6,422 research outputs found

    Multiple Data-Dependent Kernel Fisher Discriminant Analysis for Face Recognition

    Get PDF
    Kernel Fisher discriminant analysis (KFDA) method has demonstrated its success in extracting facial features for face recognition. Compared to linear techniques, it can better describe the complex and nonlinear variations of face images. However, a single kernel is not always suitable for the applications of face recognition which contain data from multiple, heterogeneous sources, such as face images under huge variations of pose, illumination, and facial expression. To improve the performance of KFDA in face recognition, a novel algorithm named multiple data-dependent kernel Fisher discriminant analysis (MDKFDA) is proposed in this paper. The constructed multiple data-dependent kernel (MDK) is a combination of several base kernels with a data-dependent kernel constraint on their weights. By solving the optimization equation based on Fisher criterion and maximizing the margin criterion, the parameter optimization of data-dependent kernel and multiple base kernels is achieved. Experimental results on the three face databases validate the effectiveness of the proposed algorithm

    Novel image descriptors and learning methods for image classification applications

    Get PDF
    Image classification is an active and rapidly expanding research area in computer vision and machine learning due to its broad applications. With the advent of big data, the need for robust image descriptors and learning methods to process a large number of images for different kinds of visual applications has greatly increased. Towards that end, this dissertation focuses on exploring new image descriptors and learning methods by incorporating important visual aspects and enhancing the feature representation in the discriminative space for advancing image classification. First, an innovative sparse representation model using the complete marginal Fisher analysis (CMFA-SR) framework is proposed for improving the image classification performance. In particular, the complete marginal Fisher analysis method extracts the discriminatory features in both the column space of the local samples based within class scatter matrix and the null space of its transformed matrix. To further improve the classification capability, a discriminative sparse representation model is proposed by integrating a representation criterion such as the sparse representation and a discriminative criterion. Second, the discriminative dictionary distribution based sparse coding (DDSC) method is presented that utilizes both the discriminative and generative information to enhance the feature representation. Specifically, the dictionary distribution criterion reveals the class conditional probability of each dictionary item by using the dictionary distribution coefficients, and the discriminative criterion applies new within-class and between-class scatter matrices for discriminant analysis. Third, a fused color Fisher vector (FCFV) feature is developed by integrating the most expressive features of the DAISY Fisher vector (D-FV) feature, the WLD-SIFT Fisher vector (WS-FV) feature, and the SIFT-FV feature in different color spaces to capture the local, color, spatial, relative intensity, as well as the gradient orientation information. Furthermore, a sparse kernel manifold learner (SKML) method is applied to the FCFV features for learning a discriminative sparse representation by considering the local manifold structure and the label information based on the marginal Fisher criterion. Finally, a novel multiple anthropological Fisher kernel framework (M-AFK) is presented to extract and enhance the facial genetic features for kinship verification. The proposed method is derived by applying a novel similarity enhancement approach based on SIFT flow and learning an inheritable transformation on the multiple Fisher vector features that uses the criterion of minimizing the distance among the kinship samples and maximizing the distance among the non-kinship samples. The effectiveness of the proposed methods is assessed on numerous image classification tasks, such as face recognition, kinship verification, scene classification, object classification, and computational fine art painting categorization. The experimental results on popular image datasets show the feasibility of the proposed methods

    Direct kernel biased discriminant analysis: a new content-based image retrieval relevance feedback algorithm

    Get PDF
    In recent years, a variety of relevance feedback (RF) schemes have been developed to improve the performance of content-based image retrieval (CBIR). Given user feedback information, the key to a RF scheme is how to select a subset of image features to construct a suitable dissimilarity measure. Among various RF schemes, biased discriminant analysis (BDA) based RF is one of the most promising. It is based on the observation that all positive samples are alike, while in general each negative sample is negative in its own way. However, to use BDA, the small sample size (SSS) problem is a big challenge, as users tend to give a small number of feedback samples. To explore solutions to this issue, this paper proposes a direct kernel BDA (DKBDA), which is less sensitive to SSS. An incremental DKBDA (IDKBDA) is also developed to speed up the analysis. Experimental results are reported on a real-world image collection to demonstrate that the proposed methods outperform the traditional kernel BDA (KBDA) and the support vector machine (SVM) based RF algorithms

    Dimension Reduction by Mutual Information Discriminant Analysis

    Get PDF
    In the past few decades, researchers have proposed many discriminant analysis (DA) algorithms for the study of high-dimensional data in a variety of problems. Most DA algorithms for feature extraction are based on transformations that simultaneously maximize the between-class scatter and minimize the withinclass scatter matrices. This paper presents a novel DA algorithm for feature extraction using mutual information (MI). However, it is not always easy to obtain an accurate estimation for high-dimensional MI. In this paper, we propose an efficient method for feature extraction that is based on one-dimensional MI estimations. We will refer to this algorithm as mutual information discriminant analysis (MIDA). The performance of this proposed method was evaluated using UCI databases. The results indicate that MIDA provides robust performance over different data sets with different characteristics and that MIDA always performs better than, or at least comparable to, the best performing algorithms.Comment: 13pages, 3 tables, International Journal of Artificial Intelligence & Application

    Speaker verification using sequence discriminant support vector machines

    Get PDF
    This paper presents a text-independent speaker verification system using support vector machines (SVMs) with score-space kernels. Score-space kernels generalize Fisher kernels and are based on underlying generative models such as Gaussian mixture models (GMMs). This approach provides direct discrimination between whole sequences, in contrast with the frame-level approaches at the heart of most current systems. The resultant SVMs have a very high dimensionality since it is related to the number of parameters in the underlying generative model. To address problems that arise in the resultant optimization we introduce a technique called spherical normalization that preconditions the Hessian matrix. We have performed speaker verification experiments using the PolyVar database. The SVM system presented here reduces the relative error rates by 34% compared to a GMM likelihood ratio system

    A CASE STUDY ON SUPPORT VECTOR MACHINES VERSUS ARTIFICIAL NEURAL NETWORKS

    Get PDF
    The capability of artificial neural networks for pattern recognition of real world problems is well known. In recent years, the support vector machine has been advocated for its structure risk minimization leading to tolerance margins of decision boundaries. Structures and performances of these pattern classifiers depend on the feature dimension and training data size. The objective of this research is to compare these pattern recognition systems based on a case study. The particular case considered is on classification of hypertensive and normotensive right ventricle (RV) shapes obtained from Magnetic Resonance Image (MRI) sequences. In this case, the feature dimension is reasonable, but the available training data set is small, however, the decision surface is highly nonlinear.For diagnosis of congenital heart defects, especially those associated with pressure and volume overload problems, a reliable pattern classifier for determining right ventricle function is needed. RV¡¦s global and regional surface to volume ratios are assessed from an individual¡¦s MRI heart images. These are used as features for pattern classifiers. We considered first two linear classification methods: the Fisher linear discriminant and the linear classifier trained by the Ho-Kayshap algorithm. When the data are not linearly separable, artificial neural networks with back-propagation training and radial basis function networks were then considered, providing nonlinear decision surfaces. Thirdly, a support vector machine was trained which gives tolerance margins on both sides of the decision surface. We have found in this case study that the back-propagation training of an artificial neural network depends heavily on the selection of initial weights, even though randomized. The support vector machine where radial basis function kernels are used is easily trained and provides decision tolerance margins, in spite of only small margins
    corecore