
Scientific Programming 12 (2004) 239–251 239
IOS Press

Grid environment for on-line application
monitoring and performance analysis

Bartosz Balísa, Marian Bubaka,b,∗, Włodzimierz Funikaa, Roland Wism̈ullerc, Marcin Radeckib,
Tomasz Szepieniecb, Tomasz Arod́zb and Marcin Kurdzielb
aInstitute of Computer Science, AGH, Kraków, Poland
bAcademic Computer Centre CYFRONET AGH, Kraków, Poland
cUniversiẗat Siegen, Siegen, Germany

Abstract. This paper presents an application monitoring infrastructure developed within the CrossGrid project. The software
is aimed at enabling performance measurements for the application developer and in this way facilitating the development of
applications in the Grid environment. The application monitoring infrastructure is composed of a distributed monitoring system,
the OCM-G, and a performance analysis tool called G-PM. The OCM-G is an on-line, grid-enabled, monitoring system, while
G-PM is an advanced graphical tool which allows to evaluate and present the results of performance monitoring, to support
optimization of the application execution. G-PM supports build-in standard metrics and user-defined metrics expressed in the
Performance Measurement Specification Language (PMSL). Communication between the G-PM and the OCM-G is performed
according to a well-defined protocol, OMIS (On-line Monitoring Interface Specification). In this paper, the architecture and
features of the OCM-G and G-PM are described as well as an example of use of the monitoring infrastructure to visualize the
status and communication in the application, to evaluate the performance, including discovering the reason of the performance
flaw.

1. Introduction

The focus of the CrossGrid project [6] is to provide
services and tools for Grid interactive applications. The
development process of such applications requires spe-
cialized tools including performance analysis tools that
would be supported by an application monitoring ser-
vice. The need of such kind of tools is even stronger
since contemporary grids provide a very limited access
to the resources where an application is running. Typ-
ically, the results are not known until an execution is
finished and practically only a very laconic status of the
job is available.

From the perspective of the application developer the
situation is difficult – on the one hand he/she should
develop an application that performs well on various

∗Corresponding author: Marian Bubak, Institute of Computer Sci-
ence, AGH, al. Mickiewicza 30, 30-059 Kraków, Poland. Tel.: +48
12 617 39 64; Fax: +48 12 633 80 54; E-mail: bubak@agh.edu.pl.

types and configurations of resources available on the
Grid; on the other hand, a crucial issue for improving
an application – measurements of the performance are
hardly available.

Having this in mind, within CrossGrid, we de-
velop a monitoring environment for applications which
is composed of a distributed monitoring system, the
OCM-G and a performance analysis tool, G-PM. The
purpose of this environment is to collect data about run-
ning application and enable the user to observe its per-
formance in on-line mode, dynamically change mea-
surements to support discovering reasons of perfor-
mance problems, etc.

In this paper, we describe the architecture of the en-
vironment being discussed as well as explain the main
features of the OMIS-based interface that is used for
expressing monitoring requests. Next, we show ex-
amples of how the OCM-G and G-PM can be used
for monitoring and performance evaluation of Grid ap-
plications. The examples include also construction
of user-defined metrics expressed in the Performance

ISSN 1058-9244/04/$17.00 2004 – IOS Press and the authors. All rights reserved

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/193366629?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

240 B. Balís et al. / Grid environment for on-line application monitoring and performance analysis

Measurement Specification Language (PMSL). Addi-
tionally, we provide a comparison with related work.

2. The application monitoring infrastructure

In this section we give an overview of our approach
for a grid application monitoring infrastructure. An
architecture and components with their functionality
will be described in detail, not passing over a way of
exchanging the monitoring data between the compo-
nents that is based on a standardized protocol, OMIS,
on which we focus below.

2.1. OMIS – A versatile monitoring interface

The interface specification between a tool and an
application monitor (monitoring system) is extremely
important, since this should allow to define monitor-
ing activities easily and be extensible. On-line Moni-
toring Interface Specification (OMIS) [13] meets these
requirements well.

The target system, as viewed by OMIS, forms a hi-
erarchy of objects. In case of grid environments, the
top-level objects aresiteswhich containnodeswhich
in turn could be comprised ofprocesses. The objects
are identified by so calledtokens.

OMIS defines three types of services:information
services – to obtain information about objects,ma-
nipulationservices – to manipulate objects, andevent
services – to detect events in the target system (espe-
cially inside applications), whose occurrence can trig-
ger some definedactions.

By combination of services amonitoring request,
belonging to one of two types can be formed:uncondi-
tional, which comprises one or more actions, andcon-
ditional, which is composed of one event service and
one or more actions. In case of unconditional requests,
the actions are executed immediately and only once,
while in case of conditional requests the actions are
executed whenever the associated event occurs, which
can take place multiple times.

A very useful feature of OMIS, especially for the
performance analysis, is the ability to create objects
that store the performance values inside the monitoring
system. These are so calledcountersand integrators
which can be used for example to count the function
calls or to sum the volume of data sent.

