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Kernel Fisher discriminant analysis (KFDA) method has demonstrated its success in extracting facial features for face recognition.
Compared to linear techniques, it can better describe the complex and nonlinear variations of face images. However, a single
kernel is not always suitable for the applications of face recognition which contain data from multiple, heterogeneous sources,
such as face images under huge variations of pose, illumination, and facial expression. To improve the performance of KFDA in
face recognition, a novel algorithm namedmultiple data-dependent kernel Fisher discriminant analysis (MDKFDA) is proposed in
this paper.The constructed multiple data-dependent kernel (MDK) is a combination of several base kernels with a data-dependent
kernel constraint on their weights. By solving the optimization equation based on Fisher criterion and maximizing the margin
criterion, the parameter optimization of data-dependent kernel and multiple base kernels is achieved. Experimental results on the
three face databases validate the effectiveness of the proposed algorithm.

1. Introduction

Face recognition has received extensive attention in many
image processing applications. In these applications, the
original face images commonly lie in a high-dimension space,
resulting in low recognition accuracy and high cost. Existing
image feature extraction algorithms can roughly fall into two
categories: feature extraction based on signal processing and
learning-based feature extraction [1–4]. By the utilization of
learning-based approach, the original images can be mapped
into a lower-dimensional feature space in which the essential
structure of the original space becomes clear. To this end,
Fisher discriminant analysis (FDA) [5], principal component
analysis (PCA), and locality preserving projection (LPP)
[6] are typical learning-based feature extraction techniques.
Moreover, one of the most famous algorithms applied in
face recognition is Fisher face, which is based on a two-
phase framework: PCA plus LDA [3, 4]. It maximizes the
between-class scatter and minimizes the within-class scatter
to separate one class from the others. However, the entire
above mentioned algorithms are linear subspaces analysis
methods in essence, so they are inadequate to depict the

complexity face images. To overcome the limitation, many
nonlinear algorithms, such as kernel-based PCA (KPCA) [7]
and FDA (KFDA) [8], have been devised and attained good
performance in face recognition. It has been demonstrated
thatKFDA is a feasible nonlinear feature extraction algorithm
for face recognition. However, the performance of KFDA is
sensitive to the kernel function selection and its parameters.
Moreover, the ability of single kernel is quite limited in
depicting geometrical structure of some aspects for the input
data.Once the face images are captured under huge variations
of pose, illumination, facial expression, and so forth, single
kernel-based FDA could not be suitable for the face recogni-
tion. In summary, kernel functions play an important part in
face recognition applications [9, 10].

As a consequence, various approaches have been devel-
oped to handle the above issues, and two main categories are
identified as follows. (1) Devise multiple kernels by convex
combination of multiple basic kernels. If so, different data
descriptors can be used to depict the geometrical structures of
original data from multiple views, which can complement to
improve recognition performance [11–14]. (2) Develop data-
dependent kernel (DK) by conformal transformation of the
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basic kernel. If so, the designed kernel would be adaptive to
the input data, leading to a substantial improvement in the
performance of KFDA algorithm [15–17].

In this paper, to improve the performance of KFDA,
we proposed a novel feature extraction algorithm for face
recognition calledmultiple data-dependent kernel Fisher dis-
criminant analysis (MDKFDA) based on the multiple kernel
learning (MKL). The main contributions of this paper lie in
the following. (1) By introducing MDK into KFDA, maxi-
mum discrimination performance can be achieved in feature
space. (2) Multiple image features extracted in different
descriptors are fully utilized in the MDKFDA algorithm.
(3) Nonlinear discriminant features are produced by the
adoption of MKL.

The rest of this paper is organized as follows. Section 2
shows a brief overview of MKL and KFDA. In Section 3,
we illustrate the proposed MDKFDA algorithm and intro-
duce the parameter optimization scheme for data-dependent
kernel and multiple base kernels. Extensive experimental
results on face recognition are reported in Section 4. Finally,
Section 5 concludes this paper.

2. Related Work

In this section, we will briefly introduce some previous works
related to this paper, including KFDA and MKL.

2.1. Kernel FisherDiscriminant Analysis. KFDA is a nonlinear
feature extraction algorithm which combines the nonlinear
kernel trick with FDA. Because of its ability to extract the
discriminatory nonlinear features, KFDA and its variations
are frequently used for face recognition. In this paper, a two-
phased KFDA framework proposed by Yang et al. [18] is
adopted to construct the MDKFDA. The two-phased KFDA
framework mainly contains two parts: KPCA is applied to
reduce the dimension of input space, and then LDA is used to
further extract the features in the KPCA-transformed space.

