entropy is not invariant under a change of variables, such as a change in the
units used to measure the stimulus. Also, while Shannon entropy is always
positive, differential entropy can take negative values. However, mutual
information computed using differential entropies (continuous mutual in-
formation) does not suffer from these problems and retains the properties of
its discrete counterpart (Cover & Thomas, 2006). Since both the stimulus and
response variables in our model are continuous, all the entropies discussed



Fisher and Shannon Information in Finite Neural Populations 1777

here in relation to our model are differential entropies. How these entropies
were calculated in order to find the SSI is described in the following section.

B.2 Calculating Imut , SSI, and Isur. In all simulations, SSI and specific
surprise were calculated simultaneously using Monte Carlo integration.
The method for computing the SSI is given here as an example; the MI and
specific surprise are evaluated similarly. Referring to equation 1.5, it can
be seen that the SSI is an average over the entire N-dimensional response
ensemble (the outer summation). Since the complexity of computing the
average over the response ensemble grows exponentially with N, the calcu-
lation quickly becomes intractable as the population size increases. Monte
Carlo integration enables us to avoid this problem by sampling at random
from the response distribution, computing the value of the measure based
on this sample, and averaging across all samples to find the final value. This
process is repeated until the desired level of precision is reached.

The SSI is defined as

ISSI(θ ) =
∑
r∈R

p(r|θ )

[∑
θ ′∈�

p(θ ′|r) log p(θ ′|r) − p(θ ′) log p(θ ′)

]
. (B.3)

To calculate the SSI for a given stimulus θ , we first sample a vector of
neuronal responses rk (where the superscript k is an index over Monte
Carlo samples) from the conditional distribution:

rk ∼ p(r|θ ) = N [τ f (θ ), Q(θ )]. (B.4)

We then calculate p(r|θ ′) for many values of θ ′ regularly spaced across the
entire stimulus space �; this is trivial since the conditional distribution
p(R|θ ) is known. We can then apply Bayes’ theorem to find p(θ ′|r),

pk(θ ′|r) = p(rk|θ ′)p(θ ′)∫
�

p(rk|θ ′)p(θ ′) dθ ′ , (B.5)

where the integral
∫
�

p(r|θ ′)p(θ ′)dθ ′ is evaluated by numerical quadrature.
We then calculate the specific information sample:

Ik
SI(θ ) =

∫
�

pk(θ ′|r) log pk(θ ′|r) − p(θ ′) log p(θ ′) dθ ′. (B.6)

This sampling process is repeated many times, and the SSI is found by
averaging over the samples:

ISSI(θ ) = 1
n

n∑
k=1

Ik
SI(θ ), (B.7)
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where n is the number of MC samples. The estimate of the SSI is guaranteed
to converge toward the true value as n → ∞. The precision of the estimate
was monitored by computing the standard deviation sSSI(θ ) of the MC
samples. This allowed the standard error of the SSI estimate to be found
using the equation for the standard error of the mean:

SESSI(θ ) = sSSI(θ )√
n

. (B.8)

The standard error decreases as the number of samples increases, and the
sampling process was halted when the standard error reached a predeter-
mined threshold, or when n reached a predetermined limit. In the figures,
the final standard error of the MC estimates are indicated by the error bars.
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