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1 Abstract
We explore first passage percolation on an infinite geometric inhomogeneous random graph (IGIRG)
model. Vertices are distributed in Rd according to a Poisson process with intensity 0 < λ ≤ 1 and
vertex fitnesses are distributed according to a power-law with exponent τ ∈ (2, 3). Edges are drawn
randomly: the probability that vertices u and v are connected is increasing with their fitnesses and
decaying with their spatial distance. After the construction of the edges, we equip each edge with a
cost or weight: the cost of transmission along an edge consists of an independent random variable
L with a cumulative distribution function that is a power-form close to the origin, multiplied by a
monomial of the vertex fitnesses and their spatial distance. We look at whether there are infinitely
many vertices reachable within finite cost from the origin on a path, which is called explosion,
where the cost of the path is the sum of edge-costs on the edges of the path. We characterise
whether explosion can happen in the model in terms of the underlying parameters.

2 Introduction
In the current day and age, networks are ubiquitous. People’s personal network of acquaintances
and family, the internet, the world-wide web, the cellphone network and many other structures can,
in their truest essence, be represented as a network of just vertices and edges. The corresponding
mathematical object is a graph. In many cases, the exact structure of the network is unknown,
and only certain properties or features of the network are known. In this case, the real-life network
is best modelled by a random graph, in which the amount of vertices, their location and the
presence of edges is not known beforehand. An interesting class of processes to investigate on
such a network are spreading processes. Whether it is a meme being shared over the internet or an
epidemic spreading across a network of people, comprehending how to influence a spreading process
is invaluable. Knowing how to promote the spread may help in promoting an advertisement, while
knowing how to contain it can aid in stemming a pandemic.

The purpose of this thesis is to investigate a model for a spreading process on a specific random
graph: the infinite geometric inhomogeneous random graph. We will show for what choice of pa-
rameters explosion occurs, a phenomenon in which the spread happens incredibly fast and infinitely
many vertices can be reached in a finite amount of time. We will elaborate on this concept later.
This thesis extends results in [25] in a certain new direction. In our model, the transmission time
on an edge of the spreading process also depends on the Euclidean length of the edge. While we
use similar techniques as in [25], some extensions are non-trivial due to the spatial dependence.

2.a Modelling Spread
To start our discussion, we should first note that there are many types of models for spreading
processes. Often, the process is viewed from an epidemiological perspective: a disease spreads
through members of a population. The population can be divided in several classes of individuals,
depending on the type of disease. The simplest model, the SI model, partitions the popula-
tion into a group of susceptible individuals and a group of infected individuals. In the begin-
ning, all individuals are susceptible (apart from those who form the ‘start’ of the epidemic), and
they can become infected only once, after which they remain infected forever. This SI model
is what we will be using, as it is the most simple model available for our purposes. Many
variants of the SI model exist however, such as the Susceptible→Infected→Recovered (SIR),
Susceptible→Infected→Susceptible (SIS), Susceptible→Infected→Recovered→Susceptible (SIRS),
and Susceptible→Exposed→Infectious→Recovered (SEIR) models, and many more. These models
each cater to different types of diseases. In the SIR model, long-term immunity is gained upon
recovery, while in the SIS model no immunity is gained and in the SIRS model immunity is only
retained for a short period after recovery. In the SEIR model, an incubation period is added (the
‘exposed’ stage), in which individuals have contracted the disease but are not yet infectious to
others.

The next parameter a model must specify is how spread occurs. In the introduction, we mentioned
that we will be modelling a network, but this is not a necessity. The compartment model, for
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instance, neglects the underlying network of spread. This model instead chooses to model the
population as a fully mixed group of people, where each person can infect another. One of the
earliest formulations of such a model was an implementation of the SIR model by McKendrick and
Kermack in 1927 [23]. Each ‘stage’ (S, I or R) is called a compartment and, as before, they partition
the population. Typically, these type of models are analysed through ordinary differential equations
(ODEs), which is a deterministic approach. Note however, that when using an ODE approach,
the population is taken to be continuous; at some points in time the size of the population of
a compartment may be non-integer, which detracts from the realism of the model. Extensive
literature exists on the compartmental SIR model and for some variants exact analytical results
have been derived, such as in [16].

2.b Modelling Real-world Networks
Instead of the compartment model, we will use a graph-based (also called ‘agent-based’) model
for our spreading process. Contrary to the compartment model, our model features a discrete,
non-mixed population, i.e, each vertex represents an individual, and spread can only happen via
edges between susceptible and infectious vertices. In order to choose an underlying graph model,
however, we must first explore the characteristics of the networks we wish to model.

Real-world networks often are scale-free, exhibit clustering [2, 12], have hubs [12, 33] and are
small-world [12, 14]. We will briefly elaborate on these properties. Firstly, scale-free means that the
vertex degrees (the amount of neighbours a vertex has) follow a power-law distribution: P(deg(v) =
k) � k1−τ for some parameter τ , typically in the range (2, 3). In practice, this means that the
majority of vertices have relatively few edges, while a minority of them have many neighbours. Such
networks in which not all vertices have the same amount of neighbours are called heterogeneous or
inhomogeneous.

The concept of clustering relates to the propensity of two vertices to be connected, given the fact
that they share a common neighbour. Several measures to make this notion quantitative exist,
one of such measures being the global clustering coefficient. This coefficient is defined as the ratio
between the total amount of closed triples (triangles) and the total number of connected triples
(open and closed). In more general terms, this notion aims to capture group-like structures, in
which vertices have many edges to one another, while few edges ‘leave’ the cluster. Such community
structures often arise in social and infrastructure networks [33].

Power-law degree distributions and clustering coefficients are studied in many kinds of network
applications. The world-wide web, the internet, the phone call network and neural networks were
all found to have (truncated) power-laws as degree distributions, but less obvious examples also
include a network of proteins which can be folded into one another, linguistic networks and networks
of collaboration or citations [2, 30]. Hubs, also known as influencers or super-spreaders in the
context of a spreading process, are simply vertices of large degree. Due to the power-law nature of
many real-world networks these are often relatively few in number, but very influential in spreading
processes because they have many neighbours [20, 33].

Last is the small-world property. Often used in an everyday-sense by saying “It’s a small world, isn’t
it?”, this notion was popularised by an experimental study by Milgram in 1967. This study found
that, on average, only 5 intermediary contacts were needed to connect two people in the United
States by their network of acquaintances [29]. From a mathematical perspective, small-world means
that the expected amount of edges needed to connect two arbitrary vertices is proportional to the
logarithm of the amount of vertices in the network.

Several observations have been made in terms of how these features affect spreading in mathematical
models which implement them. On the one hand, hubs promote spreading. After the initial
infection reaches a hub, it spreads rapidly, causing hubs to potentially be the largest spreaders [12,
33]. Clustering, on the other hand, slows down the spread significantly [20, 33]. Intuitively, the
infection has trouble breaking out of the community structures that accompany high clustering,
causing ‘local’ outbreaks instead of ‘global’ pandemics. The interplay of these features and effects
is complex, and we aim to choose a model for our underlying graph which captures all of them in
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order to observe the rich behaviour one might expect from a real-world network.

2.c Choosing a Graph Model
In the previous section we have examined several desired real-world features that we would like to
simulate in our graph model. In this section, we will review several models and results relating to
spreading processes, after which we introduce the model we will be using.

Non-geometric network models. Graph models for random networks have been around since the
1960’s, having been first introduced by Erdős and Rényi in 1959 [13]. This original model is simple,
yet it shows rich behaviour. The main idea is to randomly choose one of the possible graphs which
can be formed out of a fixed number n vertices and any configuration of m edges, with equal
probability. While this model is small-world, it does not capture the other features of real-world
networks we have previously discussed, nor does it reflect any geometric properties.

Next, we will briefly mention Inhomogeneous Random Graphs (IRG). This model is a generalization
of the Erdős-Rényi graph: independence of edges is kept, but the edge probabilities are now allowed
to be different. A very general format for such models was introduced by Bollobás et al. in [8]. We
omit the details due to the complex nature of the format, but the general idea is that every vertex
in the graph has a certain type, and edge probabilities are controlled by a kernel. If a specific kernel
is chosen, other models may be recovered, such as the Chung-Lu (see e.g. [10]) and Erdős-Rényi
models [17].

The configuration model, introduced by Bollobás in [7], is the next model we will discuss. In this
model, the degrees of vertices are fixed before the construction of the graph, which in particular al-
lows the vertex degrees to follow any (non-negative, discrete) distribution. Every vertex is assigned
as many half-edges as its set degree requires. Then, half-edges are paired randomly, until all are
connected. Note that in general, this results in a multigraph, a graph in which vertices may have
self-loops and multiple edges between pairs of vertices may be present. Naturally, whether this
model reflects any of the features mentioned in Section 2.c depends on the choice of distribution
for the vertex degrees. Some general results, however, can be found in terms of conditions on the
degrees, such as whether an infinite component exists [31].

As a last non-spatial model, we will discuss the preferential attachment model, for which results
relating to explosion have already been obtained. This model is interesting, because it is scale-
free and contains hubs, features that were shown to occur in real-world networks. Originally
introduced by Barabási and Albert, the preferential attachment model differs from the models we
have discussed so far in the sense that it is seen as a dynamically growing model [4]. The graph
starts with one vertex and no edges. When a new vertex v is added, edges are created between
v and m existing vertices, where v is connected to an already-present vertex u with probability
deg(u)/

∑
j deg(j). Here, deg(u) is the degree of u, while the denominator sums over all degrees

of vertices j present in the graph prior to adding v. As is immediately clear from this attachment
rule, new vertices prefer to be attached to high-degree vertices. Moreover, since new vertices keep
being connected to high degree vertices, they benefit from a ‘rich-get-richer’ effect and gain more
and more neighbours. This stimulates the formation of hubs and creates a scale-free graph.

Geometric network models. For many real-world networks, incorporating a spatial aspect into the
construction of the graph is desirable. In many common applications, the notion of ‘distance’
influences how likely two vertices are to be directly connected by an edge. For example, in a
railway network, big cities close to one another are intuitively much more likely to have a direct
route between them than cities which are far apart.