Given the input training sample set including𝑁 samples:

S = {(x
𝑖
, 𝑐
𝑖
) | x
𝑖
∈ R
𝑑
, 𝑐
𝑖
∈ {1, . . . , 𝐶}}

𝑁

𝑖=1
, (1)

where x
𝑖
is the training sample of 𝑑-dimension and 𝑐

𝑖

represents the class label of x
𝑖
. Given a sample x, its nonlinear

mapped image can be denoted as Φ(x), and the discriminate
feature vector z can be obtained as follows:

z = GTPT
Φ (x) . (2)

Equation (2) contains two transformations P and G. The
transformation P represents KPCA which transforms the
input space R𝑑 into feature space R𝑝, while the transfor-
mation G is the Fisher discriminant transformation in the
KPCA-transformed space R𝑝.

Firstly, the issues in the process of KPCA are described as
follows.

For a given nonlinear mappingΦ, the input spaceR𝑝 can
be projected into the feature space F , which is considered as

Hilbert space.The covariance operator on the feature space F
can be represented as

H =
1

𝑁

𝑁

∑
𝑖=1

(Φ (x
𝑖
) − Φ) (Φ (x

𝑖
) − Φ)

T
, (3)

where Φ = (1/𝑁)∑
𝑁

𝑖=1
Φ(x
𝑖
). The way to find the nonzero

eigenpair of𝐻 is illustrated as follows. Previously, to simplify
the deduced process, the covariance operator is reformulated
as

H̃ =
1

𝑁

𝑁

∑
𝑖=1

Φ(x
𝑖
)Φ(x
𝑖
)
T
. (4)

Let us denoteQ = [Φ(x
1
), . . . , Φ(x

𝑁
)] and construct a𝑁×𝑁

Gram matrix K̃ = QTQ, whose element K̃
𝑖𝑗
can be calculated

through the use of kernel tricks:

K̃
𝑖𝑗
= Φ(x

𝑖
)
T
Φ(x
𝑗
) = ⟨Φ (x

𝑖
) , Φ (x

𝑗
)⟩ = 𝑘 (x

𝑖
, x
𝑗
) . (5)

Centralize K̃ by K = K̃ − 1
𝑁
K̃ − K̃1

𝑁
+ 1
𝑁
K̃1
𝑁
, where 1

𝑁
=

(1/𝑁)
𝑁×𝑁

.
We adopt the 𝑡 largest positive eigenvalues 𝜆

1
≥ 𝜆
2
≥

⋅ ⋅ ⋅ ≥ 𝜆
𝑡
ofK and their corresponding orthonormal eigenvec-

tors u
1
, u
2
, . . . , u

𝑡
to calculate the eigenvectors w

1
,w
2
, . . . ,w

𝑡

of H̃ as follows:

w
𝑗
=

1

√𝜆𝑗

Qu
𝑗
, 𝑗 = 1, 2, . . . , 𝑡. (6)

Hence, we can get the KPCA-transformed feature vector y =
(y
1
, . . . , y

𝑡
)
T, and the 𝑖th KPCA feature is obtained by

y
𝑗
= wT
𝑗
Φ (x)

=
1

√𝜆𝑗

uT
𝑗
QT

Φ (x)

=
1

√𝜆𝑗

uT
𝑗
[𝑘 (x
1
, x) , 𝑘 (x

2
, x) , . . . , 𝑘 (x

𝑁
, x)] .

(7)

Above all, we can describe the P as follows:

P = (w
1
, . . . ,w

𝑡
) . (8)

Secondly, the issues in the process of Fisher discriminant
transformation are illustrated as follows.

