46 research outputs found

    First Passage Percolation on the Erdős–Rényi Random Graph

    Get PDF
    In this paper we explore first passage percolation (FPP) on the Erdos-Renyi random graph Gn(pn), where each edge is given an independent exponential edge weight with rate 1. In the sparse regime, i.e., when npn → λ > 1, we find refined asymptotics both for the minimal weight of the path between uniformly chosen vertices in the giant component, as well as for the hopcount (i.e., the number of edges) on this minimal weight path. More precisely, we prove a central limit theorem for the hopcount, with asymptotic mean and variance both equal to λ/(λ − 1) log n. Furthermore, we prove that the minimal weight centered by log n/(λ − 1) converges in distribution. We also investigate the dense regime, where npn → ∞. We find that although the base graph is a ultra small (meaning that graph distances between uniformly chosen vertices are o(log n)), attaching random edge weights changes the geometry of the network completely. Indeed, the hopcount Hn satisfies the universality property that whatever be the value of pn, Hn/ log n → 1 in probability and, more precisely, (Hn−β n log n)/√log n, where β n = λn/(λn− 1), has a limiting standard normal distribution. The constant β n can be replaced by 1 precisely when λn ≫ √log n, a case that has appeared in the literature (under stronger conditions on λn) in [2, 12]. We also find bounds for the maximal weight and maximal hopcount between vertices in the graph. This paper continues the investigation of FPP initiated in [2] and [3]. Compared to the setting on the configuration model studied in [3], the proofs presented here are much simpler due to a direct relation between FPP on the Erdos-Renyi random graph and thinned continuous-time branching processes

    Long paths in first passage percolation on the complete graph II. Global branching dynamics

    Get PDF
    We study the random geometry of first passage percolation on the complete graph equipped with independent and identically distributed positive edge weights. We consider the case where the lower extreme values of the edge weights are highly separated. This model exhibits strong disorder and a crossover between local and global scales. Local neighborhoods are related to invasion percolation that display self-organised criticality. Globally, the edges with relevant edge weights form a barely supercritical Erdős–Rényi random graph that can be described by branching processes. This near-critical behaviour gives rise to optimal paths that are considerably longer than logarithmic in the number of vertices, interpolating between random graph and minimal spanning tree path lengths. Crucial to our approach is the quantification of the extreme-value behavior of small edge weights in terms of a sequence of parameters (sn)n≥1 that characterises the different universality classes for first passage percolation on the complete graph. We investigate the case where sn→ ∞ with sn= o(n1 / 3) , which corresponds to the barely supercritical setting. We identify the scaling limit of the weight of the optimal path between two vertices, and we prove that the number of edges in this path obeys a central limit theorem with mean approximately snlog(n/sn3) and variance sn2log(n/sn3). Remarkably, our proof also applies to n-dependent edge weights of the form Esn, where E is an exponential random variable with mean 1, thus settling a conjecture of Bhamidi et al. (Weak disorder asymptotics in the stochastic meanfield model of distance. Ann Appl Probab 22(1):29–69, 2012). The proof relies on a decomposition of the smallest-weight tree into an initial part following invasion percolation dynamics, and a main part following branching process dynamics. The initial part has been studied in Eckhoff et al. (Long paths in first passage percolation on the complete graph I. Local PWIT dynamics. Electron. J. Probab. 25:1–45, 2020. https://doi.org/10.1214/20-EJP484); the current paper focuses on the global branching dynamics

    Speeding up non-Markovian First Passage Percolation with a few extra edges

    Get PDF
    One model of real-life spreading processes is First Passage Percolation (also called SI model) on random graphs. Social interactions often follow bursty patterns, which are usually modelled with i.i.d.~heavy-tailed passage times on edges. On the other hand, random graphs are often locally tree-like, and spreading on trees with leaves might be very slow, because of bottleneck edges with huge passage times. Here we consider the SI model with passage times following a power law distribution P(ξ>t)∼t−α\mathbb{P}(\xi>t)\sim t^{-\alpha}, with infinite mean. For any finite connected graph GG with a root ss, we find the largest number of vertices κ(G,s)\kappa(G,s) that are infected in finite expected time, and prove that for every k≤κ(G,s)k \leq \kappa(G,s), the expected time to infect kk vertices is at most O(k1/α)O(k^{1/\alpha}). Then, we show that adding a single edge from ss to a random vertex in a random tree T\mathcal{T} typically increases κ(T,s)\kappa(\mathcal{T},s) from a bounded variable to a fraction of the size of T\mathcal{T}, thus severely accelerating the process. We examine this acceleration effect on some natural models of random graphs: critical Galton-Watson trees conditioned to be large, uniform spanning trees of the complete graph, and on the largest cluster of near-critical Erd\H{o}s-R\'enyi graphs. In particular, at the upper end of the critical window, the process is already much faster than exactly at criticality.Comment: 35 pages, 4 figure

    Long paths in first passage percolation on the complete graph I. Local PWIT dynamics