The scale-free percolation model was introduced by Deijfen at al. in [11]. The model features an
infinite graph with vertices on Zd, each assigned an i.i.d. copy of a non-negative weight random
variable W . Conditionally on the vertex weights, vertex locations and given parameters α, λ > 0,
the edges are independent and the probability that an edge between vertices u and v is present is
puv = 1− exp(−λWuWv/‖xu − xv‖α). Parameter λ is a percolation parameter, while α regulates
the long-range behaviour of the model. Under certain conditions, if the weight distribution follows
a power-law, the degree distribution will also follow a power-law, which was one of the desired
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features we wished to incorporate. Hubs are also present in this graph model, and it exhibits
clustering and small-world behaviour. However, since the model is defined on Zd, it is not suitable
for modelling networks in which vertices are not placed according to this grid-like structure. In
terms of explosion, the model’s behaviour has been fully characterised for arbitrary edge weights
in [19, 26].

Finally we arrive at the model we will use, the infinite geometric inhomogeneous random graph
(IGIRG). This model is an extension of the finite geometric inhomogeneous random graph (GIRG)
model (introduced in [9]), which in turn is a generalization of the hyperbolic random graph model
(see [32]). This model exhibits all the features we desire (scale-free, clustering, hubs and small-
world). We leave the specifications of the model to Subsection 3.a, but remark that this model
is implemented with vertices distributed according to a Poisson point process in Rd, which is, in
some cases, a more realistic approach than the Zd grid used by scale-free percolation.

2.d First Passage Percolation Results
In terms of spreading models, one of the first papers on the SI model applied to a graph was by
Hammersley and Welsh in 1965 as a means to model flow through a (random) porous medium [15].
In their paper, each edge is allocated an independent and identically distributed random variable
representing the cost of that edge. This kind of model is called first passage percolation. Since its
introduction, the field of first passage percolation has been very active and the principle has been
applied to many types of graphs [3].

For the Erdős-Rényi graph with exponentially distributed weights, for instance, several results
have been found, such as an analysis of minimal distance and hopcount (number of edges on the
shortest path) [6]. Related to this result is the study of first passage percolation on the complete
graph: the graph in which all possible edges are present (this can be seen as an Erdős-Rényi graph
where each edge is present with probability 1). For this graph, the distribution of the hopcount of
the shortest path has also been characterised [18]. Again, this graph model lacks the previously
mentioned features that we would like to include (except small-world).

First passage percolation also has been researched on an IRG model. The distribution of the
weight of the shortest path between two uniformly chosen vertices in the giant component has
been determined. In addition to this, it was shown that the hopcount, if properly normalized,
follows a central limit theorem [24].

For the configuration model, multiple first passage percolation results are available. For instance,
under power-law assumptions on the provided degrees and some additional conditions, the weight
of the shortest path between two uniformly chosen vertices either converges to non-infinite random
variables, or diverges to infinity [5]. Another result is the characterisation of the distribution the
hopcount converges to [1].

The preferential attachment model has also been analysed in the context of first passage percolation.
One result follows from the analysis of three of these preferential attachment models. The typical
weighted distance and hopcount were investigated. It is shown that there are two universality
classes of weight distributions relevant for these results, the explosive class and the conservative
class, which determine the nature of the typical weighted distance and hopcount [22].

Weighted distances in the GIRG graph (with edge cost variables not incorporating the vertex
weights) have been studied in [26] and were found to have a connection to the explosion time of
the infinite version of the model. For IGIRG, precise conditions for explosion to occur were found.
In [25], conditions for explosion were again analysed, but now using edge costs which also incor-
porated vertex weights. This deviates from first passage percolation, but is more realistic because
high-degree vertices should have a higher expected transmission time. This reflects that high-degree
vertices have a limited time budget and cannot interact with arbitrarily many neighbours per time
unit, as has been observed in e.g. real-world communication networks [30].
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2.e Our Contribution
Our contribution will be to expand on the results in [25] by also factoring in the edge length into
the edge costs. This models that the distance between two vertices influences the cost of spread.
This is relevant in e.g. epidemiological scenarios, where individuals are less likely to infect each
other when there is greater distance between them. A recent application of this fact are the social
distancing measures implemented to combat the COVID-19 pandemic [34]. In order to provide
results for our extension, many of the proofs in [25] had to be (non-trivially) adapted, as they were
not originally designed to factor in these edge lengths easily. With the exception of Lemma 5.4
and Lemma 5.5, all relevant lemmas have been revised and are proven for our case.

2.f Notation
We write r.v. for random variable, w.r.t. for with respect to, and i.i.d. for independent and identi-
cally distributed. Generally, random variables will be denoted by capital letters (e.g. X) and their
cumulative distribution functions (cdfs) by F (so e.g. FX(x)). We say an event A happens almost
surely (a.s.) when P(A) = 1. We write R+ := (0,∞) for the domain of positive real numbers. The
set {1, ..., n} is denoted as [n]. The size of a set X is denoted by |X|. The floor and ceiling functions
of x are denoted by bxc and dxe respectively. For any vector x ∈ Rd, we denote its infinity norm
by ‖x‖∞ := max1≤i≤d |xi|. The Euclidian norm of x in Rd is denoted by ‖x‖. We denote a graph
by G = (V, E), with V being the vertex set and E being the edge set. For two vertices u, v, let
u ↔ v denote the event that u and v are connected by an undirected edge (u, v). We denote the
vertex fitness for a vertex v by Wv. This is also commonly referred to as vertex weight in other
literature. The meaning of this notion is explained below Assumption 3.2 in Section 3.a.

3 Model Description
We start by discussing the graph model used to model the spreading process. This is a slightly
simplified version of the infinite geometric inhomogeneous random graph model (IGIRG) introduced
by [9].

3.a Graph Model
Definition 3.1 (Infinite Geometric Inhomogeneous Random Graphs). Let hI : Rd × R+ × R+ →
[0, 1] be a function, let W ≥ 1, L ≥ 0 be random variables, let d ≥ 0 be an integer, and let λ > 0.
The infinite graph model IGIRGW,L(λ) then is defined as follows. Let Vλ be a homogeneous Poisson
point process on Rd with intensity λ, which forms the positions of the vertices in Rd. Let the position
of vertex u in Rd be denoted xu. For each such vertex u ∈ Vλ, draw a (random) fitness Wu, which
is an i.i.d. copy of W . Then, conditioned on (xu,Wu)u∈Vλ , edges are present independently with
probability

P(u↔ v in IGIRGW,L(λ) | (xz,Wz)z∈Vλ) := hI(xu − xv,Wu,Wv). (3.1)

Furthermore, assign to each present edge in the graph an edge weight Le, an i.i.d. copy of a random
variable L ≥ 0. We write (Vλ, Eλ) for the vertex and edge set of the resulting IGIRG graph.

For our specific case, this definition is too general. The edge connectivity function hI and vertex
fitness distribution will be specified by Assumption 3.3 and Assumption 3.2 below. Furthermore,
we assume that 0 < λ ≤ 1. This assumption is not detrimental to the generality of our case, since
this corresponds to rescaling the Poisson point process.

Assumption 3.2 (Vertex Fitnesses Obey Power-law). It is assumed that for all vertices u, their
fitness Wu satisfies

c1
xτ−1

≤ P(Wu ≥ x) ≤ c2
xτ−1

, (3.2)

for some real τ ∈ (2, 3) and constants c1, c2 ∈ R+. Such a distribution is known as a power-law
with parameter τ .
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(a) Average degree: 4.022, τ = 2.7,
α = 1.5

(b) Average degree: 3.930, τ = 2.7,
α = 5

(c) Average degree: 3.958, τ = 2.4,
α = 5

Figure 1: Three examples of the GIRG model under our modelling assumptions. Vertices are
placed randomly on a unit cube of dimension d = 2. Note that the same underlying vertex set is
used. Parameters τ and α are varied, while the resulting graph is thinned such that the average
degrees are approximately the same. Comparing 1a to 1b, the effect of α can be seen. The lower
value of α allows a greater number of long-range edges. Similarly comparing 1b to 1c, the effect
of τ can be observed. The smaller choice of τ leads to greater diversity in vertex degrees. In 1c,
there are several smaller hubs, as well as some very large hubs. In 1b, there is less variation in hub
size. Images are generated using code provided by Joost Jorritsma.

Under Assumption 3.2 and conditioned on its fitness Wu, the expected degree of any vertex u
coincides with Wu up to a constant factor and the vertex degrees will follow a power-law with
parameter τ (when τ > 2 and α > 1 in Assumption 3.3 below) [9, 25]. The parameter τ controls
the degree of heterogenity of vertex fitnesses. A smaller choice of τ will yield greater diversity
in vertex degrees. We restrain the model to τ ∈ (2, 3). The result of taking τ > 2 is that the
expectation of W is finite, while the variance is infinite [11]. The case τ > 3 will not be interesting,
as in this case explosion is never possible. This was shown for the scale-free percolation model
in [19], which in this case behaves similarly enough to the IGIRG model for the results apply to
the IGIRG model as well [26].

Assumption 3.3 (Connection Probability). For any two vertices u, v ∈ V located at xu, xv ∈ Rd,
it is assumed that the probability that they are connected is given by

P(u↔ v |Wu,Wv, xu, xv) = p ·min

(
1,

(
Wu ·Wv

‖xu − xv‖d

)α)
, (3.3)

for some percolation parameter p ∈ (0, 1] and long range parameter α ∈ (1,∞).

The amount of long-range connections is governed by α, and α > 1 is required to avoid infinite
vertex degrees. In general, a larger choice of α will result in fewer long-range connections. This is
the case because typically, the ratio WuWv/‖xu − xv‖d is less than 1 when vertices are far away.
An example of a finite version of our model can be seen in Figure 1.

3.b Spreading Model
As mentioned in Subsection 2.a, several spreading models exist. The model we explore is the SI
model, in which susceptible individuals (in our case, vertices) can become infected and then remain
infected forever. Spread can only happen from an already infected vertex to a direct neighbour.
To spread across an edge, the infection incurs a certain cost. We introduce two such cost models
later. First, we formally define the notion of cost-distance in the graph.