FDA is used for further feature extraction in the KPCA-
transformed space R𝑝. In order to maximize the Fisher
criterion, we first define the between-class scatter operator
SΦ
𝑏
and the within-class scatter operator SΦ

𝑤
in feature space

F . Consider

SΦ
𝑏
=

1

𝑁

𝑐

∑
𝑖=1

𝑙
𝑖
(mΦ
𝑖
−mΦ
0
) (mΦ
𝑖
−mΦ
0
)
T
, (9)

SΦ
𝑤
=

1

𝑁

𝑐

∑
𝑖=1

𝑙𝑖

∑
𝑗=1

(Φ (x
𝑖𝑗
) −mΦ

𝑖
) (Φ (x

𝑖𝑗
) −mΦ

𝑖
)
T
, (10)
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where 𝑙
𝑖
is the number of training samples in class 𝑖, x

𝑖𝑗

represents the 𝑗th samples in class 𝑖, 𝑚Φ
𝑖
is the mean of the

mapped samples in class 𝑖, and 𝑚Φ
0
is the mean across all

mapped samples. Thus, we can obtain the Fisher criterion by

JΦ (V) =
VTSΦ
𝑏
V

VTSΦ
𝑤
V
, (11)

whereV is the discriminant vector. According to Mercer ker-
nel function theory, each V can be described by the elements
of feature space {Φ(x

1
), Φ(x

2
), . . . , Φ(x

𝑁
)}, and there always

exist coefficients 𝜑
𝑖
, 𝑖 = 1, 2, . . . , 𝑁, such that

V =

𝑁

∑
𝑖=1

𝜑
𝑖
Φ(x
𝑖
) = ΨΧ, (12)

where Ψ = [Φ(x
1
), Φ(x

2
), . . . , Φ(x

𝑁
)], Χ = [𝜑

1
, . . . , 𝜑

𝑁
]
T.

Hence, the Fisher optimal discriminant vectors are the
stationary points V

1
, . . . ,V

𝑑
, 𝑑 ≤ 𝑁, and, correspondingly,

the transformation G in (2) can be denoted by

G = (V
1
, . . . ,V

𝑑
) . (13)

2.2. Multiple Kernel Learning. In general, MKL refers to the
process of learning a kernel machine which is the combi-
nation of multiple base kernel functions/matrices. Recent
research efforts have shown that MKL is not only able to
find an optimal combination weight of base kernels but also
improve the performance of the resulting classifiers.

As mentioned above, S is the 𝑑-dimensional training
sample set. For a given nonlinear mapping Φ, the original
data is projected into empirical feature space F :

Φ : x
𝑖
∈ R
𝑑
→ Φ(x) ∈ F . (14)

Using Mercer’s theorem [19], the inner product of two
transformed vectors Φ(x) in the nonlinear space can be
expressed as

𝑘 (x
𝑖
, x
𝑗
) = ⟨Φ (x

𝑖
) , Φ (x

𝑗
)⟩ , (15)

where the operator ⟨⋅⟩ means inner product. Such kernel
function is usually calledMercer kernel, and some commonly
used Mercer kernels are shown as follows [20]:

linear kernel: 𝑘 (x, y) = xTy,

Gaussian kernel: 𝑘 (x, y) = exp(
−
x − y

2

𝑟2
) ,

polynomial kernel: 𝑘 (x, y) = (x ⋅ y + 𝑑)𝑙.

(16)

Among them, Gaussian kernel is one of the most widespread
kernels. However, Gaussian kernel can only reflect the local
nonlinear feature of the data, while the linear kernel and
polynomial kernel are overall kernel functions. It has been
shown that the kernel-based feature extraction algorithm
is appropriate for solving the nonlinear problems in face

recognition. Nevertheless, the disadvantage of single kernel-
based algorithms is lack of the generalization representation
capability for multidimensional and multiclass data. Recent
applications have indicated thatMKLcould provide us amore
flexible framework to fuse information from different data
source and enhance the performance of classifiers [21–26].

In the MKL framework, given 𝑀 basic kernel functions
{𝑘
𝑚
}
𝑀

𝑚=1
, the multiple kernel function can be generally repre-

sented as [27]

𝐾multiple (x𝑖, x𝑗) =
𝑀

∑
𝑚=1

𝜃
𝑚
𝑘
𝑚
(x
𝑖
, x
𝑗
) ,

s.t. 𝜃
𝑚
≥ 0,

𝑀

∑
𝑚=1

𝜃
𝑚
= 1,

(17)

where the weighted coefficient 𝜃
𝑚
is commonly obtained by

solving the optimal object function of the kernel subspace
learning algorithm. It is noticed that optimizing the coeffi-
cient 𝜃

𝑚
is a critical problem for improving the performance

of MKL.