    Get PDF
    We study the random geometry of first passage percolation on the complete graph equipped with independent and identically distributed edge weights. We find classes with different behaviour depending on a sequence of parameters (sn)n≥1 that quantifies the extreme-value behavior of small weights. We consider both n-independent as well as n-dependent edge weights and illustrate our results in many examples. In particular, we investigate the case where sn → ∞, and focus on the exploration process that grows the smallest-weight tree from a vertex. We establish that the smallest-weight tree process locally converges to the invasion percolation cluster on the Poisson-weighted infinite tree, and we identify the scaling limit of the weight of the smallest-weight path between two uniform vertices. In addition, we show that over a long time interval, the growth of the smallest-weight tree maintains the same volume-height scaling exponent – volume proportional to the square of the height – found in critical Galton–Watson branching trees and critical Erdős-Rényi random graphs

    Long ties accelerate noisy threshold-based contagions

    Full text link
    Network structure can affect when and how widely new ideas, products, and behaviors are adopted. In widely-used models of biological contagion, interventions that randomly rewire edges (generally making them "longer") accelerate spread. However, there are other models relevant to social contagion, such as those motivated by myopic best-response in games with strategic complements, in which an individual's behavior is described by a threshold number of adopting neighbors above which adoption occurs (i.e., complex contagions). Recent work has argued that highly clustered, rather than random, networks facilitate spread of these complex contagions. Here we show that minor modifications to this model, which make it more realistic, reverse this result: we allow very rare below-threshold adoption, i.e., rarely adoption occurs when there is only one adopting neighbor. To model the trade-off between long and short edges we consider networks that are the union of cycle-power-kk graphs and random graphs on nn nodes. Allowing adoptions below threshold to occur with order 1/n1/\sqrt{n} probability along some "short" cycle edges is enough to ensure that random rewiring accelerates spread. Simulations illustrate the robustness of these results to other commonly-posited models for noisy best-response behavior. Hypothetical interventions that randomly rewire existing edges or add random edges (versus adding "short", triad-closing edges) in hundreds of empirical social networks reduce time to spread. This revised conclusion suggests that those wanting to increase spread should induce formation of long ties, rather than triad-closing ties. More generally, this highlights the importance of noise in game-theoretic analyses of behavior

    La résilience des réseaux complexes

    Get PDF
    Les systèmes réels subissant des perturbations par l’interaction avec leur environnement sont susceptibles d’être entraînés vers des transitions irréversibles de leur principal état d’activité. Avec la croissance de l’empreinte humaine mondiale sur les écosystèmes, la caractérisation de la résilience de ces systèmes complexes est un enjeu majeur du 21e siècle. Cette thèse s’intéresse aux systèmes complexes pour lesquels il existe un réseau d’interactions et où les composantes sont des variables dynamiques. L’étude de leur résilience exige la description de leurs états dynamiques qui peuvent avoir jusqu’à plusieurs milliers de dimensions. Cette thèse propose trois nouvelles méthodes permettant de faire des mesures de la dynamique en fonction de la structure du réseau. L’originalité de ce travail vient de la diversité des approches présentées pour traiter la résilience, en débutant avec des outils basés sur des modèles dynamiques définis et en terminant avec d’autres n’exploitant que des données récoltées. D’abord, une solution exacte à une dynamique de cascade (modèle de feu de forêt) est développée et accompagnée d’un algorithme optimisé. Comme sa portée pratique s’arrête aux petits réseaux, cette méthode signale les limitations d’une approche avec un grand nombre de dimensions. Ensuite, une méthode de réduction dimensionnelle est introduite pour établir les bifurcations dynamiques d’un système. Cette contribution renforce les fondements théoriques et élargit le domaine d’applications de méthodes existantes. Enfin, le problème de retracer l’origine structurelle d’une perturbation est traité au moyen de l’apprentissage automatique. La validité de l’outil est supportée par une analyse numérique sur des dynamiques de propagation, de populations d’espèces et de neurones. Les principaux résultats indiquent que de fines anomalies observées dans la dynamique d’un système peuvent être détectées et suffisent pour retracer la cause de la perturbation. L’analyse témoigne également du rôle que l’apprentissage automatique pourrait jouer dans l’étude de la résilience de systèmes réels.Real complex systems are often driven by external perturbations toward irreversible transitions of their dynamical state. With the rise of the human footprint on ecosystems, these perturbations will likely become more persistent so that characterizing resilience of complex systems has become a major issue of the 21st century. This thesis focuses on complex systems that exhibit networked interactions where the components present dynamical states. Studying the resilience of these networks demands depicting their dynamical portraits which may feature thousands of dimensions. In this thesis, three contrasting methods are introduced for studying the dynamical properties as a function of the network structure. Apart from the methods themselves, the originality of the thesis lies in the wide vision of resilience analysis, opening with model-based approaches and concluding with data-driven tools. We begin by developing an exact solution to binary cascades on networks (forest fire type) and follow with an optimized algorithm. Because its practical range is restricted to small networks, this method highlights the limitations of using model-based and highly dimensional tools. Wethen introduce a dimension reduction method to predict dynamical bifurcations of networked systems. This contribution builds up on theoretical foundations and expands possible applications of existing frameworks. Finally, we examine the task of extracting the structural causesof perturbations using machine learning. The validity of the developed tool is supported by an extended numerical analysis of spreading, population, and neural dynamics. The results indicate that subtle dynamical anomalies may suffice to infer the causes of perturbations. It also shows the leading role that machine learning may have to play in the future of resilience of real complex systems
    corecore