Definition 3.4 (Distances and Balls). Let G = (V, E) be a graph. Let W := {Wu : u ∈ V} be the
associated set of vertex fitnesses, where Wu ∈ [1,∞) for all u ∈ V. Choose a collection of costs
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C := {C(u,v) : (u, v) ∈ E}. Then for all walks π = (π0, ..., πk) in G, we define the cost of π to be

|π|C :=

k∑
i=1

C(πi−1,πi). (3.4)

For all sets A,B ⊆ V, we define the cost-distance from A to B by

dC(A,B) := inf({|π|C : π = (π0, ..., πk) is a path with π0 ∈ A and πk ∈ B} ∪ {∞}). (3.5)

To abbreviate our notation, we write dC(u, v) := dC({u}, {v}). With this distance function in hand,
we can now define cost-balls by

BC(u, r) := {v ∈ V : dC(u, v) ≤ r} for all u ∈ V and all r ≥ 0. (3.6)

Now we can define our cost of spread models. We will study two variations. Both will take the
geometric distance into account in terms of cost, but only the second will also factor in vertex
fitnesses. Moreover, both also feature an edge weight L, which will be defined first.

Definition 3.5 (Edge Weights). Let L(u,v) be an i.i.d. copy of the random variable L for each edge
e = (u, v) of the graph. Let the cumulative distribution function FL satisfy

FL(t) = P(L ≤ t) = min(1, tβ), (3.7)

for some β ∈ R, β > 0. The copy L(u,v) of L associated with the edge (u, v) will be referred to as
the edge weight of (u, v).

Definition 3.6 (Cost of Spread). For each edge e = (u, v), we specify C(u,v) in Definition 3.4 as

C(u,v) = L(u,v) · ‖xu − xv‖ζ , (3.8)

for some ζ ∈ R where ζ ≥ 0. In this definition, xu and xv denote the positions of vertices u and v
in Rd and L(u,v) is the edge weight as defined in Definition 3.5.

Definition 3.7 (Cost of Weighted Spread). For each edge e = (u, v), we specify C(u,v) in Defini-
tion 3.4 as

Cw(u,v) := L(u,v) · ‖xu − xv‖ζ ·Wµ
u ·W ν

v , (3.9)

for some ζ, µ, ν ∈ R where ζ, µ, ν ≥ 0. In this definition, xu and xv denote the positions of the
vertices u and v in Rd and L(u,v) is the edge weight as defined in Definition 3.5. Random variables
Wu and Wv are the fitnesses of the vertices u and v respectively.

Recall that in our case, the distributions of the fitnesses in Definition 3.7 obey Assumption 3.2.
Note that our spreading process is not Markovian, since the costs are not memoryless. Having
specified the model and its assumptions, we can now formally introduce the concept of explosion
under Definition 3.4. This definition is valid for all weighted infinite networks.

Definition 3.8 (Explosion Time and Lengthwise Explosion). Consider the IGIRGW,L(λ) model as
described in Definition 3.1 and let u ∈ Vλ. Choose a collection of costs C := {C(u,v) : (u, v) ∈ E}.
Define σC(u, k) := inf{t : |BC(u, t)| > k in IGIRGW,L(λ)}. Then we define the explosion time of a
vertex u (with respect to cost of spread C) as the possibly infinite limit

YC(u) := lim
k→∞

σ(u, k). (3.10)

The explosion time of the origin, YC(0), is defined analogously when we condition on 0 ∈ Vλ. The
IGIRGW,L(λ) model is called explosive (with respect to the collection of costs C) if

P(YC(0) <∞) > 0. (3.11)

Otherwise, we call it conservative. Furthermore, we call any infinite path π with |π|C < ∞ an
explosive path.
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In the above definition, σC(u, k) can be seen as the smallest cost t such that k other vertices are
reachable within cost t from u. The explosion time YC(u) is the infimum of all costs t such that
the ball BC(u, t) contains infinitely many vertices. Hence YC(u) is finite if and only if infinitely
many vertices are reachable within bounded cost from u. In this thesis, we are mainly interested
in lengthwise explosion, which is the case where there exists an explosive path from the origin. In
other literature (e.g. [25]), one may also find the concept of sideways explosion, which is the case in
which there is a finite path from the origin to a vertex from which there are infinitely many incident
edges of bounded cost. This latter form of explosion is not exclusive with lengthwise explosion.
Note that sideways explosion cannot occur in graphs where each vertex has finite degree almost
surely (locally finite graphs), and that the model we study is locally finite when τ > 2 and α > 1.
In this thesis, we will not explore this concept of sideways explosion.

4 Explosion
In this section we will present two theorems (Theorem 4.1 and Theorem 4.2 below) which charac-
terise the constraints on parameters β, ζ and τ and dimension d needed to ensure explosion with
respect to the cost models defined in Definition 3.6 and Definition 3.7 respectively. We will show
that (lengthwise) explosion occurs by constructing an infinite path with finite total cost. This
implies that σ(0, k) stays bounded as k → ∞, which ensures that YC(0) is finite. The proof for
these theorems is adapted from [25]. We use a similar structure and have modified their existing
lemmas to suit our model.

Theorem 4.1 (Explosion Theorem). Let α ∈ (1,∞). Consider the model IGIRGW,L(λ) with 0 <
λ ≤ 1. Suppose the vertex fitness distribution satisfies Assumption 3.2, the connection probability
satisfies Assumption 3.3 and the cost of spread is as defined in Definition 3.6. Furthermore, let
parameters β, ζ and d satisfy

2β
ζ

d
< 3− τ. (4.1)

Then the model is lengthwise explosive.

Theorem 4.2 (Explosion Theorem for Weighted Cost). Let α ∈ (1,∞). Consider the model
IGIRGW,L(λ) with 0 < λ ≤ 1. Suppose that the vertex fitness distribution satisfies Assumption 3.2,
the connection probability satisfies Assumption 3.3 and the cost of spread is as defined in Defini-
tion 3.7. Furthermore, let parameters β, ζ, d, µ and ν satisfy

β

(
µ+ ν + 2

ζ

d

)
< 3− τ. (4.2)

Then the model is lengthwise explosive.

While we only treat monomials in C, the theorems can be extended for polynomial penalty factors
by observing the following. Suppose f1 and f2 are monomials in C and f = f1 + f2. Then
|π|f = |π|f1 + |π|f2 . Hence, ensuring that for an infinite path π all monomials have finite cost
shows explosion with respect to the polynomial f .

Before we come to the structure of the proof, we first show an interesting example.

Example 4.3 (Explosion for ζ > 1). Consider the model IGIRGW,L(λ) with 0 < λ ≤ 1. Suppose
that the vertex fitness distribution satisfies Assumption 3.2, the connection probability satisfies
Assumption 3.3 and the cost of spread is as defined in Definition 3.7. Choose d = 3, ζ = 3/2,
τ = 5/2, µ+ ν = 2 and β < 1/6. Then the model is lengthwise explosive.

This example is noteworthy, since it shows that explosion can occur on such a model in R3, even
though we penalise the spread by more than the Euclidian length of the edges (since ζ > 1).
Apparently, by choosing τ close to 2 and β small, there are so many cheap edges out of the
hubs, that the cost of at least one infinite path is brought down enough to be finite with positive
probability. This is only one choice of parameters which shows this possibility, but in general there
many possible choices for µ, ν, ζ and d with the same result as long as τ is close to 2 and β is
taken small enough.
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0

Γ0(0)

Γ1(0)

Γ2(0)

Figure 2: A schematic representation of a boxing system centered around the origin. In most cases,
sub-boxes will not perfectly fill each annulus, resulting in some left-over space not illustrated here.
The ratio between the annuli and sub-boxes is also not representative. Note that this is only a finite
part of the boxing system, as this segment is surrounded by Γ3(0), which in turn is surrounded by
Γ4(0), etc. In reality, these nested annuli continue infinitely.

Heuristic idea of the proof of Theorem 4.1 and Theorem 4.2. We construct a system of expanding
boxes centered around the origin. The kth box has doubly-exponential volume exp(MDCk) for
some suitably chosen parameters C,D > 1 and M > 0. The kth annulus formed by these boxes
(box k minus box k − 1) is then packed with approximately exp(M(D− 1)Ck) disjoint sub-boxes,
each with volume exp(MCk). In each such sub-box, the vertex with maximal fitness is called the
leader of the sub-box. We construct our infinite path of finite cost greedily as follows. Suppose
that we have exposed the kth annulus and have constructed a path reaching some leader vertex ck
in the kth annulus. Then we expose the contents of the (k + 1)th annulus, and choose the edge
(ck, ck+1) from ck to a leader vertex ck+1 of some sub-box in the (k + 1)th annulus such that the
assigned edge weight L(ck,ck+1) is minimal. In order to show explosion, it suffices to show that the
total cost of this path is finite almost surely.

We start by defining the aforementioned boxing system and characterising bounds on the amount
of sub-boxes each annulus can have in Lemma 4.5. Afterwards, the leader vertices will be formally
defined, and we start to work towards proving Lemma 4.10 and Lemma 4.12 which will serve as
the cornerstones of the final proofs of Theorem 4.1 and Theorem 4.2.

Definition 4.4 (Boxes and Annuli). Given a center vertex u ∈ Rd and parameter k ∈ N, parame-
ters C,D > 1 ∈ R and arbitrary parameter M ∈ R, define a box as

Boxk(u) :=

{
x ∈ Rd : ‖x− u‖∞ ≤

1

2
eMDCk/d

}
. (4.3)

Furthermore, we define the kth annulus as

Γk(u) := Boxk(u) \ Boxk−1(u), for k ≥ 1. (4.4)

We pack each annulus Γk(u) with as many disjoint sub-boxes

SBk,i(u) :=

{
x ∈ Rd : ‖x− zk,i‖∞ ≤

1

2
eMCk/d

}
(4.5)

as possible by choosing zk,i accordingly.
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Observe that the kth box has radius exp(MDCk/d)/2 and volume exp(MDCk), while the sub-
boxes have radius exp(MCk/d)/2 and volume exp(MCk). The centers zk,i of these sub-boxes must
be chosen in a way to maximise the amount of sub-boxes in each annulus Γk(u), but the exact
choice of zi,k is not relevant. It must be noted however, that in general the sub-boxes will not
perfectly fill up Γk(u) and some volume will not be covered. Let bk denote the maximal amount of
sub-boxes in annulus Γk(u) and order the sub-boxes in each annulus arbitrarily from 1 to bk. We
will refer to this setup of packing box-shaped annuli with sub-boxes as a boxing system centered
around u. An example of a boxing system centered around the origin can be seen in Figure 2.

Lemma 4.5 (Bounds on Amount of Sub-boxes). Given a boxing system as described in Defini-
tion 4.4, the maximal amount of sub-boxes bk in annulus Γk(u) can be bounded by

1

2
eM(D−1)Ck ≤ bk ≤ eM(D−1)Ck , (4.6)

for all sufficiently large M ≥M(C,D).