3. The Proposed Multiple Data-Dependent
Kernel (MDK)

As mentioned above, given a training data S, the elements of
MDK can be formulated as

𝐾MDDK (x, x

) = 𝑞 (x) 𝑞 (x)

𝐼

∑
𝑖=1

𝛾
𝑖
𝑘


𝑖
(x, x) , (18)

where x, x ∈ R𝑑, 𝑘
𝑖
(x, x) is the 𝑖th basic kernel chosen

from the commonly used ones such as Gaussian kernel or
polynomial kernel, 𝐼 is the number of candidate basic kernel,
𝛾
𝑖
is the weight for the 𝑖th basic kernel, and 𝑞(⋅) is the factor

function called data-dependent kernel (DK) which takes the
form of

𝑞 (x) = 𝛼0 +
𝑚

∑
𝑖=1

𝛼
𝑖
𝑘Gaussian (x, xec) , (19)

where 𝛼
𝑖
, 𝑖 = 0, 1, . . . , 𝑚 is the combination coefficient. The

set {xec ∈ R𝑑}, called the “empirical cores,” are chosen from
the training data. It is notable that MDK also satisfies the
Mercer condition, since𝐾MDDK(x, x) is equal to multiply DK
and basic kernels together, which is the linear combination of
kernels.

As mentioned above, we can see that the main problems
in MDK are to choose the optimal weight 𝛾

𝑖
for basic kernels

𝑘
𝑖
(x, x) and the coefficients 𝛼

𝑖
of data-dependent kernel

𝑞(x). In this paper, we adopt the iterative method based on
the maximum margin criterion (MMC) and Fisher scalar
to optimize weight 𝛾

𝑖
and coefficient 𝛼

𝑖
, respectively. The

schematic of MDK is shown in Figure 1.

3.1. Weight Optimization for Multiple Kernels. To gain good
performance of MDKFDA for face recognition, learning
proper weights of candidate base kernels is illustrated in this



4 Mathematical Problems in Engineering

Input data

Basic kernel 1

Data-dependent 
kernel

Multiple data-dependent 
kernel (MDK)

Basic kernel 2

Data-dependent 
kernel

Basic kernel I 

Data-dependent 
kernel

· · ·

𝛾1 𝛾2
𝛾I

Figure 1: Schematic of the proposed MDK.

section. In KFDA, we measure the class separability in kernel
feature space and the kernel Fisher criterion can be expressed
as

JΦ (V) =
tr (VTSΦ

𝑏
V)

tr (VTSΦ
𝑤
V)

. (20)

In this section, the diagonalization strategy [28] is adopted to
find the optimalVopt, based on which, the maximummargin
criterion (MMC) [29] is employed as the objective function
to optimize weight 𝛾

𝑖
, 𝑖 = 1, 2, . . . , 𝐼. Consider

L (𝛾) = tr (Vopt
TSΦ
𝑏
Vopt) − tr (Vopt

TSΦ
𝑤
Vopt) . (21)

To maximize L(𝛾), we introduce a Lagrangian to solve the
optimization problem as follows:

L (𝛾, 𝛼) = F (𝛾) + 𝛼(
𝐼

∑
𝑖=1

𝛾
𝑖
− 1) . (22)

A series of partial derivatives can be achieved through dif-
ferentiating L(𝛾, 𝛼) with respect to 𝛾

1
, 𝛾
2
, . . . , 𝛾

𝐼
and 𝛼. By

setting these derivatives to zero, we can useNewton’s iteration
method to solve these equations, and the optimized weights
for multiple kernels are achieved as follows:

𝛾 = (𝛾
1
, 𝛾
2
, . . . , 𝛾

𝐼
, 𝛼)

T
. (23)

3.2. Coefficients Optimization for Data-Dependent Kernel.
Since the optimized weights for multiple kernels have been
achieved, investigating proper coefficients of DK is described
in this section. In empirical feature space, let J =

tr(SΦ
𝑏
)/ tr(SΦ

𝑤
) denote the Fisher scalar, and SΦ

𝑏
and SΦ

𝑤
have

been defined in (9) and (10), respectively. Given training
dataset S, K = [𝑘(x

𝑖
, x
𝑗
)]
𝑁×𝑁

is the kernel matrix for all
samples, whose element can be described as 𝑘

𝑖𝑗
= 𝑘(x

𝑖
, x
𝑗
),

(𝑖, 𝑗 = 1, 2, . . . , 𝑁), and K
𝑝𝑞
(𝑝, 𝑞 = 1, 2, . . . , 𝐶) is the 𝑛

𝑝
× 𝑛
𝑞

submatrices of the K. Hence, K can be written as

K = (

K
11

K
12

⋅ ⋅ ⋅ K
1𝐶

K
21

K
22

⋅ ⋅ ⋅ K
2𝐶

...
... ⋅ ⋅ ⋅

...
K
𝐶1

K
𝐶2

⋅ ⋅ ⋅ K
𝐶𝐶

). (24)

