233 research outputs found

    Experimental demonstration of intermodulation effects in a continuous cesium fountain microwave frequency standard

    No full text
    International audienceThe short-term stability of passive atomic frequency standards, particularly ones operated sequentially, is often limited by local oscillator noise via intermodulation effects. This article describes an experimental demonstration of the intermodulation effect on the frequency stability of a continuous atomic fountain standard usually imperceptible under normal operating conditions. To make the effect observable, we increase the phase instability of the microwave field interrogating the clock transition.We measure the frequency stability of the locked, commercial local oscillator, for both square-wave phase modulation and squarewave frequency modulation of the microwave field. The observed degradation of the stability depends on the modulation frequency in a way that agrees with our earlier theoretical predictions. Most significantly, no degradation is observed when the modulation frequency is made equal to the Ramsey linewidth. When no extra phase noise is added, the frequency instability, currently 2.0x10-13 at 1 s, is limited only by atomic shot-noise. This shows the potential to reduce it via the use of a higher atomic flux

    Combined quantum state preparation and laser cooling of a continuous beam of cold atoms

    Get PDF
    We use two-laser optical pumping on a continuous atomic fountain in order to prepare cold cesium atoms in the same quantum ground state. A first laser excites the F=4 ground state to pump the atoms toward F=3 while a second pi-polarized laser excites the F=3 -> F'=3 transition of the D2 line to produce Zeeman pumping toward m=0. To avoid trap states, we implement the first laser in a 2D optical lattice geometry, thereby creating polarization gradients. This configuration has the advantage of simultaneously producing Sisyphus cooling when the optical lattice laser is tuned between the F=4 -> F'=4 and F=4 -> F'=5 transitions of the D2 line, which is important to remove the heat produced by optical pumping. Detuning the frequency of the second pi-polarized laser reveals the action of a new mechanism improving both laser cooling and state preparation efficiency. A physical interpretation of this mechanism is discussed.Comment: Minor changes according to the recommendations of the referee: - Corrected Fig.1. - Split the graph of Fig.6 for clarity. - Added one reference. - Added two remarks in the conclusion. - Results unchange

    Design Details of FOCS-2, an Improved Continuous Cesium Fountain Frequency Standard

    No full text
    International audienceWe report on the design, construction and current status of FOCS-2, the second continuous fountain microwave cesium frequency standard after FOCS-1. Both incorporate velocity-selective light traps driven by an electrostatic motor. FOCS-2 will take fuller advantage of the continuous fountain approach to gain in shot-noise-limited stability without loss of accuracy via the use of a higher flux. This is obtained via the implementation of a novel slow-atom pre-source and better collimation of the atomic beam. A detailed description of the apparatus is provided and compared with FOCS-1 to highlight improvements. In addition, we present results from related experiments on collimation in a 2D optical lattice. The goals for this new standard are a short-term stability of < 4x10-14 Ï„\tau-1/2 and a relative frequency uncertainty of < 1 x 10-15

    Measurement of the magnetic field profile in the atomic fountain clock FoCS-2 using Zeeman spectroscopy

    Get PDF
    We report the evaluation of the second-order Zeeman shift in the continuous atomic fountain clock FoCS-2. Because of its continuous operation and geometrical constraints, the methods used in pulsed fountains are not applicable. We use here time-resolved Zeeman spectroscopy to probe the magnetic field profile in the clock. Pulses of ac magnetic excitation allow us to spatially resolve the Zeeman frequency and to evaluate the Zeeman shift with a relative uncertainty smaller than 5 × 10−16

    Proceedings of the Workshop on the Scientific Applications of Clocks in Space

    Get PDF
    The Workshop on Scientific Applications of Clocks in space was held to bring together scientists and technologists interested in applications of ultrastable clocks for test of fundamental theories, and for other science investigations. Time and frequency are the most precisely determined of all physical parameters, and thus are the required tools for performing the most sensitive tests of physical theories. Space affords the opportunity to make measurement, parameters inaccessible on Earth, and enables some of the most original and sensitive tests of fundamental theories. In the past few years, new developments in clock technologies have pointed to the opportunity for flying ultrastable clocks in support of science investigations of space missions. This development coincides with the new NASA paradigm for space flights, which relies on frequent, low-cost missions in place of the traditional infrequent and high-cost missions. The heightened interest in clocks in space is further advanced by new theoretical developments in various fields. For example, recent developments in certain Grand Unified Theory formalisms have vastly increased interest in fundamental tests of gravitation physics with clocks. The workshop included sessions on all related science including relativity and gravitational physics, cosmology, orbital dynamics, radio science, geodynamics, and GPS science and others, as well as a session on advanced clock technology
    • …
    corecore