Proof. The upper bound can be easily seen by examining the ratio of the volume of the box Boxk(u)
(so the volume of the annulus Γk(u) including the middle) and the volume of a single sub-box.
This yields

bk ≤
Vol(Boxk(u))

Vol(SBk,i(u))
=

eMDCk

eMCk
= eM(D−1)Ck . (4.7)

For the lower bound, we investigate the amount of sub-boxes for a particular partial covering of
Γk(u). If we start covering box Boxk(u), we can fit

OB :=

⌊
eMDCk/d

eMCk/d

⌋d
=
⌊
eM(D−1)Ck/d

⌋d
(4.8)

sub-boxes in total. The ‘inner’ box Boxk−1(u) can overlap with at most

IB :=

(⌈
eMDCk−1/d

eMDCk/d

⌉
+ 1

)d
=

(⌈
e−MDCk−1(C−1)/d

⌉
+ 1

)d
(4.9)

of the sub-boxes used to cover Boxk(u). These particular sub-boxes must therefore be discarded.
Using this with the amount of sub-boxes we fitted into the complete box Boxk(u), we can fit at
least OB − IB sub-boxes in Γk(u). For sufficiently large M , we have that

OB − IB ≥ (eM(D−1)Ck/d − 1)d − (e−MDCk−1(C−1)/d + 2)d ≥ 1

2
eM(D−1)Ck , (4.10)

and thus (4.6) follows.

We now define the leader vertices of each sub-box and bound their fitnesses from above and from
below. Recall that we intend to construct the infinite path of finite cost by greedily adding a
leader vertex from the next annulus to the path at each step. In the case of the cost model defined
in Definition 3.7, the fitnesses add to the cost of the path, which might cause the total cost to
become infinite if we are not careful. Hence we need to bound the fitnesses of the leaders from
above. Bounding the fitnesses from below ensures that the leaders have enough neighbours to keep
extending the path. Sufficiently many neighbours need to be available to ensure there is a ‘cheap
enough’ option at each step, which keeps the total cost of the path finite. These upper and lower
bounds are introduced as the concept of δ-goodness in Definition 4.7 below, and will prove to be
crucial to our proofs.

Definition 4.6 (Leader Vertices). For each sub-box SBk,i(u) containing at least one vertex, the
leader vertex ck,i is defined to be the vertex in the sub-box of maximal fitness. In other words,

ck,i := arg max
v∈SBk,i

{Wv}. (4.11)
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Definition 4.7 (δ-goodness). A sub-box SBk,i(u) is called δ-good if it has a leader vertex ck,i with
a fitness Wck,i satisfying

exp

(
MCk

1− δ
τ − 1

)
≤Wck,i ≤ exp

(
MCk

1 + δ

τ − 1

)
. (4.12)

We will also call a leader vertex δ-good if its fitness satisfies the above constraint.

We will now present two auxiliary lemmas used in the proof of Lemma 4.10, which will be treated
next.

Lemma 4.8 (Markov Bound on Poisson Random Rariable). Let X be a Poisson random variable
with mean µ. Then it holds that

P
(
|X − µ| ≥ 1

2
µ

)
≤ 2e−µ/15. (4.13)

Proof. The result of this lemma can be obtained by employing Markov’s inequality twice. Firstly,
we compute (for any t ∈ R+ and ε ∈ (0, 1))

P(X ≥ (ε+ 1)µ) = P(etX ≥ et(ε+1)µ) ≤ E[etX ]

et(ε+1)µ
. (4.14)

Here the last inequality holds due to Markov’s inequality. Note that this expectation can now
explicitly be calculated since it corresponds to the generating function of the Poisson random
variable X. Therefore,

P(X−µ ≥ εµ) = P(X ≥ (ε+1)µ) ≤ exp(−t(ε+1)µ−µ(1−et)) = exp(−µ(t(1+ε)+1−et)). (4.15)

Similarly,

P(X ≤ (1− ε)µ) = P(e−tX ≥ e−t(1−ε)µ) ≤ E[e−tX ]

e−t(1−ε)µ
. (4.16)

Note that here ε < 1 plays a role since we need that (1 − ε)µ is positive in order to employ the
Markov bound. Thus we also find

P(X −µ ≤ −εµ) = P(X ≤ (1− ε)µ) ≤ exp(t(1− ε)µ−µ(1− e−t)) = exp(−µ(t(−1 + ε) + 1− e−t)).
(4.17)

Combining the bounds (4.15) and (4.17) and taking ε = t = 1/2 yields

P
(
|X − µ| ≥ 1

2
µ

)
≤ exp

(
− µ

(
7

4
− e1/2

))
+ exp

(
µ

(
− 3

4
+ e−1/2

))
. (4.18)

Observe that 7/4− e1/2 ≈ 0.101 > 0 and −3/4 + e−1/2 ≈ −0.143 < 0. Since for Poisson variables
µ > 0, we can combine the terms to see

P
(
|X − µ| ≥ 1

2
µ

)
≤ 2 exp

(
− µ

(
7

4
− e1/2

))
≤ 2 exp

(
− µ

15

)
, (4.19)

yielding (4.13).

A similar results holds for binomial random variables.

Lemma 4.9 (Corollary 2.3 in [21]). Let X be a binomial r.v. with mean µ. Then for all 0 < ε ≤ 3/2,

P(|X − µ| ≥ εµ) ≤ 2e−ε
2µ/3. (4.20)

The following lemma uses the principle of δ-goodness introduced in Definition 4.7 to show that
every δ-good leader has many δ-good leader neighbours in the next annulus. This lemma is crucial,
as it guarantees the existence of infinite paths and will enable us to greedily construct a low-cost
path.

Recall the definitions of leader vertices and δ-goodness from Definition 4.6 and Definition 4.7. The
proof of this lemma is adapted from Lemma 4.3 in [25]. We define Nj(ck,i) to be the number of
δ-good leaders in Γj(u) that are adjacent to leader ck,i in Γk(u).
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Lemma 4.10 (Fitnesses and Subgraph of Leaders). Consider IGIRGW,L(λ) with parameters d ≥ 1,
τ ∈ (2, 3), α ∈ (1,∞), and 0 < λ ≤ 1. Let C,D > 1 and 0 < δ < 1 satisfy

1− δ
τ − 1

(1 + C)−DC > 0. (4.21)

Consider a boxing system as defined in Definition 4.4. Furthermore, define the events

F
(1)
k :=

{
|i ∈ [bk] : SBk,i is δ-good | ≥

1

2
bk

}
, and (4.22)

F
(2)
k :=

{
∀i ∈ [bk] such that SBk,i is δ-good : Nk+1(ck,i) ≥

p

8
eM(D−1)Ck+1

}
. (4.23)

Then there exists an M0 > 0 such that for all M > M0

P(¬ ∩k≥0 (F
(1)
k ∩ F (2)

k )) ≤ 3 exp

(
− λ

75
eM min(D−1,1)/2

)
. (4.24)

Proof. To investigate the probability of F (1)
k , we first examine the event that there exists a sub-box

with either too many or too few vertices. We denote the amount of vertices in sub-box SBk,i by
Vk,i. To be exact, we are interested in the probability

P(¬E1k) := P
(
∃i ≤ bk : Vk,i /∈

[
1

2
λeMCk ,

3

2
λeMCk

])
. (4.25)

Recall that by (4.5), each sub-box has volume exp(MCk). Since we study an IGIRGW,L graph,
the vertices are distributed in Rd according to a Poisson point process with intensity λ. Therefore,
the amount of vertices in a sub-box is a Poisson random variable with mean λ exp(MCk). Thus,
we can employ Lemma 4.8. Using a union bound over all sub-boxes and applying the upper bound
on bk from (4.6), this yields

P(¬E1k) ≤ 2 exp(M(D − 1)Ck) exp

(
− λ

15
eMCk

)
≤ exp

(
− λ

20
eMCk

)
, (4.26)

for sufficiently large M , since the second factor is doubly exponentially small in MCk while the
first is only exponential in MCk. Now, to derive a bound on the probability of a sub-box not
being δ-good, we first look at the error probability of the leader vertex’s fitness being too large,
conditioned on E1k . Note that in this case, by (4.25), we have a deterministic lower bound on Vk,i.
Also recall that since vertices are distributed according to a Poisson point process, the amount of
vertices in each sub-box is independent of the amount of vertices in other sub-boxes. Hence we
have that

P( max
v∈SBk,i∩V

Wv ≤ y | E1k) ≤ (1− P(Wv > y))λ exp(MCk)/2 ≤
(

1− c1
yτ−1

)λ exp(MCk)/2

≤ exp

(
− c1

2
y−(τ−1)λeMCk

)
.

(4.27)

by Assumption 3.2. Taking y to be the lower bound of δ-goodness, as defined in Definition 4.7,
yields

P
(

max
v∈SBk,i∩V

Wv ≤ exp

(
MCk

1− δ
τ − 1

)∣∣∣∣E1k) ≤ exp

(
− c1

2

(
exp

(
MCk

1− δ
τ − 1

))−(τ−1)
λeMCk

)
= exp

(
− c1

2
λeδMCk

)
.

(4.28)
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The maximum fitness can also be bounded from above. Employing a union bound and using the
deterministic upper bound for Vk,i given by (4.25), we have that, for all y > 0,

P( max
v∈SBk,i∩V

Wv > y|E1k) ≤
∑

v∈SBk,i∩V
P(Wv > y | E1k) ≤ 3

2
λeMCkc2y

−(τ−1), (4.29)

again by Assumption 3.2. Similarly to above, we now take y to be the upper bound of δ-goodness.
This gives the bound

P
(

max
v∈SBk,i∩V

Wv > exp

(
MCk

1 + δ

τ − 1

)∣∣∣∣E1k) ≤ 3

2
λeMCkc2

(
exp

(
MCk

1 + δ

τ − 1

))−(τ−1)
=

3

2
λc2e−δMCk .