2.2. OCM-G – A distributed monitoring system

The OCM-G (OMIS-Compliant Monitoring system
for Grid) is a scalable distributed system for on-line
monitoring of interactive applications in the Grid envi-
ronment.

The architecture of the system is shown in Fig. 1. It
is comprised of several components that are distributed
over the Grid to accompany the monitored application
and to enable efficient gathering of monitoring data
as well as to distribute monitoring requests. On the
node level Local Monitors (LMs) contact monitored
processes and obtain the requested data using various
mechanisms such asptrace and direct communica-
tion with processes. The latter is realized via a module
(library) linked to the application. The library is called
Application Module (AM) and is considered to be a
part of the OCM-G monitoring infrastructure. The LMs
from several nodes are connected to a Service Manager
(SM) that is typically located one per Grid site. The role
of this component is to distribute a monitoring request
to the underlying LMs and to collect monitoring data
from them. Moreover, SM improves the scalability of
the OCM-G and enables monitoring in clusters using
private IP addresses (in this case SM should be placed
on the machine with public and private interfaces). On
the top of the components hierarchy of the OCM-G, the
Main Service Manager (MainSM) is placed. This is
a single component that keeps connections to all SMs
running in the monitoring system and acts as an entry
point to the monitoring system for tools.

The OCM-G is designed to be a user-private mon-
itoring system which means that all OCM-G compo-
nents are running using the privileges of the user and
only the user is empowered to use them. Authoriza-
tion and authentication is based on the Grid Security
Infrastructure [9].

A major part of performance data is obtained from in-
strumentation of communication libraries. The OCM-
G is provided with a tool for automatic instrumenta-
tion of MPI libraries that is independent from an MPI
implementation. By default, a static instrumentation
is inactive. A selected range of instrumentation can
be activated only on a request from the tool, when the
application is running. In the same manner, probes –
a manually inserted code for monitoring – can be acti-
vated and deactivated dynamically.

One of the unique features of the OCM-G is sup-
port for interoperability. This is a virtue of the OMIS
interface implementation which provides that the tools
are capable of interacting with the monitoring system

B. Balís et al. / Grid environment for on-line application monitoring and performance analysis 241

SM
Main

AM
AP

GPM

SM

AM
AP

AM
AP

AM
AP

UI

CE

Site 1 Site 2

WNWN WN

CE

LMLM LM

Fig. 1. Architecture of the G-PM and OCM-G.

and accessing the data cooperatively, thus several tools
may operate on the same application in parallel. This
opens the door to synergy of various tools working to-
gether, e.g. a performance analyzer with an automatic
load balancer.

For a more detailed description of the monitoring
services provided by the OCM-G and some design de-
tails concerning high efficiency, low intrusiveness, ac-
curacy of measurements, transparency for the user, we
refer the reader to [2].

2.3. G-PM – Grid-oriented performance evaluation
tool

A Grid-oriented Performance Measurement tool (G-
PM) is designed to support performance measurements
of the application’s execution and of the underlying grid
infrastructure. The monitoring data are obtained from
OCM-G via the OMIS-based protocol. The same inter-
face is used also for requesting the data needed to mea-
sure the metrics that the user enabled. The measured
values are displayed in the form of various graphs, such
as bar graphs, pie charts, multi-curve plots, histograms
or communication matrices.

The architecture of the G-PM is depicted in Fig. 1. It
consists of the User Interface and Visualization Compo-
nent (UIVC), the Performance Measurement Compo-
nent (PMC) allowing for measurements based on stan-
dard metrics, like “data volume”, “time spent in”, and
the High Level Analysis Component (HLAC), which
provides a powerful facility for the user to define own

metrics and realize measurements, meaningful in the
context of the investigated application.

The tool supports a wide set of built-in metrics.
These metrics fall into two categories, i.e.function-
basedandsampledmetrics. The function-based met-
rics are associated with the instrumented versions of
specific functions. They are suitable for monitoring
the behavior of applications with respect to various li-
braries they use. For example, the metrics based on in-
strumented versions of the MPI library enable the mon-
itoring of application communicationand overhead due
to parallelization. The sampled metrics, on the other
hand, are not related to any functions or events. They
enable monitoring of such quantities as the CPU load
on the node or memory used by the process.

The G-PM can be customized by the user or appli-
cation developer by means of a dedicated Performance
Measurement Specification Language PMSL [18]. The
language allows for processing and combining the ex-
isting metrics into a form more suitable for a partic-
ular evaluation. Furthermore, in PMSL a new cate-
gory of metrics is available i.e.probe-basedmetrics.
These metrics are associated with a call to a function
inserted into the application’s code by the developer,
i.e. theprobe. The probes are typically used to sig-
nal the G-PM that the control flow of the application
reached a code location specified by the developer.
Furthermore, probes can pass additional information
from within the application to the G-PM, e.g. values of
some internal variables. An intuitive example of using
a probe is a metric which measures a solver residue

242 B. Balís et al. / Grid environment for on-line application monitoring and performance analysis

in consecutive iterations. In this case a probe is in-
serted at the end of the main solver loop which, when
invoked, sends the current residue value to the G-PM
for processing and visualization.