Consequentially, the between-class scatter matrix B and
within-class scatter matrixW can be expressed as follows:

B =

[
[
[
[
[
[
[
[
[

[

1

𝑙
1

K
11

0 ⋅ ⋅ ⋅ 0

0
1

𝑙
2

K
22

⋅ ⋅ ⋅ 0

...
... d

...
0 0 ⋅ ⋅ ⋅

1

𝑙
𝐶

K
𝐶𝐶

]
]
]
]
]
]
]
]
]

]

−

[
[
[
[
[
[
[
[
[

[

1

𝑁
K
11

1

𝑁
K
12

⋅ ⋅ ⋅
1

𝑁
K
1𝑐

1

𝑁
K
21

1

𝑁
K
22

⋅ ⋅ ⋅
1

𝑁
K
2𝐶

...
... ⋅ ⋅ ⋅

...
1

𝑁
K
𝐶1

1

𝑁
K
𝐶2

⋅ ⋅ ⋅
1

𝑁
K
𝐶𝐶

]
]
]
]
]
]
]
]
]

]

,

W =

[
[
[
[

[

𝑘
11

0 ⋅ ⋅ ⋅ 0

0 𝑘
22

⋅ ⋅ ⋅ 0
...

... d
...

0 0 ⋅ ⋅ ⋅ 𝑘
𝑁𝑁

]
]
]
]

]

−

[
[
[
[
[
[
[
[
[

[

1

𝑙
1

K
11

0 ⋅ ⋅ ⋅ 0

0
1

𝑙
2

K
22

⋅ ⋅ ⋅ 0

...
... ⋅ ⋅ ⋅

...
0 0 ⋅ ⋅ ⋅

1

𝑙
𝐶

K
𝐶𝐶

]
]
]
]
]
]
]
]
]

]

.

(25)
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For the multiple kernel 𝐾multiple(x𝑖, x𝑗) = ∑
𝑀

𝑚=1
𝜃
𝑚
𝑘
𝑚
(x
𝑖
, x
𝑗
),

B andW can be replaced by the B
0
and theW

0
, respectively,

and their corresponding kernel matrix is translated into K =

Q𝐾multipleQ, in which Q = diag(𝑞(x
1
), 𝑞(x
2
), . . . , 𝑞(x

𝑁
)) and

𝑞(x) have been defined in (19), and then we have

q =
[
[
[
[

[

1 𝑘
1
(x
1
, a
1
) ⋅ ⋅ ⋅ 𝑘

1
(x
1
, a
𝑚
)

1 𝑘
1
(x
2
, a
1
) ⋅ ⋅ ⋅ 𝑘

1
(x
2
, a
𝑚
)

...
... d

...
1 𝑘
1
(x
𝑁
, a
1
) ⋅ ⋅ ⋅ 𝑘

1
(x
𝑁
, a
𝑚
)

]
]
]
]

]

[
[
[
[

[

𝛼
0

𝛼
1

...
𝛼
𝑚

]
]
]
]

]

≜ K
1
𝛼. (26)

Theorem 1. Let 1
𝑘
be the 𝑘-dimensional vector with unity

elements; the Fisher scalar J is equivalent to

J =
1T
𝑁
B1
𝑁

1T
𝑁
W1
𝑁

=
qT B
0
q

qTW
0
q
. (27)

Proof. As shown in Section 2.1, the dimension of empirical
feature space is set as 𝑝 (𝑝 < 𝑁). Then, H and H

𝑖
, 𝑖 =

1, . . . , 𝐶, are, respectively, defined as the 𝑁 × 𝑝 and 𝑙
𝑖
× 𝑝,

𝑖 = 1, . . . , 𝐶 matrices whose rows are the vectors {hT
𝑗
}, 𝑗 =

1, 2, . . . , 𝑁 and {hT
𝑗
}, 𝑗 = 1, 2, . . . , 𝑙

𝑖
. The mΦ

0
and mΦ

𝑖
in

Section 2.1 can be expressed as follows:

mΦ
0
=

1

𝑁

𝑁

∑
𝑗=1

h
𝑗
=

1

𝑁
HTI
𝑁
,

mΦ
𝑖
=
1

𝑙
𝑖

𝑙1+⋅⋅⋅+𝑙𝑖

∑
𝑗=𝑙𝑖−1+1

h
𝑗
=
1

𝑙
𝑖

HT
𝑖
I
𝑙𝑖
, 𝑖 = 1, . . . , 𝐶.