(4.30)

Combining bounds (4.28) and (4.30) yields

P(SBk,i is not δ-good | E1k) ≤ exp

(
− c1

2
λeδMCk

)
+

3

2
λc2e−δMCk ≤ 3λc2e−δMCk , (4.31)

for M sufficiently large. Observe that for all k and i, the event of SBk,i being δ-good depends
on the vertex fitnesses within SBk,i and the amount of vertices only. Both the fitnesses and the
amount of vertices are all mutually independent random variables. Therefore, conditioned on E1k ,
the amount of δ-good sub-boxes in Γk(u) is dominated below by a binomial r.v. with bk trials and
success probability 1−3λc2 exp(−δMCk). By choosingM ≥ log(12λc2)/(δCk), we can ensure that
this success probability is greater than or equal to 3/4. This enforces the inequality

P(¬F (1)
k | E1k) ≤ P

(
X ≤ 1

2
bk

)
, (4.32)

where X ∼ Bin(bk, 3/4). This can then be bounded further using a Chernoff bound as given in
Lemma 4.9 with ε = 1/3. Namely,

P
(
|X − 3bk/4| ≥ bk/4

)
≤ 2e−bk/36 =⇒ P

(
X ≤ 1

2
bk

)
≤ 2e−bk/36. (4.33)

We use this result in the computation of an upper bound for P(¬F (1)
k ) below. We have that

P(¬F (1)
k ) = P(¬F (1)

k | ¬E1k)P(¬E1k) + P(¬F (1)
k | E1k)P(E1k) ≤ P(¬E1k) + 2e−bk/36

≤ exp(−λeMCk/20) + 2 exp(−eM(D−1)Ck/72) ≤ 2 exp(−λemin(D−1,1)MCk/74),
(4.34)

for sufficiently large M , by (4.26) and the lower bound for bk of Lemma 4.5. Thus, employing a
union bound over k, when M is sufficiently large we have

P(∩k≥0F (1)
k ) ≥ 1− 2

∞∑
k=0

exp(−λemin(D−1,1)MCk/74)

≥ 1− 2 exp(−λemin(D−1,1)M/75),

(4.35)

since the sum decays faster than a geometric sum and is dominated by its first term.

For F (2)
k , we condition on ∩k≥0F (1)

k . First, we analyse the connection probability between any
δ-good leader vertex ck,i in Γk(u) to any given δ-good leader vertex ck+1,j in Γk+1(u). We denote
the fitnesses of ck,i and ck+1,j by w1 and w2 respectively, and denote their locations in Rd by x1
and x2. Recall that by Assumption 3.3, the probability that ck,i and ck+1,j are connected satisfies

P(ck,i ↔ ck+1,j | w1, w2, x1, x2) = p ·min

(
1,

(
w1w2

‖x1 − x2‖d

)α)
. (4.36)
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Recall from Definition 4.4 that because ck,i and ck+1,j both lie in box Boxk+1(u), the distance
between them satisfies ‖x1 − x2‖ ≤ 2

√
d exp(MDCk+1/d). Moreover, we also know that both

vertices are δ-good, thus they satisfy the fitness constraints from Definition 4.7. Therefore it
follows that

w1w2

‖x1 − x2‖d
≥ 1

(2
√
d)d

exp

(
MCk

1− δ
τ − 1

+MCk+1 1− δ
τ − 1

−MDCk+1

)
=

1

(2
√
d)d

exp

(
MCk

(
1− δ
τ − 1

(1 + C)−DC
))

.

(4.37)

In the exponent, one can now recognise the condition (4.21). This means that the exponent
of the derived lower bound is positive. Therefore, by taking M large enough, we can enforce
w1w2 ≥ ‖x1 − x2‖d. In other words, by taking M large enough (since α > 1),

P(ck,i ↔ ck+1,j | w1, w2, x1, x2) = p. (4.38)

Thus, conditioned on their fitnesses and locations, edges between δ-good leaders in neighbouring
annuli are present independently with a fixed probability p. LetW := (xv,Wv)v∈V . Fix aW which
implies ∩`F (1)

` . Then there are at least bk+1/2 ≥ exp(M(D−1)Ck+1)/4 δ-good leaders in Γk+1(u)
by Lemma 4.5. Hence, by (4.38), Nk+1(ck,i) is dominated below by a binomial random variable
with mean p exp(M(D − 1)Ck+1)/4. Employing a Chernoff bound as in Lemma 4.9 with ε = 1/2
yields

P
(
Nk+1(ck,i) ≤ peM(D−1)Ck+1

/8 | W
)
≤ 2 exp

(
− p

48
eM(D−1)Ck+1

)
. (4.39)

Thus, by using a union bound over all δ-good sub-boxes i ∈ [bk] in annulus Γk

P(¬F (2)
k | W) ≤ 2bk exp

(
− p

48
eM(D−1)Ck+1

)
≤ 2 exp(M(D − 1)Ck) exp

(
− p

48
eM(D−1)Ck+1

)
≤ exp(−λe3M(D−1)Ck+1/4),

(4.40)

for M sufficiently large. Then, again by using a union bound, but this time over all k ≥ 0,

P(¬ ∩k≥0 F (2)
k | W) ≤

∞∑
k=0

exp(−λe3M(D−1)Ck+1/4)

≤ exp(−λeM(D−1)/2),

(4.41)

again for M sufficiently large. Note that this bound holds for any W as long as ∩k≥0F (1)
k holds.

Finally, combining (4.35) and (4.41) and using a union bound, we get

P(¬ ∩k≥0 (F
(1)
k ∩ F (2)

k )) ≤ P(¬ ∩k≥0 F (1)
k ) + P(¬ ∩k≥0 F (2)

k )

≤ 2 exp(−λeM min(D−1,1)/75) + exp(−λeM(D−1)/2)

≤ 3 exp(−λeM min(D−1,1)/2/75),

(4.42)

for sufficiently large M .

With Lemma 4.10 in hand, we are now ready to construct an infinite greedy path under the
conditions of this lemma. This greedy path is defined formally below in Definition 4.11. In
Lemma 4.12, we then suppose that ∩k≥0(F

(1)
k ∩ F (2)

k ) occurs (with F
(1)
k and F

(2)
k as defined in

(4.22)), and find an upper bound for the cost of the greedy path. This is only possible due to
∩k≥0(F

(1)
k ∩ F (2)

k ) occurring, as this guarantees that there are enough δ-good leader vertices to
keep extending the path from one annulus to the next, while ensuring that the fitnesses of the
vertices on the path are not large enough to drive the total cost to infinity. Lemma 4.12 is a
modified version of Claim 4.6 in [25].
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0

0

Γ0(0) Γ1(0) Γ2(0)

c0

0

c1

c2

Figure 3: An example of a greedy path created by the approach of Definition 4.11. Annuli are
drawn next to each other instead of nested in one another to simplify the picture. The path starts
in the origin, after which an arbitrary δ-good leader c0 in Γ0(0) is selected. Then, the path is
greedily extended by choosing the adjacent δ-good leader in the next annulus which minimises
Lck,ck+1

. There may be multiple options (as indicated by the dotted arrows), but there will always
be at least one adjacent δ-good leader from the next annulus since ∩k≥0F (2)

k is assumed to occur.

Definition 4.11 (Greedy Path Between δ-good Leaders). Consider a boxing system centered
around u ∈ Rd as described in Definition 4.4. Condition on ∩k≥0(F

(1)
k ∩F (2)

k ) and let c0 be any δ-
good leader in Γ0(u). This vertex can be greedily extended into an infinite path πgreedy = (c0, c1, ...)
as follows. Suppose c0, ..., ck are given for some k ≥ 0 and suppose furthermore that ck is a δ-
good leader. Since F (2)

k occurs, there must be at least one δ-good leader in Γk+1(u) adjacent to ck.
Choose ck+1 to be the δ-good leader in Γk+1(u) that minimises L(ck,ck+1).

An example of a greedy path constructed using Definition 4.11 can be found in Figure 3.

Lemma 4.12 (Cost of a Greedy Path). Let C,D, δ andM0 as in Lemma 4.10 and let (a1, a2, ...) be
any strictly positive infinite sequence. Then for every M ≥M0, with the boxing system as defined
in Definition 4.4, the cost of the greedy path starting in a leader c0 in Γ0(u) w.r.t. cost variables
C1 as defined in Definition 3.6 satisfies

|πgreedy|C1 ≤
∞∑
k=0

ak · (2
√
deMDCk+1/d)ζ , (4.43)

with probability at least 1 −
∑∞
k=0 exp(−

⌈
p exp(M(D − 1)Ck+1)/8

⌉
aβk) conditioned on V, {Wv :

v ∈ V}, ∩k≥0(F
(1)
k ∩F

(2)
k ), and the (unweighted) edge set of the graph. When we instead define the

cost variables C2 as in Definition 3.7, then the error probability remains unchanged and the new
bound equals

|πgreedy|C2 ≤
∞∑
k=0

ak · (2
√
deMDCk+1/d)ζ

(
MCk

1 + δ

τ − 1

)µ(
MCk+1 1 + δ

τ − 1

)ν
. (4.44)

Proof. Since ∩k≥0F (2)
k occurs, we have a lower bound of the number of δ-good leader neighbours

Nk+1(ck). We denote this lower bound by dk and have dk =
⌈
p exp(M(D − 1)Ck+1)/8

⌉
. Leader

ck may be adjacent to more δ-good leaders in Γk+1(0), but they can be ignored here since we are
investigating the minimum. Using Definition 3.6, the total cost of πgreedy is bounded above by

|πgreedy|C1 ≤
∞∑
k=0

min(Lk,1, ..., Lk,dk) · ‖xck − xck+1
‖ζ , (4.45)

where (Lk,i)i≤dk are the weights of the first dk edges from ck to δ-good leaders in Γk+1(0) (ordered
arbitrarily). These are i.i.d. copies of the random variable L, as seen in Definition 3.5. Recall that
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by (4.4), since ck and ck+1 are in the same box, the length of the edge (ck, ck+1) can be bounded
above by 2

√
d exp(MDCk+1/d).

We turn to examining min(Lk,1, ..., Lk,dk) in (4.45). We have that, for i.i.d. Lk,i,

P
(

min
1≤i≤dk

Lk,i ≥ ak
)

= (1− P(L ≤ ak))dk = (1− aβk)dk ≤ exp(−dkaβk), (4.46)

where we took ak < 1 (since otherwise P(L ≤ ak) = 1 and the upper bound trivially holds) and
used dk as a lower bound for the amount of δ-good neighbours of ck in Γk+1(0). Filling in dk, this
gives

P
(

min
1≤i≤dp exp(M(D−1)Ck+1)/8e

Lk,i ≥ ak
)
≤ exp

(
−
⌈p

8
eM(D−1)Ck+1

⌉
aβk

)
. (4.47)

Thus, a union bound implies that

|πgreedy|C1 ≤
∞∑
k=0

ak · (2
√
deMDCk+1/d)ζ (4.48)

occurs with probability at least 1 −
∑∞
k=0 exp(−

⌈
p exp(M(D − 1)Ck+1)/8

⌉
aβk). The case where

we use the cost of spread function of Definition 3.7 instead is almost analogous, the only difference
being that in the costs, the factors involving vertex fitnesses can be bounded above by the upper
bound from δ-goodness, as defined in Definition 4.7.