2.4. Dealing with the monitoring environment

Being familiar with main characteristics of the OCM-
G and G-PM, now we would like to explain the proce-
dure of starting up the monitoring infrastructure. We
focus on the user’s actions that should be done to enable
the monitoring of the application as well as the way
the components are started thus forming the monitoring
infrastructure.

From the user’s perspective there are only two ob-
jects of interest: the application intended to run and the
tool the user wants to obtain the monitored data with.
The start-up of the environment was designed to be as
easy as possible, however there are some special ac-
tions that the user needs to take for enabling application
monitoring.

Firstly, the application should be prepared for moni-
toring by relinking it with additional libraries: a mon-
itoring library, an instrumented communication library
(MPI) and optionally with a static instrumentation of
a probes code. Except for inserting the probes in the
source code, the rest of necessary actions are done au-
tomatically by a script. Next, prior to starting the ap-
plication, the OCM-G’s MainSM should be spawned
(step 1 – the number refers to Fig. 2). This compo-
nent serves as a name service for OCM-G components
and a gateway to the monitoring system for tools. The
MainSM delivers theconnection stringwhich serves as
a contact information for other components to establish
communication with MainSM.

When MainSM is running, the application can be
started (step 3) in the typical way, only two additional
command-line parameters are required: the connection
string obtained from MainSM (step 2) and an arbitrarily
chosen application name. Using yet another parameter
the user can make the application processes to run after
registration in the monitoring service (step 5) or to wait
until an explicit command from the user comes. This
feature enables defining measurements and monitoring
from the very beginning of an application’s run.

While the application is starting up on the grid it exe-
cutes a code from the Application Module. Inside there
are instructions to fork off the local monitoring infras-
tructure (i.e. Local Monitors) (step 4). Next, the Local
Monitors establish communication with Service Man-
agers (step 10) or start them themselves if necessary.

Finally, a ready-to-use distributed monitoring system
is formed. There are mechanisms that guarantee only
one LM will be running on a single node and only one
SM will operate for all nodes within a site. Details of
the start-up process are shown in the Fig. 2.

In the last step, the G-PM can be started to make
the monitoring environment complete. The user passes
to it the connection string and the application’s name,
similarly as for the application (step 11). Based on this,
the G-PM attaches to the application and obtains the list
of processes with localization and the list of functions
that helps the user define a measurement.

When the monitoring activity is finished, the whole
infrastructure can easily be shut down with one com-
mand from the tool. Additionally, there are mecha-
nisms for shutting-down the OCM-G’s components in
case when MainSM is closed for any reason, which
guarantees a full clean-up in case of a crash. It is worth
mentioning that shutting-down the components of the
OCM-G does not affect the application.

3. Examples of use

In this section, we present how the user can make use
of the OCM-G and G-PM to observe the status and to
get some generic data about an application running on
the Grid. The examples are illustrated with the cases
of real-world applications. The last part of the section
contains a use-case on how to examine the applica-
tion’s performance and to determine potential sources
of problems.

3.1. Grid application at a first glance

The OCM-G and G-PM can be easily used to deter-
mine some generic information about an execution of
the application, e.g., to which nodes the application’s
processes have been submitted, if they are really run-
ning or whether the application makes progress well or
not. Some data about the advance of computation can
be valuable for the user who wants to estimate when the
application would finish or for the developer to check
the influence of the introduced improvements. Assum-
ing that the typical application includes a main loop in
which some computations are done, it is easy to make
a progress indicator based on the number of loop iter-
ations. At the end of the loop, we can insert aprobe,
e.g.loop ended() and instruct the OCM-G to count
probe calls in each process. This allows us to determine
roughly the progress of an application and being given

B. Balís et al. / Grid environment for on-line application monitoring and performance analysis 243

SM
Main

GPM

UI

Workstation/UI

3. Start application

 and application name
 with connection string

SM

CE

AM
AP

11. Start the tool

 and application name
 with connection string

1. Start MainSM

2. Obtain connection string

WN

7. Start SM (if needed)

5. Register

4. Start LM (if needed)

6. Ask for site SM
 connection string

10. Register

8. Register

9. Obtain site SM
 connection string

12. Register

LM

Fig. 2. Start-up of monitoring infrastructure.

Fig. 3. Bar graph showing the application’s progress (probe executions).

a total number of loop iterations, we can estimate the
time when the application will terminate its execution.