(28)

Moreover, since the empirical feature spacemaintains the dot
product, (24) is equivalent to

K = HHT
= [H1 H

2
⋅ ⋅ ⋅ H

𝐶]

[
[
[
[
[
[

[

HT
1

HT
2

...
HT
𝐶

]
]
]
]
]
]

]

, (29)

where K
𝑖𝑗
= H
𝑖
HT
𝑗
, 𝑖, 𝑗 = 1, 2, . . . , 𝐶. As such, tr(SΦ

𝑏
) and

tr(SΦ
𝑤
) can be described as

tr (SΦ
𝑏
) =

1

𝑁

𝐶

∑
𝑖=1

𝑙
𝑖
(mΦ
𝑖
−mΦ
0
)
T
(mΦ
𝑖
−mΦ
0
)

=
1

𝑁

𝐶

∑
𝑖=1

𝑙
𝑖
mΦ
𝑖

TmΦ
𝑖
−mΦ
0

TmΦ
0

=
1

𝑁

𝐶

∑
𝑖=1

1

𝑙
𝑖

IT
𝑙𝑖
H
𝑖
HT
𝑖
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From the above description, it is remarkable that B = QB
0
Q

andW = QW
0
Q, where QI

𝑁
= q. Finally, the relationship is

proved:

J =
tr (SΦ
𝑏
)

tr (SΦ
𝑤
)
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1T
𝑁
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0
q

qTW
0
q
. (31)

In order to obtain the optimal coefficients, J should be
maximized. Since q = K

1
𝛼, J can be reformulated as

J (𝛼) =
𝛼
TKT
1
B
0
K
1
𝛼

𝛼TKT
1
W
0
K
1
𝛼
, (32)

whereM
0
= KT
1
B
0
K
1
and N

0
= KT
1
W
0
K
1
. To maximize J(𝛼),

the standard gradient approach is adopted. Given that

J
1 (𝛼) = 𝛼

TKT
1
B
0
K
1
𝛼,

J
2 (𝛼) = 𝛼

TKT
1
W
0
K
1
𝛼,

(33)

respectively, the partial differential of J
1
(𝛼) and J

2
(𝛼) with

respect to 𝛼 are
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K
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(34)

and the partial differential of J(𝛼) is

𝜕J (𝛼)
𝜕𝛼

=
2

J2
2

(J
2
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1
B
0
K
1
− J
1
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1
W
0
K
1
)𝛼. (35)

Let 𝜕J(𝛼)/𝜕𝛼 = 0; it is obtained that

J
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W
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1
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(36)

Hence, J is equal to the largest eigenvalue of the matrix
(KT
1
W
0
K
1
)
−1

(KT
1
B
0
K
1
), and the optimal 𝛼 is the eigenvector

corresponding to the largest eigenvalue; thus, an iteration
algorithm is employed to calculate the optimal 𝛼:

𝛼
(𝑚+1)

= 𝛼
(𝑚)

+ 𝜀(
1

J
2

KT
1
B
0
K
1
−

J
J
2

KT
1
W
0
K
1
)𝛼
(𝑚)
, (37)

where 𝜀 is the learning rate, and it is given by

𝜀 (𝑡) = 𝜀0 (1 −
𝑡

𝑁
) , (38)

where 𝜀
0
is the initial learning rate, 𝑡, and 𝑁 denotes the

current iteration number and prespecified iteration number,
respectively. In summary, the optimal coefficients can be
obtained by choosing 𝜀

0
and𝑁 properly.

Figure 2: Sample images of one person in the ORL database.

Figure 3: Samples images of one person in the YALE database.

3.3. Complete MDKFDA Algorithm. In summary of the
discussion so far, the steps of complete MDKFDA algorithm
are described as follows.