The next claim is the final preparation for the proofs of Theorem 4.1 and Theorem 4.2. It specifies
the choice of parameters C,D > 1 and δ in our boxing system such that they satisfy (4.21) of
Lemma 4.10 and ensure that the greedy path we will construct has finite total cost. This claim
essentially fulfills the role of Claim 4.4 in [25].

Claim 4.13. Let τ ∈ (2, 3), µ, ν ≥ 0, β, ζ > 0, d ≥ 1 and suppose that β(µ + ν + 2ζ/d) < 3 − τ .
For δ > 0 sufficiently small, the interval given by

ID :=

((
d+ βd

(
1 + δ

τ − 1

)(
µ

C
+ ν

))
(d− ζβ)−1,

1− δ
τ − 1

1 + C

C

)
(4.49)

with C := 1 + δ is non-empty and satisfies C,D > 1 for D ∈ ID. Moreover, the condition
β(µ+ ν + 2ζ/d) < 3− τ is the mildest condition which guarantees that ID is non-empty.

Proof. First, note that β(µ + ν + 2ζ/d) < 3 − τ implies βζ < d since τ ∈ (2, 3). Thus the lower
boundary of ID is greater than or equal to 1, since d plus some non-negative term is divided by a
positive term strictly smaller than d. A quick calculation shows that the upper boundary of ID is
greater than 1 as δ → 0 if and only if C < 1/(τ − 2). We will now investigate when the interval
given by (4.49) is non-empty and translate this into a requirement for C when δ → 0. So we require(

d+ βd(τ − 1)−1
(
µ

C
+ ν

))
(d− ζβ)−1 <

1

τ − 1

(
1 +

1

C

)
⇐⇒ C(βdν + (τ − 1)d+ (ζβ − d)) < (d− ζβ)− βdµ.

(4.50)

This cannot directly be converted into an upper bound or lower bound for C, since it is not clear
whether (βdν+ (τ − 1)d+ (ζβ−d)) is positive or not. However, this does signal that the condition
for C is linear. So, since C also has to satisfy C > 1 and C < 1/(τ − 2), taking C close to one of
these two bounds should be optimal.

First we investigate what happens if we maximise the upper boundary of the interval ID by choosing
C as small as possible. We choose C := 1 + δ in (4.50) and get for δ → 0 that

d+ βd(τ − 1)−1(µ+ ν)

d− ζβ
<

2

τ − 1
⇐⇒ β

(
µ+ ν + 2

ζ

d

)
< (3− τ). (4.51)
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Hence indeed ID is non-empty under the conditions of the claim. What remains is to investigate
whether this is the mildest condition which guarantees the results of the claim. Therefore we now
investigate the other option for the choice of C.

We can instead take C to be maximal, so C → 1/(τ − 2), to minimise the lower bound of the
interval ID, then we get

d+ βd(τ − 1)−1((τ − 2)µ+ ν)

d− ζβ
<

1

τ − 1

1 + (τ − 2)−1

(τ − 2)−1
= 1. (4.52)

Immediately, we can observe that the upper boundary of ID gets arbitrarily close to 1 for this
choice of C (as C → 1/(τ − 2)). Manipulating the above inequality further yields

ζ

d
< − (τ − 2)µ+ ν

τ − 1
(4.53)

Note that above, the factor β has dropped out completely and the right-hand side is negative since
τ ∈ (2, 3). Since we require d, ζ > 0, this does not give viable solutions for D. Hence the former
case where we choose C → 1 is optimal and the mildest condition for which the claim holds.

With our preparatory lemmas Lemma 4.10 and Lemma 4.12 ready, we can now provide the proof
of Theorem 4.1 and Theorem 4.2. We will first need to ensure that suitable parameters are chosen,
such that we can actually use Lemma 4.10 and Lemma 4.12 while retaining a small error proba-
bility. Then, we greedily construct an infinite path and show that the cost is finite, which implies
lengthwise explosion. The proofs of Theorem 4.1 and Theorem 4.2 will be similar to the proof of
Theorem 3.6(ii) in [25], but again adapted to our model.

Proof of Theorem 4.1. Firstly, we investigate which assumptions we need on parameters C,D, ζ
and τ to use the lemmas we have prepared so far. Recall that parameters C,D > 1 were used
to construct the boxing system as defined in Definition 4.4, ζ is involved in the cost of spread in
Definition 3.6 and Definition 3.7, and τ is used in the power-law distribution of the vertex fitnesses,
as described in Assumption 3.2. First, we need to choose a suitable sequence ak in Lemma 4.12
such that the error probability is summable. To achieve this, we choose

ak =

(
1

dpeM(D−1)Ck+1/8e
log(k2)

)1/β

. (4.54)

Using this ak, the probability 1 −
∑∞
k=0 exp(−

⌈
p exp(M(D − 1)Ck+1/8

⌉
aβk) is still summable.

Namely,

∞∑
k=0

exp

(
−
⌈p

8
eM(D−1)Ck+1

⌉
aβk

)
≤
∞∑
k=0

1

k2
<∞. (4.55)

Thus, by the Borel-Cantelli Lemma, with probability 1, for all k larger than a random, finite k∗,
each min1≤i≤dk(Lk,i) will be greater than or equal to ak. These first k∗ terms will only add finite
contributions to the sum in (4.43). Below, we will denote these contributions by Ck∗ .

For now, consider a boxing system where the event ∩k≥0(F
(1)
k ∩ F (2)

k ) occurs. Suppose we aim
to construct a greedy path πgreedy as described in Definition 4.11. Let c0 be an arbitrary δ-good
leader in Γ0(0) (which exists since F (1)

0 occurs). With positive probability, either c0 = 0 or there
exists an edge from 0 to c0. Suppose there is an edge from 0 to c0 (the case c0 = 0 is identical).
We construct the greedy path with initial vertex c0 and setting π0 := (0, πgreedy). Then, using
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Lemma 4.12 and filling in ak as defined in (4.54), the cost of this path is bounded by

|π0|C ≤ C(0,c0) + Ck∗ +

∞∑
k=k∗

ak(2
√
deMDCk+1/d)ζ

= C(0,c0) + Ck∗ +

∞∑
k=k∗

((⌈p
8
eM(D−1)Ck+1

⌉)−1
log(k2)

)1/β

(2
√
d)ζeζMDCk+1/d

≤ C(0,c0) + Ck∗ + (2
√
d)ζ
(

8

p

)1/β ∞∑
k=k∗

log(k2)1/β exp

(
ζMCk+1D/d− 1

β
M(D − 1)Ck+1

)
.

(4.56)

For convergence of the sum, we need a negative exponent. This imposes the condition

ζD/d− 1

β
(D − 1) < 0 ⇐⇒ D >

d

d− βζ
. (4.57)

Note that this uses βζ < d since D, d > 0. However, we can rewrite (4.1) as βζ/d < (3−τ)/2, which
implies βζ < d, since τ ∈ (2, 3). Thus, this condition is always satisfied under the assumptions
of the theorem. In addition to this condition, we have the condition (4.21) from Lemma 4.10.
Combining these bounds for D yields

D ∈
(

d

d− βζ
,

1− δ
(τ − 1)C

(1 + C)

)
and D > 1. (4.58)

For valid D to exist, we need to choose a C such that the interval for D given by (4.58) is non-
empty. By Claim 4.13 with µ = ν = 0, valid choices for C and D exist for δ sufficiently small,
given that 2βζ/d < 3− τ . Given that this condition holds and we choose δ, C and D accordingly,
we are guaranteed that our original conditions (4.57) and (4.21) are satisfied, which means that
the exponent of the exponential in (4.56) is negative and we are allowed to apply Lemma 4.10.
Using Lemma 4.10, we can again use the Borel-Cantelli Lemma to show that there exists a boxing
system in which ∩k≥0(F

(1)
k ∩ F (2)

k ) occurs, which in turn allows us to apply Lemma 4.12 and the
calculations above to show that the cost of the greedy path we constructed is finite.
We choose C, D and δ according to Claim 4.13. The conditions for Lemma 4.10 are now satisfied,
and we let M0 be as in the lemma statement. Define Mi = M0 + i for all i > 0 and construct
infinitely many boxing systems around 0 with parameters C, D andMi. Note that takingM = Mi

in (4.24), the right-hand side is summable. By Lemma 4.10 and the Borel-Cantelli Lemma, there
exists an i0 such that for all i ≥ i0, the event ∩k≥0(F

(1)
k ∩ F (2)

k ) occurs. Therefore, by our earlier
calculations above, the cost of the constructed path π0 is finite with positive probability. Thus, we
have shown that lengthwise explosion occurs with positive probability.

We can now also prove Theorem 4.2 in a very similar manner.

Proof of Theorem 4.2. We can proceed exactly as in the proof of Theorem 4.1. We choose the same
ak from (4.54) in Lemma 4.12, such that we again get that there is only a finite contribution Cwk∗ by
terms not satisfying the bound on min(Lk,1, ..., Lk,dk). Repeating all of our previous calculations
and now using the result (4.44) of Lemma 4.12 instead, the new cost of the greedy path is bounded
by

|π0|C ≤ Cw(0,c0) + Cwk∗ +

∞∑
k=k∗

ak(2
√
deMDCk+1/d)ζ

(
MCk

1 + δ

τ − 1

)µ(
MCk+1 1 + δ

τ − 1

)ν
. (4.59)

Again, only the finiteness of the sum is relevant. Filling in our chosen ak from (4.54), we get

∞∑
k=0

log(k2)1/β exp

(
− 1

β
M(D− 1)Ck+1 +

1

d
ζMDCk+1 +MCk

1 + δ

τ − 1
µ+MCk+1 1 + δ

τ − 1
ν

)
. (4.60)
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This sum if finite if and only if the exponent is less than zero. Thus the relevant inequality is

− 1

β
M(D − 1)Ck+1 +

1

d
ζMDCk+1 +MCk

1 + δ

τ − 1
µ+MCk+1 1 + δ

τ − 1
ν < 0

⇐⇒ − 1

β
(D − 1) +

1

d
ζD +

1 + δ

τ − 1

(
1

C
µ+ ν

)
< 0.