There are also simpler ways to estimate the progress.
We can even manage without inserting any probe, if
only the main loop includes functions that are exe-
cuted in each iteration. Typically, good candidates
are these from a collective communication class like
MPI Bcast(). The OCM-G can be instructed to cre-
ate a counter which will be automatically incremented
whenever the program reaches a particular function
call. A value of this counter can be periodically re-
trieved and then be plotted with a bar graph as an indi-
cator of the execution progress.

A little more sophisticated example shows how the
probes can be used to define an application’ssimulation
time. In the application, a probe at the end of the time
loop is inserted. The probe receives the simulated time
as an additional parameter. A very simple use of this
probe is a user-defined metric that just determines the
application’s progress, i.e. the current simulation time.
Such a metric can be defined by the user via G-PM’s
Performance Metrics Specification Language PMSL in
the following way:

Simulation_time(Process p,
VirtualTime vt) {
PROBE loop_stop(Process,

VirtualTime, double);
double simtime;
RETURN simtime AT loop_stop(p,

vt, simtime);
}

This specification basically states that the value of
the metric is a parametersimtime provided by the
execution of probeloop stop(). The value then can
be visualized by G-PM, e.g. as a bar graph shown in
Fig. 3, which acts as an on-line application progress
bar.

When a metric defined in PMSL is requested to be
measured by G-PM, its specification provided by the
user is automatically translated into proper OMIS re-
quests for the OCM-G. In the example, the OCM-G
is instructed to monitor executions of theloop stop
probe and send G-PM the value of thesimtime pa-
rameter. For a detailed discussion of the translation
process, please refer to [18].

Another important information about a message
passing application is a communication topology ex-

244 B. Balís et al. / Grid environment for on-line application monitoring and performance analysis

Fig. 4. Matrix diagram – communication pattern of the application.

plaining which processes communicate with which
ones. Particularly, if the user must deal with the appli-
cation that was written some time ago, or even worse,
by the authors who cannot provide support. Dealing
with the performanceof a program without having a de-
tailed knowledge about its structure and communica-
tion patterns is a hard task.

The G-PM provides standard metrics related to data
volumes sent using different MPI calls. Addition-
ally, with these metrics we can specifypartner objects.
A partner object in case ofMPI Send() means the pro-
cess the message is sent to, inMPI Recv() it would
be the process the message was sent from. By use of
partner objects we can distinguish between messages
sent in each process-to-process link.

The result of measurements with partner objects is
shown in Fig. 4. The chart ismatrix diagramtype,
it presents the details on communication volumes sent
between all communicating processes, where the in-
tensity of communication is expressed by the extent of
box grayness. This diagram is an example of moni-
toring a bidirectional ring application. Here, we have
four processes, each of them communicates with two

neighbors. We can see that the communication in the
“forward” direction (from a lower rank to a higher one)
is more intensive than in the “backward” direction. It
is also noticeable that the process with rank “0” sends
“forward” a bit less data than others. A communication
pattern diagram could discover problems if there were
processes which do not communicate with others at all.

3.2. Performance evaluation

Beside providing generic informationon the applica-
tion’s execution as shown in the previous paragraph, the
OCM-G/G-PM enable the user to examine a wide spec-
trum of parameters to evaluate the application’s perfor-
mance, for example communication delays or CPU us-
age. Moreover, when a performance problem is found,
the monitoring infrastructure provides means to drill
down the affected code to find the reasons of flaw.

A good starting point to assess the application’s per-
formance is to check whether the communication de-
lays are uniform. In Fig. 5 we can observe a distribu-
tion of receive delays over percentage ranges. There is
a group of two processes with delays at the beginning

B. Balís et al. / Grid environment for on-line application monitoring and performance analysis 245

Fig. 5. Histogram of delays in MPIRecv().

Fig. 6. Machine load during thering application execution.

of the lowest range, but there is also a group at the
other end of the highest range which may indicate a
performance flaw.

We put forth a hypothesis that this can be caused by
worse execution conditions which can be checked by
monitoring the load on the machines where processes
are executed. The results are depicted in Fig. 6 where
we can observe that one of the nodes has a significantly
higher load than the others. This causes that one pro-
cess is not keeping up with the others and sending the
data later than the partners expect being the reason for
higher communication delays.

The last example in this section presents a compar-
ison of an application’s execution on several grid sites
with a variable configuration of processors and network
connectivity in the CrossGrid testbed. The application
at hand was a development version of the blood flow
simulation kernel [7] developed within the CrossGrid
project. In Fig. 7 an application’s progress at a given
site is presented. Each curve corresponds to one site,
on the y-axis there is the number of iterations of the

main loop, while the x-axis is a time line. All applica-
tions were suspended after registration in the OCM-G
and then resumed in the same moment by the OCM-G,
so we can compare it directly. At the beginning, the ap-
plication executes quite well, but it reaches atransition
point after which the execution speed (iterations per
time unit) significantly decreases. It could be natural
(resulting from an application structure itself), but one
thing should make us worry – one site does not exhibit
such a behavior (loki01.ific.uv.es). We are going to
solve the riddle in the next section dedicated to finding
performance flaws.