Step 1 (construct the MDK). Gaussian kernel is adopted to
construct the data-dependent kernel (DK), while the linear
kernel, Gaussian kernel, and polynomial kernel are employed
as the base kernels of multiple kernel function.

Step 2 (optimize the weights). The maximum margin cri-
terion (MMC) is employed as the objective function to
optimize weights for multiple kernels, and the optimized
coefficients for DK are achieved by virtue of the Fisher scalar.

Step 3 (transform the data). The MDK is used to transform
the input space R𝑑 into feature space R𝑝, by which the orig-
inal input data {x

𝑖
| x
𝑖
∈ R𝑑}

𝑁

𝑖=1
is converted into feature data

{y
𝑖
| y
𝑖
∈ R𝑝}

𝑇

𝑖=1
. The transformation is P = (w

1
, . . . ,w

𝑡
).

Step 4 (extract the Fisher discriminant vectors). SΦ
𝑏
, SΦ
𝑤

in R𝑝 are calculated to get the Fisher criterion JΦ(V). By
maximizing JΦ(V), the Fisher optimal discriminant vectors
are achieved, and the Fisher discriminant transformation is
G = (V

1
, . . . ,V

𝑑
).

Step 5 (obtain the MDKFDA feature vector). Based on the
first four steps, the expression of theMDKFDA feature vector
z = GTPTΦ(x) is obtained.

4. Experimental Results and Discussions

In this section, we conduct several experiments on three
face databases to evaluate the performance of the pro-
posed MDKFDA algorithm by comparing it with several
widespread algorithms in face recognition, including PCA,
LPP, FDA, KPCA, KFDA, and DKFDA. The ORL face
database [30], YALE face database [31], and PIE face database
[32] are adopted in the experiments, and partial sample
images of one person from different databases are shown in
Figures 2, 3, and 4. In the following experiments, we select
randomly 5 images per individual as training set and the
rest 5 for testing. To make the experiments more reasonable,
we repeated the trails 10 times to achieve an average perfor-
mance.
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Table 1: Comparison of recognition ratio between linear algorithms
and MDKFDA.

Algorithm PCA LPP LDA MDKFDA
Recognition ratio (%) 82.0 75.5 74.3 95.8

Figure 4: Sample images of one person in the PIE database.

4.1. Face Recognition Using ORL Database. The ORL face
database contains 400 face images of 40 individuals, and
variations in these 400 face images include angle, lighting,
expression, and face details. As shown in Figure 2, the size
of all the original images were shaped into 48 ∗ 48 pixels,
and the primary part of the original image was reserved.
Three kernels are employed as the base kernels of multiple
kernel function in MDK, including linear kernel, Gaussian
kernel, and polynomial kernel. Moreover, Gaussian kernel is
adopted to construct DK. Table 1 shows the comparison of
maximal average recognition ratio between several nonkernel
algorithms and the proposed MDKFDA algorithm. Table 2
reports the comparison of maximal average recognition ratio
between several single kernel-based algorithms and the
proposed MDKFDA. According to the experiment results,
the MDKFDA algorithm outperforms the other algorithms,
which implies that the MDKFDA can integrate multiple
base kernels with data-dependent kernel (DK) effectively to
improve the recognition ratio. Besides, it can be seen that
all the single kernel-based feature extraction algorithms out-
perform their corresponding linear versions, which indicates
that the kernel-based algorithm is advantageous for face
recognition.

4.2. Face Recognition Using YALE Database. The YALE
database contains 165 front view face images from 15 individ-
uals. Each individual has eleven images that vary with expres-
sion and configurations. Three kernels are employed as the
base kernels of multiple kernel function in MDK, including
linear kernel, Gaussian kernel, and polynomial kernel. More-
over, Gaussian kernel is adopted to construct DK. Table 3
displays the average recognition rates of PCA, LDA, LPP, and
MDKFDA. Table 4 reports the performance comparison of
different kernel-based algorithms, including KPCA, KFDA,
DKFDA, and MDKFDA. The results indicate that the
MDKFDA algorithm outperforms the other algorithms and
all the single kernel-based feature extraction algorithms
outperform their corresponding linear versions.

4.3. Face Recognition Using PIE Database. The PIE face
database contains over 40,000 face images from 68 people,
and the images are captured under 13 different poses, 43
different illumination, and 4 different expressions. In this test,
we select 150 face images from 15 individuals. The selection
of relevant base kernels for multiple kernel function and
DK is the same as that in the former experiments. From

Table 2: Comparison of recognition ratio between single kernel-
based algorithms and MDKFDA.

