148 research outputs found

    How molecular imaging will enable robotic precision surgery: the role of artificial intelligence, augmented reality, and navigation

    Get PDF
    Molecular imaging is one of the pillars of precision surgery. Its applications range from early diagnostics to therapy planning, execution, and the accurate assessment of outcomes. In particular, molecular imaging solutions are in high demand in minimally invasive surgical strategies, such as the substantially increasing field of robotic surgery. This review aims at connecting the molecular imaging and nuclear medicine community to the rapidly expanding armory of surgical medical devices. Such devices entail technologies ranging from artificial intelligence and computer-aided visualization technologies (software) to innovative molecular imaging modalities and surgical navigation (hardware). We discuss technologies based on their role at different steps of the surgical workflow, i.e., from surgical decision and planning, over to target localization and excision guidance, all the way to (back table) surgical verification. This provides a glimpse of how innovations from the technology fields can realize an exciting future for the molecular imaging and surgery communities.Imaging- and therapeutic targets in neoplastic and musculoskeletal inflammatory diseas

    Quantitative comparison of planar coded aperture imaging reconstruction methods

    Get PDF
    Imaging distributions of radioactive sources plays a substantial role in nuclear medicine as well as in monitoring nuclear waste and its deposit. Coded Aperture Imaging (CAI) has been proposed as an alternative to parallel or pinhole collimators, but requires image reconstruction as an extra step. Multiple reconstruction methods with varying run time and computational complexity have been proposed. Yet, no quantitative comparison between the different reconstruction methods has been carried out so far. This paper focuses on a comparison based on three sets of hot-rod phantom images captured with an experimental γ-camera consisting of a Tungsten-based MURA mask with a 2 mm thick 256 × 256 pixelated CdTe semiconductor detector coupled to a Timepix© readout circuit. Analytical reconstruction methods, MURA Decoding, Wiener Filter and a convolutional Maximum Likelihood Expectation Maximization (MLEM) algorithm were compared to data-driven Convolutional Encoder-Decoder (CED) approaches. The comparison is based on the contrast-to-noise ratio as it has been previously used to assess reconstruction quality. For the given set-up, MURA Decoding, the most commonly used CAI reconstruction method, provides robust reconstructions despite the assumption of a linear model. For single image reconstruction, however, MLEM performed best of all analytical reconstruction methods, but took on average 45 times longer than MURA Decoding. The fastest reconstruction method is the Wiener Filter with a run time 4.3 times faster compared to MURA Decoding and a mediocre quality. The CED with a specifically tailored training set was able to succeed the most commonly used MURA decoding on average by a factor between 1.37 and 2.60 and an equal run time

    Appearance Modelling and Reconstruction for Navigation in Minimally Invasive Surgery

    Get PDF
    Minimally invasive surgery is playing an increasingly important role for patient care. Whilst its direct patient benefit in terms of reduced trauma, improved recovery and shortened hospitalisation has been well established, there is a sustained need for improved training of the existing procedures and the development of new smart instruments to tackle the issue of visualisation, ergonomic control, haptic and tactile feedback. For endoscopic intervention, the small field of view in the presence of a complex anatomy can easily introduce disorientation to the operator as the tortuous access pathway is not always easy to predict and control with standard endoscopes. Effective training through simulation devices, based on either virtual reality or mixed-reality simulators, can help to improve the spatial awareness, consistency and safety of these procedures. This thesis examines the use of endoscopic videos for both simulation and navigation purposes. More specifically, it addresses the challenging problem of how to build high-fidelity subject-specific simulation environments for improved training and skills assessment. Issues related to mesh parameterisation and texture blending are investigated. With the maturity of computer vision in terms of both 3D shape reconstruction and localisation and mapping, vision-based techniques have enjoyed significant interest in recent years for surgical navigation. The thesis also tackles the problem of how to use vision-based techniques for providing a detailed 3D map and dynamically expanded field of view to improve spatial awareness and avoid operator disorientation. The key advantage of this approach is that it does not require additional hardware, and thus introduces minimal interference to the existing surgical workflow. The derived 3D map can be effectively integrated with pre-operative data, allowing both global and local 3D navigation by taking into account tissue structural and appearance changes. Both simulation and laboratory-based experiments are conducted throughout this research to assess the practical value of the method proposed

    Medical Robotics

    Get PDF
    The first generation of surgical robots are already being installed in a number of operating rooms around the world. Robotics is being introduced to medicine because it allows for unprecedented control and precision of surgical instruments in minimally invasive procedures. So far, robots have been used to position an endoscope, perform gallbladder surgery and correct gastroesophogeal reflux and heartburn. The ultimate goal of the robotic surgery field is to design a robot that can be used to perform closed-chest, beating-heart surgery. The use of robotics in surgery will expand over the next decades without any doubt. Minimally Invasive Surgery (MIS) is a revolutionary approach in surgery. In MIS, the operation is performed with instruments and viewing equipment inserted into the body through small incisions created by the surgeon, in contrast to open surgery with large incisions. This minimizes surgical trauma and damage to healthy tissue, resulting in shorter patient recovery time. The aim of this book is to provide an overview of the state-of-art, to present new ideas, original results and practical experiences in this expanding area. Nevertheless, many chapters in the book concern advanced research on this growing area. The book provides critical analysis of clinical trials, assessment of the benefits and risks of the application of these technologies. This book is certainly a small sample of the research activity on Medical Robotics going on around the globe as you read it, but it surely covers a good deal of what has been done in the field recently, and as such it works as a valuable source for researchers interested in the involved subjects, whether they are currently “medical roboticists” or not

    Luminescence-based Imaging Approaches in the Field of Interventional Molecular Imaging

    Get PDF
    Cellular mechanisms in basic and clinical gastroenterology and hepatolog
    corecore