3.3. Finding performance flaws

It could be said that the usefulness of performance
analysis tools can be proved by checking to what extent
is possible to detect and help to fix performance flaws
with these tools. In this section we follow through an
investigation of a problem with the blood simulation
application mentioned in the previous paragraph. Such

246 B. Balís et al. / Grid environment for on-line application monitoring and performance analysis

Fig. 7. Performance of the blood stream application at several grid sites.

finding a cause of the problem can be greatly facilitated
by the possibility to narrow the area of search in the
code. The G-PM/OCM-G supports such an approach.
Having access to the application source code, the user
can insert OCM-G probes into a part that potentially
does not perform well and relying upon the probes the
user can build measurements which work only in the
scope of a selected code. Such a procedure can be
applied iteratively to narrow the area of performance
flaw search.

As we can see in Fig. 7, our tested application runs
well until about five hundred iterations is performed,
when the time of one loop iteration noticeably in-
creases. There are several methods (functions) called
in the loop and our goal is to figure out which one is
responsible for consuming considerably more time. To
find a candidate, we divided the loop code into three
parts and inserted probes at the beginning and the end
of each one as shown below.

for(i = 0; i <= ge.niter; i++) { ...
start1(i);
ge.body_force_x (local_dp);
/*"lbee.h" */

start2(i);
ge.propagation (); /*"lbee.h" */

start3(i);
ge.bounce_back_links();
ge.coll(ge.tau, i);
end3(i);

... }

In the G-PM we created a user-defined metric in
the PMSL language. This metric states that each

time the probes are executed a difference between the
call time of start3() andend3() will be returned,
which means that the measured value will contain just
a wall clock time the program spent in between the
probes. Such a metric was also defined for the remain-
ing probes.

Time_two_probes3(Process p,
VirtualTime t) {

PROBE start3(Process,
VirtualTime);
PROBE end3(Process,
VirtualTime);
Value time;
time = Time(NOW) AT end3(p,t)

- Time(NOW) AT start3(p,t);
RETURN time;

}

The results of such a measurement expressed as a
time percentage of three parts within the loop show that
the application spends most of the time in the third part
(ca. 75%), i.e. betweenstart3() andend3() which
contains two method calls. Repeating this step again
we determine that it is thege.coll() that consumes
a major part of time.

Knowing this we can continue to drill down in
thege.coll() method or we can use an alternative
method. We can obtain some parameters from the ap-
plication meaningful in the application’s context and
influence the amount of computation. In this case ap-
plication computes interactions between objects (col-
lisions), so we can measure how many of them was
computed in each iteration. Figure 8 shows the wall

B. Balís et al. / Grid environment for on-line application monitoring and performance analysis 247

clock time needed for each execution of the affected
function (bottom picture). At some point the execution
time grows by a factor of 10. The upper plot shows
the total number of executions of the innermost loop
body, and the number of collisions with fluid and solids
which are computed in each iteration. They take turns
conditionally and the collision with fluid is much more
CPU-consuming than with a solid. As we can see in the
upper figure the number of collisions are constant, so
the amount of computation remains on the same level,
still not discovering the cause of bad performance.

In Fig. 9 we see that a longer execution time is not
an effect of scheduling (e.g. a less priority to the job,
or background load etc.). Again, the lower curve is the
execution time of our function, the upper is the (total)
CPU time of the process. The curve does not flatten
(it even gets a bit steeper at the transition point), so it
means that the process is still running at full speed. In
this example, one can also observe a significant vari-
ance in the execution time, which may indicate a cause
in the hardware.

In fact, just in hardware there is the source of the
problems. It turned out that after several hundreds of it-
erations the application starts to processNot a Number
values. In contrast to normal floating point operations,
the NaNs are very badly handled by Intel Pentium pro-
cessors causing a decrease in the application’s perfor-
mance. Athlon processors do not show any difference
in operations on NaNs. This also explains why on one
site the application did not exhibit a performance prob-
lem. This case is depicted as a completely straight line
in Fig. 7 (siteloki01.ific.uv.es).

4. Related work

In this section we would like to focus our attention
on other’s activities in a field of grid application moni-
toring. However, we do not intend to provide exhaus-
tive analysis. For an extended report on this subject,
please refer to [19,20].

To explain the background of the approach under
discussion, we should note that our work on applica-
tion monitoring begins with the first implementation
of an OMIS-compliant monitor – the OCM that sup-
ported cluster environments and message passing PVM
and MPI applications. Also several tools were imple-
mented on top of OMIS/OCM: PATOP for performance
analysis, DETOP for debugging, and others. The de-
velopment of the OCM-G and G-PM is a direct contin-
uation of the previous work, started in 2001 with a first
proposal of an application monitoring system for the
Grid [3].