Algorithm Gaussian kernel (%) Polynomial kernel (%)
KPCA 86.5 84.5
KFDA 88.0 85.0
DKFDA 93.5 92.5
MDKFDA 95.8

Table 3: Comparison of recognition ratio between linear algorithms
and MDKFDA.

Algorithm PCA LPP LDA MDKFDA
Recognition ratio (%) 78.7 73.3 81.3 96.1

Table 4: Comparison of recognition ratio between single kernel-
based algorithms and MDKFDA.

Algorithm Gaussian kernel (%) Polynomial kernel (%)
KPCA 80.5 80.0
KFDA 90.7 86.7
DKFDA 93.3 93.3
MDKFDA 96.1

Table 5: Comparison of recognition ratio between linear algorithms
and MDKFDA.

Algorithm PCA LPP LDA MDKFDA
Recognition ratio (%) 50.67 50.67 65.2 94.9

Table 6: Comparison of recognition ratio between single kernel-
based algorithms and MDKFDA.

Algorithm Gaussian kernel (%) Polynomial kernel (%)
KPCA 74.7 50.7
KFDA 81.3 78.7
DKFDA 93.5 90.3
MDKFDA 94.9

Tables 5 and 6, it can be seen that the MDKFDA algorithm
outperforms the other algorithms.

4.4. Discussions. Experiments based on the three face
databases have been systematically implemented, and the
results reveal some interesting findings which are summa-
rized as follows.

(1) The single kernel-based nonlinear feature extraction
algorithms such as KPCA, KFDA, and DKFDA per-
form better than their corresponding linear versions
such as PCA and LDA. The main reason is attributed
to the fact that, compared to the linear techniques,
the features extracted by kernel-based algorithms can
better describe the complex and nonlinear variations
of face images, that is, illumination, pose, and facial
expression. Hence, a better recognition rate can be
achieved.
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(2) The average recognition rates of PCA, LDA, and LPP
onPIEdatabase are significantly less than those on the
other two databases. The reason is mainly as follows.
Since the images from the PIE database are captured
under more complicated conditions, they appear to
havemore complicated nonlinear characteristics than
those from the other databases, which makes them
difficult to handle by linear algorithms.

(3) The DKFDA algorithm outperforms the other single
kernel-based algorithms, that is, KPCA, KLPP, and
KFDA. As shown in Table 6, when KPCA with poly-
nomial kernel is adopted, the recognition ratio of face
images is not increased. This is because the charac-
teristics of kernel are ill-suited for some database.
However, the DK can solve this problem, and the
reason is that the DKFDA algorithm has the adapt-
ability for different databases.The structure ofDK can
be changed by adjusting the kernel parameter using
iterative method, so various input data can be better
expressed.

(4) The proposed MDKFDA algorithm consistently per-
forms better than the KPCA, KLPP, KFDA, and
DKFDA as well as their corresponding linear version,
which indicates that, compared to the single kernel-
based algorithms, the MDKFDA algorithm can effec-
tively integrate the multiple base kernels with data-
dependent kernel (DK) and gain a good performance
on face recognition.

5. Conclusions

In this paper, on the assumption that multiple kernel-based
recognition algorithms can depict the complex and hetero-
geneous face image dataset by the utilization of multiple
descriptors, a novel kernel-based approach for face recogni-
tion, called multiple data-dependent kernel Fisher discrimi-
nant analysis (MDKFDA), is proposed in this paper. Focusing
on the construction of MDK, two main issues have been
considered. The first issue concerns optimizing the weights
of multiple base kernels. For this purpose, by maximizing
the margin maximization criterion (MMC), an iterative
method based on Lagrange multipliers is adopted to yield the
optimized weights. The second issue aims at optimizing the
coefficients of data-dependent kernel. To this end, by solving
the optimization equation based on Fisher scalar, a gradient-
based learning algorithm is employed to yield the optimized
coefficients. Finally, the resulting multiple kernel functions
and data-dependent kernel are integrated together as a new
kernel, which is incorporated into the KFDA to construct the
MDKFDA. Experiments on three face databases prove the
effectiveness of the MDKFDA, and this algorithm is ready to
be applied to other classification applications in the future.
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