(4.61)

Similarly to the proof of Theorem 4.2, we can already see that we again need βζ < d to have any
solutions. Again, this condition is already fulfilled by the theorem’s assumptions. Namely, we can
rewrite (4.2) as βζ/d < (3− τ)/2− µβ/2− νβ/2 < (3− τ)/2, which implies βζ < d. Continuing,
(4.61) can be manipulated further to find

1

β
+

(
1 + δ

τ − 1

)(
µ

C
+ ν

)
< D

(
1

β
− ζ

d

)
⇐⇒

(
d+ βd

(
1 + δ

τ − 1

)(
µ

C
+ ν

))
(d− ζβ)−1 < D.

(4.62)

Furthermore, as in Theorem 4.1, we need to satisfy condition (4.21) from Lemma 4.10 as well. This
precisely yields that D should be in the interval given by Claim 4.13. Given that β(µ+ν+2ζ/d) <
3 − τ , we can therefore choose C,D > 1 such that D ∈ ID. This choice would then allow us
to apply Lemma 4.10 while the exponent in (4.60) is negative. Choose C, D and δ according to
Claim 4.13. Then we can proceed as in the proof of Theorem 4.1 and conclude that lengthwise
explosion occurs with positive probability.

5 Conservativeness
In this section we will provide the counterpart of Theorems 4.1 and 4.2. We will show that under
certain conditions on parameters β, ζ and τ and dimension d, we can prove that the IGIRGW,L(λ)
is conservative, i.e, explosion with respect to the cost models defined in Definition 3.6 and Defi-
nition 3.7 does not occur. The resulting theorem, Theorem 5.1, applies to both cost definitions.
(This can be seen by taking µ = ν = 0 in the theorem).

Theorem 5.1 (Conservativeness Theorem for Weighted Cost). Consider the model IGIRGW,L(λ)
with 0 < λ ≤ 1. Suppose that the vertex fitness distribution satisfies Assumption 3.2, the con-
nection probability satisfies Assumption 3.3 and the cost of spread is as defined in Definition 3.7.
Furthermore, let parameters β, ζ, µ and ν satisfy

3− τ < β

(
µ+ ν + 2

ζ

d

)
. (5.1)

Then the model is conservative. Note that if d/ζ ≤ β, this condition is trivially satisfied.

Heuristic idea of the proof of Theorem 5.1. We will rule out sideways explosion and focus on
proving that lengthwise explosion does not occur. It is sufficient to show that for some t0 < 1, the
probability of having an infinite path starting from 0 with total cost in [0, t0] is zero. The fact that
this is sufficient is not trivial, but we will see that this is the case in Lemma 5.5. We prove that
there does not exist any infinite path starting from 0 which only uses edges of cost smaller than t0
instead, which is a stronger statement. To do this, we employ a path-counting argument in which
we count the amount of self-avoiding paths of edges with cost smaller than t0 < 1 emanating from
the origin. We show that there exist exponentially decaying upper bounds on the expected number
of such paths. Using these bounds, we can then use a suitably chosen t0 in combination with the
Borel-Cantelli Lemma to show that almost surely, no infinite paths only using edges of cost smaller
than t0 exist. This proves that the model is conservative.

First, we will formalise the notion of self-avoiding paths emanating from 0.
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π0 = (v0) = (0)

π1,2 = (v0, v2)

π2,1 = (v0, v2, v4)

C(v0, v2)

π2,2 = (v0, v3, v4) π2,3 = (v0, v3, v5)

π1,3 = (v0, v3)π1,1 = (v0, v1)

π3,1 = (v0, v2, v4, v6) π3,2 = (v0, v3, v4, v6)

C(v0, v1) C(v0, v3)

C(v2, v4) C(v3, v4) C(v3, v5)

C(v4, v6) C(v4, v6)

v5

v3

v4

v2

v6

v1

v0
T≤t0SAWG(t0)

C(v0, v1) C(v0, v2) C(v0, v3)

C(v2, v4) C(v3, v4)

C(v3, v5)

C(v4, v6)

Figure 4: Example of the construction of a self-avoiding walk tree T≤t0SAW as defined in Definition 5.2.
On the left is part of the graph G(t0). Recall that each edge (u, v) in this graph has cost C(u, v) ≤ t0.
On the right is the resulting self-avoiding walk tree. Each vertex corresponds to a path in G(t0).
The paths of vertices at deeper levels of the self-avoiding walk tree are continuations of paths earlier
in the tree.

Definition 5.2 (Self-avoiding Walk Tree). Let the graph IGIRGW,L(λ) and a collection of costs
C = {C(u,v) : (u, v) ∈ E} on this graph be given. Let the subgraph G(t0) of IGIRGW,L(λ) be defined
by removing all edges of cost greater than t0 from IGIRGW,L(λ). We define the self-avoiding walk
tree T≤t0SAW of G(t0) as follows. The root of T≤t0SAW is the trivial path π0 = (v0), consisting of only the
root vertex v0 = 0. The direct children of the root of T≤t0SAW make up the paths of length 1 of the form
π1 = (v0, v1). Here, we set the cost of the edge between π0 and π1 to be C(v0,v1). In general, every
vertex of T≤t0SAW is a finite, simple path in G(t0) emanating from v0 = 0. A path πk = (v0, ..., vk)
in the kth level of the tree is connected to a path π′k+1 = (v′0, ..., v

′
k+1) in the (k + 1)th level of the

tree if and only if π′k+1 is a continuation of πk. Thus, if and only if vi = v′i for all i ≤ k. The cost
of the edge between πk and πk+1 in T≤t0SAW is then set to C(vk,v′k+1)

. Note that by construction, the
cost-distance of any path πk from π0 within T≤t0SAW equals |πk|C, the cost of the path itself in G(t0)
and in IGIRGW,L(λ).

An example of a self-avoiding walk tree can be found in Figure 4.

Definition 5.3 (Number of Neighbours and Paths Abiding Cost Constraints). Let the graph
IGIRGW,L(λ) and a collection of costs C = {C(u,v) : (u, v) ∈ E} on this graph be given. For
u ∈ V and t ∈ R+ we define

N t
1(u) := |{(u, v) ∈ Eλ : C(u,v) ≤ t}|

as the number of neighbours of v such that the edges leading to these neighbours have a cost of at
most t. More generally, for k ≥ 1, we define N t0

k (0) to be the number of vertices in the kth level of
T≤t0SAW defined in Definition 5.2.

Observe that N t0
k (0) corresponds to the number of paths of length k emanating from 0 where each

edge has cost less than or equal to t0. Next, we will introduce Lemma 6.1 from [25], which will help
us with ruling out sideways explosion in the final proof. Recall that in sideways explosion, there
exists a finite path from the origin to a vertex from which there are infinitely many incident edges of
bounded cost. Lemma 5.4 will show that whenever sideways explosion occurs in the IGIRGW,L(λ)
model, then the origin itself already has infinitely many incident edges of bounded cost with positive
probability. In addition to this, we will also introduce Lemma 6.2 from [25], which shows that if
explosion occurs, it happens arbitrarily fast. In-depth proofs for these two lemmas can be found
in [25]. Recall that for lengthwise explosion, we defined the explosion time as in Definition 3.8. We
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argue that for lengthwise explosion, there exists an infinite path π = (π0 = u, π1, π2, ...) with total
cost |π|C <∞, i.e,

ỸC(u) := inf
π:π0=u,|π|=∞

{|π|C} <∞. (5.2)

We note that in IGIRG the infinite component is unique [28]. Furthermore, a consequence of
Lemma 4.10 is that the infinite component exists.

Lemma 5.4 (Lemma 6.1 in [25]). Consider IGIRGW,L(λ) with parameters d ≥ 1, τ > 1, α ∈ (1,∞].
Consider a cost of spread C as described in Definition 3.6 or Definition 3.7 such that for all t <∞,
P(N t

1(0) < ∞) = 1 holds. Then sideways explosion almost surely does not happen. Moreover, if
τ ∈ (1, 3), then for any vertex v in the infinite component, ỸC(v) = YC(v) is realised via (at least
one) infinite path πopt(v).

Lemma 5.5 (Lemma 6.2 in [25]). Consider IGIRGW,L(λ) with a cost of spread C as described in
Definition 3.6 or Definition 3.7, such that explosion occurs with positive probability, but that for
all t <∞, P(N t

1(0) <∞) = 1. Then for all constant t0 > 0, with strictly positive probability there
is an infinite path from the origin with cost at most t0.

The following lemma will be the backbone of our proof for Theorem 5.1 and will employ the
path-counting argument we introduced earlier. Lemma 5.7 follows the structure of Lemma 6.3
in [25]. However, because our model differs, the proof had to be adapted. Interestingly, the
condition in (5.5) in Lemma 5.7 mirrors condition (4.2) in Theorem 4.2. Furthermore, recall that
by Definition 3.5, we have that the edge weights L satisfy FL(t) = min(1, tβ). Before we get to the
lemma, however, we first state the following claim which will aid us in proving part of the lemma.

Claim 5.6 (Finite Expectations ofW ). Let the vertex fitnessW satisfy Assumption 3.2. Moreover,
assume that W ≥ 1. Then E[W γ ] <∞ for all γ < τ − 1.

Proof. Let γ < τ − 1 be given. Then, using the law of the unconscious statistician and integration
by parts, we find that

E[W γ ] =

∫ ∞
1

wγfW (w)dw

= [wγ(1− P(W ≥ w)]∞1 −
∫ ∞
1

γwγ−1(1− P(W ≥ w))dw.

(5.3)

Now we apply Assumption 3.2 to bound P(W ≥ w). For the second term, the sign of γ determines
whether c1 or c2 should be used to bound P(W ≥ w). Since this is not relevant for the finiteness
of the result, denote the optimal choice by c. We then get

E[W γ ] ≤ [wγ(1− c1w1−τ ]∞1 −
∫ ∞
1

γwγ−1(1− cw1−τ )dw

=

[(
− c1 +

cγ

γ + 1− τ

)
wγ+1−τ

]∞
1

,

(5.4)

which is finite precisely when γ < τ − 1.