4.1. Grid application monitoring systems

There are several existing efforts to enable monitor-
ing of grid applications such as Autopilot [17] in the
GRaDS project [10], GRM/R-GMA [16] in the Data-
Grid project [8], and GRM/Mercury [15] in the Grid-
Lab project [11].

The goal of the application monitoring environment
in the GRaDS project is to enable an adaptive envi-
ronment in which the system parameters are adjusted
at run-time to sustain a high performance of the run-
ning application. Performance information about both
the application and the system is combined and a per-
formance optimization action is automatically taken
(e.g., I/O buffers are resized) when a performance
loss situation is discovered. Thus, the goal of the
GRaDS/Autopilot environment is rather different than
ours. It is oriented towards automatic steering rather
than providing feedback to the user so that he can see
how his application performs and perhaps discover bot-
tlenecks, weaknesses in the algorithm, bugs, etc.

In the GRM/R-GMA environment, the GRM mon-
itor is used to collect traces about a running applica-
tion. The trace data is published in the R-GMA [14],
and used by tools to visualize the application behav-
ior. However, the R-GMA infrastructure, based on java
servlets technology, is rather heavy-weight and intro-
duces a relatively large overhead. Additionally, the use
of traces probably prevents from achieving low-latency
and low intrusion at the same time: either traces are
rarely collected and the latency increases or they are
frequently collected and the intrusion is higher. This
makes this solution appropriate for batch-oriented ap-
plications, where a post-mortem analysis is suitable,
rather than interactive ones.

In GridLab, a similar concept as in DataGrid is used,
though the R-GMA is replaced by a more efficient in-
frastructure – the Mercury monitor.

4.2. Performance tools for grid applications

The user assesses the usability of tools, based on the
extent of provided functionality and ease of use: the
user is interested in a combination of powerful perfor-
mance analysis of the grid infrastructure with analy-
sis of the application at multiple abstraction levels, all
through possibly the same/similar graphical visualiza-
tion scheme.

The existing tools developed for support of grids,
such as NetworkWeatherService (NWS) [29] or Globus
Monitoring and Discovery Service (MDS) [30], are

248 B. Balís et al. / Grid environment for on-line application monitoring and performance analysis

Fig. 8. Amount of computation (upper) vs. wall clock time ofge.coll() method (lower).

limited to monitoring the grid infrastructure. The
NetLogger-based GridMapper [31] combines the in-
frastructure information with limited event-based in-
formation from applications, but the visualization of
the data is oriented towards a geographical location of
events. Thus, the tool is intended for control and mon-
itoring of the state of the whole grid rather than for
analyzing performance of a single application. An en-
semble of tools: SvPablo, Autopilot and Virtue, while
combining both the infrastructure and application data,
are mainly designed for non-specialists.

Another feature of tools is the mode in which perfor-
mance data is gathered. Existing tools use either rela-
tional database (DataGrid’s R-GMA) or LDAP (Globus
MDS), which can be then queried. In case of tools
like NWS or MDS, changes in gathered information
require a change to the configuration and cannot be
done instantly. Paraver [21] and Pablo [22] are two of
the very few tools that support a user-configurable data
analysis. While Paraver uses a menu-driven approach,
Pablo is based on graphical programming. However,

in both cases, only an off-line processing of trace data
is supported.

There are tools that support configurable metrics, but
these are used to simplify the internal implementation
only. It is not possible for the user to specify own met-
rics, not only because there is no user interface for it,but
mainly because of a low level of specifications, i.e. due
to a high dependence on an implementation, defining
an own metric is too complex for the user. An example
is the Paradyn tool [23], which uses a metrics definition
language called MDL [24] to define all the on-line met-
rics it allows to measure. Similarly, being targeted at
the off-line examination of trace files, the EXPERT per-
formance analysis tool [26] supports configurable met-
rics by using a language named EARL [25]. High-level
specification languages have also been proposed for
automatic bottleneck detection, where they are used to
describe performance properties, which are similar, but
not really identical to (user-defined) metrics. The most
prominent examples are ASL [27] and JavaPSL [28].
At the moment, ASL has not yet been implemented and
JavaPSL is implemented only for off-line evaluation.

B. Balís et al. / Grid environment for on-line application monitoring and performance analysis 249

Fig. 9. Progress of the blood stream application (upper) vs. wall clock time ofge.coll() method (lower).

5. Conclusions

We have presented a grid monitoring infrastruc-
ture for interactive applications being developed within
CrossGrid. Its two main components were described:
the OCM-G – a grid-enabled, distributed monitoring
system and the performance evaluation tool G-PM.
Also a general view how the user interacts with the
monitoring system was shown.

A use of a wide range of monitoring techniques with
a variety of metrics and visualisation diagrams was
illustrated with a number of examples. This facilities
enable the user to achieve a required goal of monitoring.
To sum up, the OCM-G/G-PM could be useful not
only for the typical application user but also for the
grid application developers who wish to improve the
performance of their application.

