33 research outputs found

    High Performance Air Quality Simulation in the European CrossGrid Project

    Get PDF
    This paper focuses on one of the applications involved into the CrossGrid project, the STEM-II air pollution model used to simulate the environment of As Pontes Power Plant in A Coruna (Spain). The CrossGrid project offers us a Grid environment oriented towards computation- and data-intensive applications that need interaction with an external user. The air pollution model needs the interaction of an expert in order to make decisions about modifications in the industrial process to fulfil the European standard on emissions and air quality. The benefits of using different CrossGrid components for running the application on a Grid infrastructure are shown in this paper, and some preliminary results on the CrossGrid testbed are displayed

    Collaborative Environment for Grid-based Flood Prediction

    Get PDF
    This paper presents the design, architecture and main implementation features of the flood prediction application of the Task 1.2 of the EU IST CROSSGRID. The paper begins with the description of the virtual organization of hydrometeorological experts, users, data providers and customers supported by the application. Then the architecture of the application is described, followed by used simulation models and modules of the collaborative environment. The paper ends with vision of future development of the application

    ActOn: A Semantic Information Service for EGEE

    Full text link
    We describe an information service that aggregates metadata available in hundreds of information sources of the EGEE Grid infrastructure. It uses an ontology-based information integration architecture (ActOn), which is suitable the highly dynamic distributed information sources available in Grid systems, where information changes frequently and where the information of distributed sources has to be aggregated in order to solve complex queries. These two challenges are addressed by a metadata cache that works with an update-on-demand policy and by an information source selection module that selects the most suitable source at a given point in time, respectively. We have evaluated the quality of this information service, and compared it with other similar services from the EGEE production testbed, with promising result

    The Interactive European Grid: Project Objectives and Achievements

    Get PDF
    The Interactive European Grid (i2g) project has set up an advanced e-Infrastructure in the European Research Area specifically oriented to support the friendly execution of demanding interactive applications. While interoperable with existing large e-Infrastructures like EGEE, i2g software supports execution of parallel applications in interactive mode including powerful visualization and application steering. This article describes the strategy followed, the key technical achievements, examples of applications that benefit from this infrastructure and the sustainable model proposed for the future

    Active Ontology: An Information Integration Approach for Dynamic Information Sources

    Get PDF
    In this paper we describe an ontology-based information integration approach that is suitable for highly dynamic distributed information sources, such as those available in Grid systems. The main challenges addressed are: 1) information changes frequently and information requests have to be answered quickly in order to provide up-to-date information; and 2) the most suitable information sources have to be selected from a set of different distributed ones that can provide the information needed. To deal with the first challenge we use an information cache that works with an update-on-demand policy. To deal with the second we add an information source selection step to the usual architecture used for ontology-based information integration. To illustrate our approach, we have developed an information service that aggregates metadata available in hundreds of information services of the EGEE Grid infrastructure

    An ActOn-based Semantic Information Service for EGEE

    Get PDF
    We describe a semantic information service that aggregates metadata from a large number of information sources of a large-scale Grid infrastructure. It uses an ontology-based information integration architecture (ActOn) suitable for the highly dynamic distributed information sources available in Grid systems, where information changes frequently and where the information of distributed sources has to be aggregated in order to solve complex queries. These two challenges are addressed by a Metadata Cache that works with an update-on-demand policy and by an information source selection module that selects the most suitable source at a given point in time. We have evaluated the quality of this information service, and compared it with other similar services from the EGEE production testbed, with promising results

    Grid Information Technology as a New Technological Tool for e-Science, Healthcare and Life Science

    Get PDF
    Nowadays, scientific projects require collaborative environments and powerful computing resources capable of handling huge quantities of data, which gives rise to e-Science. These requirements are evident in the need to optimise time and efforts in activities to do with health. When e-Science focuses on the collaborative handling of all the information generated in clinical medicine and health, e-Health is the result. Scientists are taking increasing interest in an emerging technology – Grid Information Technology – that may offer a solution to their current needs. The current work aims to survey how e-Science is using this technology all around the world. We also argue that the technology may provide an ideal solution for the new challenges facing e-Health and Life Science.Hoy en día, los proyectos científicos requieren poderosos recursos de computación capaces de manejar grandes cantidades de datos, los cuales han dado paso a la ciencia electrónica (e-ciencia). Estos requerimientos se hacen evidentes en la necesidad de optimizar tiempo y esfuerzos en actividades relacionadas con la salud. Cuando la e-ciencia se enfoca en el manejo colaborativo de toda la información generada en la medicina clínica y la salud, da como resultado la salud electrónica (e-salud). Los científicos se han interesado cada vez más y más en una tecnología emergente, como lo es la Tecnología de información en red, la que puede ofrecer solución a sus necesidades cotidianas. El siguiente trabajo apunta a examinar como la e-ciencia es empleada en el mundo. También se discute que la tecnología puede proveer una solución ideal para encarar nuevos desafíos en e-salud y Ciencias de la Vida.Nowadays, scientific projects require collaborative environments and powerful computing resources capable of handling huge quantities of data, which gives rise to e-Science. These requirements are evident in the need to optimise time and efforts in activities to do with health. When e-Science focuses on the collaborative handling of all the information generated in clinical medicine and health, e-Health is the result. Scientists are taking increasing interest in an emerging technology – Grid Information Technology – that may offer a solution to their current needs. The current work aims to survey how e-Science is using this technology all around the world. We also argue that the technology may provide an ideal solution for the new challenges facing e-Health and Life Science

    Integrating Existing Software Toolkits into VO System

    Full text link
    Virtual Observatory (VO) is a collection of interoperating data archives and software tools. Taking advantages of the latest information technologies, it aims to provide a data-intensively online research environment for astronomers all around the world. A large number of high-qualified astronomical software packages and libraries are powerful and easy of use, and have been widely used by astronomers for many years. Integrating those toolkits into the VO system is a necessary and important task for the VO developers. VO architecture greatly depends on Grid and Web services, consequently the general VO integration route is "Java Ready - Grid Ready - VO Ready". In the paper, we discuss the importance of VO integration for existing toolkits and discuss the possible solutions. We introduce two efforts in the field from China-VO project, "gImageMagick" and " Galactic abundance gradients statistical research under grid environment". We also discuss what additional work should be done to convert Grid service to VO service.Comment: 9 pages, 3 figures, will be published in SPIE 2004 conference proceeding

    A step towards a computing grid for the LHC experiments : ATLAS data challenge 1

    No full text
    The ATLAS Collaboration at CERN is preparing for the data taking and analysis at the LHC that will start in 2007. Therefore, a series of Data Challenges was started in 2002 whose goals are the validation of the Computing Model, of the complete software suite, of the data model, and to ensure the correctness of the technical choices to be made for the final offline computing environment. A major feature of the first Data Challenge (DC1) was the preparation and the deployment of the software required for the production of large event samples as a worldwide distributed activity. It should be noted that it was not an option to "run the complete production at CERN" even if we had wanted to; the resources were not available at CERN to carry out the production on a reasonable time-scale. The great challenge of organising and carrying out this large-scale production at a significant number of sites around the world had therefore to be faced. However, the benefits of this are manifold: apart from realising the required computing resources, this exercise created worldwide momentum for ATLAS computing as a whole. This report describes in detail the main steps carried out in DC1 and what has been learned form them as a step towards a computing Grid for the LHC experiments

    Grid Environment for On-line Application Monitoring and Performance Analysis

    Get PDF
    corecore