When compared to other grid monitoring and perfor-
mance analysis tools, our approach noticeably provides

unique features. As probably the most important one
we should mention the possibility to control the process
of monitoring in the runtime and the ability to create
user-defined metrics, beside a wide range of standard
ones, which makes the G-PM tool and the underly-
ing monitoring infrastructure, the OCM-G, widely ex-
tendible by new ways of getting insight into the appli-
cation behaviour.

The future of the OCM-G/G-PM is determined by
the evolution of grids which inevitably goes towards
web-services and Java technology. Although support
for Java applications seems to be troublesome, there
are on-going efforts to migrate the OCM-G/G-PM to
these platforms [32,33].

Acknowledgements

This work was partly funded by the European Com-
mission in the framework of IST projects CrossGrid,

250 B. Balís et al. / Grid environment for on-line application monitoring and performance analysis

GRIDSTART and K-WfGrid as well as by the Pol-
ish State Committee for Scientific Research, SPUB-M
112/E-356/SPB/5.PR UE/DZ 224/2002-2004. We are
also grateful to the CrossGrid Integration Team led by
Jesus Marco, Harald Kornmayer, and Jorge Gomes for
their invaluable help.

References

[1] B. Baliś, M. Bubak, T. Szepieniec, R. Wismüller and M.
Radecki,OCM-G – Grid Application Monitoring System: To-
wards the First Prototype, Proc. Cracow Grid Workshop 2002,
Krakow, December 2002.

[2] B. Balis, M. Bubak, W. Funika, T. Szepieniec, R. Wismüller
and M. Radecki, in:Monitoring Grid Applications with Grid-
enabled OMIS Monitor, F. Fernadez Rivera, M. Bubak, A.
Gomez Tato and R. Doallo, eds, Proc. First European Across
Grids Conference, Santiago de Compostela, Spain, February
2003. LNCS 2970, Springer, 2004.

[3] M. Bubak, W. Funika, B. Balis and R. Wism̈uller, Concept
For Grid Application Monitoring, in Proceedings of the PPAM
2001 Conference, vol. 2328 of Lecture Notes in Computer Sci-
ence, Naleczow, Poland, September 2001. Springer, pp. 307–
314.

[4] M. Bubak, W. Funika and R. Wism̈uller, The CrossGrid Per-
formance Analysis Tool for Interactive Grid Applications,
Proc. EuroPVM/MPI 2002, Linz, September 2002.

[5] M. Bubak, W. Funika, B. Balís and R. Wism̈uller, On-line
OCM-based Tool Support for Parallel Applications, in:An-
nual Review of Scalable Computing, (vol. 3), (chapter 2),
Y. Chung and Kwong, eds, World Scientific Publishing Co.
and Singapore University Press, Singapore, 2001, pp. 32–62.

[6] The CrossGrid Project (IST-2001-32243): http://www.eu-
crossgrid.org.

[7] CrossGrid biomedical application’s Web page, http://www.eu-
crossgrid.org/biomedical.htm.

[8] The DataGrid Project: http://www.eu-datagrid.org.
[9] I. Foster, C. Kesselman, G. Tsudik and S. Tuecke,A Secu-

rity Architecture for Computational Grids, in: Proc. 5th ACM
Conference on Computer and Communications Security Con-
ference, 1998, pp. 83–92.

[10] The GrADS Project: http://hipersoft.cs.rice.edu/grads.
[11] The GridLab Project: http://www.gridlab.org.
[12] P. Kacsuk,Parallel Program Development and Execution in

the Grid, Proc. PARELEC 2002, International conference on
parallel computing in electrical engineering, Warsaw, 2002,
pp. 131–138.

[13] T. Ludwig, R. Wism̈uller, V. Sunderam and A. Bode,OMIS
– On-line Monitoring Interface Specification(Version 2.0).
Shaker Verlag, Aachen, (vol. 9), LRR-TUM Research Report
Series, 1997, http://wwwbode.in.tum.de/omis/.

[14] R-GMA: A Grid Information and Monitoring System,
http://www.gridpp.ac.uk/abstracts/AllHandsRGMA.pdf.

[15] N. Podhorszki, Z. Balaton and G. Gombas,Monitoring
Message-Passing Parallel Applications in the Grid with GRM
and Mercury Monitor, in: Proc. 2nd European Across Grids
Conference, Nicosia, CY, To appear in Lecture Notes in Com-
puter Science, Springer Verlag, 28–30 Jan. 2004.

[16] N. Podhorszki and P. Kacsuk,Monitoring Message Passing
Applications in the Grid with GRM and R-GMA Proceedings
of EuroPVM/MPI’2003, Venice, Italy, 2003. Springer 2003.

[17] J.S. Vetter and D.A. Reed, Real-time Monitoring, Adaptive
Control and Interactive Steering of Computational Grids,The
International Journal of High Performance Computing Appli-
cations14 (2000), 357–366.

[18] R. Wismüller, M. Bubak, W. Funika, T. Arod́z and M. Kur-
dziel,Support for User-Defined Metrics in the Online Perfor-
mance Analysis Tool G-PM, in: Proc. 2nd European Across
Grids Conference, Nicosia, CY, 28–30 Jan. 2004, LNCS 3165,
Springer Verlag.

[19] M. Gerndt, Performance Tools for the Grid: State of the Art
and Future. APART White Paper. Research Report Series,
Vol. 30. LRR, Technische Universität München. Shaker Ver-
lag, 2004

[20] S. Zanikolas and R. Sakellariou, A Taxonomy of Grid Moni-
toring Systems,Journal of Future Generation Computer Sys-
tems, to appear.

[21] European Center for Parallelism of Barcelona. Paraver. Web
page, http://www.cepba.upc.es/paraver/.

[22] University of Illinois. Pablo Performance Analysis Environ-
ment: Data Analysis. Web page, http://www-pablo.cs.uiuc.
edu/Project/Pablo/PabloDataAnalysis.htm

[23] B.P. Miller et al., The Paradyn Parallel Performance Mea-
surement Tools,IEEE Computer28(11) (Nov. 1995), 37–46,
http://www.cs.wisc.edu/paradyn/papers/overview.ps.gz.

[24] J.R. Hollingsworth, B.P. Miller, M.J.R. Goncalves, Z. Xu,
O. Naim and L. Zheng,MDL: A Language and Com-
piler for Dynamic Program Instrumentation, in Proc. In-
ternational Conference on Parallel Architectures and Com-
pilation Techniques, San Francisco, CA, USA, Nov. 1997,
ftp://grilled.cs.wisc.edu/technicalpapers/mdl.ps.gz.

[25] F. Wolf and B. Mohr, EARL – A Programmable and Exten-
sible Toolkit for Analyzing Event Traces of Message Pass-
ing Programs, in:Proc. of the 7th International Conference
on High- Performance Computing and Networking(HPCN
99), A. Hoekstra and B. Hertzberger, eds, Amsterdam, The
Netherlands, 1999, pp. 503–512.

[26] F. Wolf and B. Mohr, Automatic Performance Analysis of MPI
Applications Based on Event Traces, in:Euro-Par 2000 Par-
allel Processing, 6th International Euro-Par Conference, A.
Bode, T. Ludwig, W. Karl and R. Wismller, eds, volume 1900
of Lecture Notes in Computer Science, Munich, Germany,
Aug. 2000, pp. 123–132, Springer-Verlag.

[27] T. Fahringer, M. Gerndt, G. Riley and J.L. Träff, Knowledge
Specification for Automatic Performance Analysis. Techni-
cal report, ESPRIT IV Working Group on Automatic Per-
formance Analysis, Nov. 1999, Web page, http://www.fz-
juelich.de/apart-1/reports/wp2-asl.ps.gz.

[28] T. Fahringer and C. Seragiotto,Modeling and Detecting
Performance Problems for Distributed and Parallel Pro-
grams with JavaPSL, in: 9th IEEE High-Performance Net-
working and Computing Conference, SC’2001, Denver, CO,
Nov. 2001.

[29] R. Wolski, N. Spring and J. Hayes, The Network Weather Ser-
vice: A Distributed Resource Performance Forecasting Ser-
vice for Metacomputing,Future Generation Computer Sys-
tems15 (1999), 757–768.

[30] X. Zhang, J. Freschl and J. Schopf,Performance Study of
Monitoring and Information Services for Distributed Systems,
Proceedings of HPDC, August 2003. Web page, http://www-
unix.mcs.anl.gov/schopf/Pubs/xuehaijeff-hpdc2003.pdf.

[31] W. Allcock, J. Bester, J. Bresnahan, I. Foster, J. Gawor, J.A.
Insley, J.M. Link and M.E. Papka,GridMapper: A Tool for
Visualization of the Behavior of Large-Scale Distributed Sys-
tems, Proceedings of High Performance Distributed Com-

B. Balís et al. / Grid environment for on-line application monitoring and performance analysis 251

puting 11 (HPDC-11), Edinburgh, Scotland, 2002. Web
page, http://www-unix.mcs.anl.gov/fl/publications/hpdc11-
gridmapper.pdf.

[32] W. Funika, M. Bubak, M. Sme¸tek and R. Wism̈uller, Monitor-
ing System for Distributed Java Applications, in: Proc. Inter-
national Conference on Computational Science 2004, Krakow,

6–9 June 2004, Part III, pp. 472–479, LNCS 3038 Springer,
2004.

[33] B. Balis, M. Bubak and M. Wegiel,Adaptation of Legacy Soft-
ware to Grid Services, in: Proc. International Conference on
Computational Science 2004, Krakow, 6–9 June 2004, Part III,
LNCS 3038, Springer, 2004, pp. 26–33.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