With this claim in hand, we are ready to formulate Lemma 5.7.

Lemma 5.7. Let α ∈ (1,∞). Consider the model IGIRGW,L(λ) with 0 < λ ≤ 1. Suppose that the
vertex fitness distribution is as defined in Assumption 3.2, the connection probability as defined in
Assumption 3.3 and the cost of spread C as defined in Definition 3.7. Let

1. E[W 2−β(µ+ν+2ζ/d)] <∞ and E[W 1−β(ν+ζ/d)] <∞ when d/ζ > β;

2. E[W−(µ+ν)d/ζ ] <∞ and E[W−νd/ζ ] <∞ when d/ζ ≤ β.

Let t0 < 1. Then, for some constant C∗ > 0,

a. E[N t0
k (0) |W0 = w0] ≤ (λpC∗tβ0 )kw

1−βµ−βζ/d
0 E[W 2−β(µ+ν+2ζ/d)]k−1E[W 1−β(ν+ζ/d)]

if d/ζ > β;
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b. E[N t0
k (0) |W0 = w0] ≤ (λpC∗t

d/ζ
0 )kw

−µd/ζ
0 E[W−(µ+ν)d/ζ ]k−1E[W−νd/ζ ] if d/ζ ≤ β.

The requirement that the expectations in (1) and (2) are finite is satisfied if

3− τ < β

(
µ+ ν + 2

ζ

d

)
. (5.5)

Note that if d/ζ ≤ β, this condition is trivially satisfied.

Before we start the proof, we first provide an explanation as to why the expectations in the upper
bounds are finite, provided that (5.5) holds. By (5.5), we have that 2− β(µ+ ν − 2ζ/d) < τ − 1.
Thus, by Claim 5.6, the expectation E[W 2−β(µ+ν−2ζ/d)] is finite. For E[W 1−β(ν−ζ/d)] to be finite,
we need 1 − β(ν + ζ/d) < τ − 1. This is trivially satisfied for τ ∈ (2, 3), as it can be rewritten
as 2 − τ < β(ν + ζ/d). So E[W 1−β(ν−ζ/d)] < ∞, again by Claim 5.6. For E[W−(µ+ν)d/ζ ] and
E[W−νd/ζ ], it also follows from Claim 5.6 that they are finite.

Proof of Lemma 5.7. First, we introduce the shorthand notation nt0k (0, w0) := E[N t0
k (0) | W0 =

w0]. Furthermore, let V(k)
λ := {(vi)1≤i≤k ∈ Vλ | vi 6= vj for 1 ≤ i < j ≤ k} be the set of all k-tuples

of distinct vertices of the Poisson point process Vλ. Expanding N t0
k (0) by using its definition and

summing over all k-tuples gives

nt0k (0, w0) = E

[ ∑
(vi)i≤k∈V

(k)
λ

1{∀i ≤ k : vi ↔ vi−1, C
w
(vi−1,vi)

∈ [0, t0]}

]

= E

[ ∑
(vi)i≤k∈V

(k)
λ

∫
(wi)i≤k

1{∀i ≤ k : Wvi ∈ [wi, wi + dwi], vi ↔ vi−1, C
w
(vi−1,vi)

∈ [0, t0]}

]
,

(5.6)

by the law of total probability (integrating over the value of the fitnesses), where dwi is considered
to be infinitesimal. The event in the indicator can be expressed as

E1(v1, ..., vk) ∩ E2(v1, ..., vk) ∩ E3(v1, ..., vk),

where, for any distinct fixed points v1, ..., vk in Rd,

E1 := {Wvi ∈ [wi, wi + dwi] ∀i ∈ [k]};
E2 := {vi ↔ vi−1 ∀i ∈ [k]};
E3 := {Cw(vi−1,vi)

∈ [0, t0] ∀i ∈ [k]}.
(5.7)

To keep the notation in this proof more compact, we define ‖u− v‖ := ‖xu − xv‖ for two vertices
u and v, located at xu and xv in Rd respectively. As dw1, ...,dwk → 0 and using the definitions of
the connection probability in (3.3) from Assumption 3.3 and the cost of spread as in Definition 3.7,
we have that, due to the fitnesses being i.i.d,

P(E1(v1, ..., vk))→
k∏
i=1

FW (dwi),

P(E2(v1, ..., vk) | E1(v1, ..., vk))→
k∏
i=1

p ·min

(
1,

(
wi−1wi

‖vi−1 − vi‖d

)α)

P(E3(v1, ..., vk) | E1(v1, ..., vk) ∩ E2(v1, ..., vk))→
k∏
i=1

FL

(
t0

‖vi−1 − vi‖ζwµi−1wνi

)
,

(5.8)
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where FW (dwk) denotes the Lebesgue-Stieltjes integral with respect to the cdf FW . Hence we can
continue and calculate

nt0k (0, w0) ≤ E

[ ∑
(vi)i≤k∈V

(k)
λ

∫
(wi)i≤k

k∏
i=1

(
pmin

(
1,

(
wi−1wi

‖vi−1 − vi‖d

)α)
FL(t∗)FW (dwi)

)]

=

∫
(wi)i≤k

E

[ ∑
(vi)i≤k∈V

(k)
λ

k∏
i=1

pmin

(
1,

(
wi−1wi

‖vi−1 − vi‖d

)α)
FL(t∗)

]
k∏
i=1

FW (dwi).

(5.9)

where t∗ := t0‖vi−1− vi‖−ζw−µi−1w
−ν
i . Observe that the sum within the expectation is over distinct

vertices in Rd which are part of the Poisson point process Vλ. We now apply Campbell’s formula
(see e.g. [27]) to rewrite the expectation as

T1 := E

[ ∑
(vi)i≤k∈V

(k)
λ

k∏
i=1

pmin

(
1,

(
wi−1wi

‖vi−1 − vi‖d

)α)
FL

(
t0

‖vi−1 − vi‖ζwµi−1wνi

)]

=

∫
(vi)i≤k

k∏
i=1

pmin

(
1,

(
wi−1wi

‖vi−1 − vi‖d

)α)
FL

(
t0

‖vi−1 − vi‖ζwµi−1wνi

)
dMk,

(5.10)

whereMk denotes the kth factorial moment measure of the point process. Let the standard measure
of the point process, the Lebesgue measure on Rd, be denoted νL. Then the term in the integral
is non-negative and Mk is dominated from above by λkνkL. Hence we have that

T1 ≤
∫
(vi)i≤k

k∏
i=1

pmin

(
1,

(
wi−1wi

‖vi−1 − vi‖d

)α)
FL

(
t0

‖vi−1 − vi‖ζwµi−1wνi

)
λkdνkL

= λkpk
k∏
i=1

(∫
vi∈Rd

min

(
1,

(
wiwi−1
‖vi‖d

)α)
min

(
1,

tβ0

‖vi‖βζwβµi−1w
βν
i

))
dνL.

(5.11)

Above, we have used the translation invariance of the Lebesgue measure and the definition of FL
given in Definition 3.5 to obtain the second step. Observe that wi and wi−1 are constants within
T1. Hence the ith factor T1i in the above product can be computed by applying a case distinction.

T1i :=

∫
vi∈Rd

min

(
1,

(
wiwi−1
‖vi‖d

)α)
min

(
1,

tβ0

‖vi‖βζwβµi−1w
βν
i

))
dνL

≤
∫
‖vi‖<min((wi,wi−1)1/d,t

1/ζ
0 w

−µ/ζ
i−1 w

−ν/ζ
i )

1dνL

+

∫
‖vi‖>max((wiwi−1)1/d,t

1/ζ
0 w

−µ/ζ
i−1 w

−ν/ζ
i )

wαi w
α
i−1

‖vi‖dα
· tβ0

‖vi‖βζwβµi−1w
βν
i

dνL

+

∫
(wiwi−1)1/d≤‖vi‖≤t1/ζ0 w

−µ/ζ
i−1 w

−ν/ζ
i

wαi w
α
i−1

‖vi‖dα
dνL · 1

{
t
1/ζ
0 w

−µ/ζ
i−1 w

−ν/ζ
i > (wiwi−1)1/d

}

+

∫
t
1/ζ
0 w

−µ/ζ
i−1 w

−ν/ζ
i ≤‖vi‖≤(wiwi−1)1/d

tβ0

‖vi‖βζwβµi−1w
βν
i

dνL · 1
{
t
1/ζ
0 w

−µ/ζ
i−1 w

−ν/ζ
i < (wiwi−1)1/d

}
.

(5.12)

Note that the indicators, maximum and minimum can be handled by taking t0 small enough, since
we know wi ≥ 1 for all i by definition of the IGIRGW,L(λ) model in Definition 3.1. Therefore, taking
t0 small enough drops the third integral in the equation for T1i above. Using polar coordinates
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and denoting the volume of the unit ball in Rd by Vd, we get

T1i ≤ Vd(t1/ζ0 w
−µ/ζ
i−1 w

−ν/ζ
i )d

+

∫
r>(wiwi−1)1/d

wα−βµi−1 wα−βνi tβ0 r
−βζ−dαrd−1dr

+

∫
t
1/ζ
0 w

−µ/ζ
i−1 w

−ν/ζ
i ≤r≤(wiwi−1)1/d

tβ0w
−βµ
i−1 w

−βν
i r−βζrd−1dr.

(5.13)

This then results in

T1i ≤ Vd(t1/ζ0 w
−µ/ζ
i−1 w

−ν/ζ
i )d +

[
wα−βµi−1 wα−βνi tβ0
−βζ − d(α− 1)

r−βζ−d(α−1)
]∞
r=(wiwi−1)1/d

+

[
tβ0w

−βµ
i−1 w

−βν
i

d− βζ
r−βζ+d

](wiwi−1)
1/d

r=t
1/ζ
0 w

−µ/ζ
i−1 w

−ν/ζ
i

.

(5.14)

Note that the infinite boundary in the second term does not result in an infinite term since α > 1.
After some simplifications, this then finally reduces to

T1i ≤ Vdtd/ζ0 w
−µd/ζ
i−1 w

−νd/ζ
i +

tβ0
βζ + d(α− 1)

w
−βµ−βζ/d+1
i−1 w

−βν−βζ/d+1
i

+
tβ0

d− βζ
w
−βµ−βζ/d+1
i−1 w

−βν−βζ/d+1
i − t

d/ζ
0

d− βζ
w
−µd/ζ
i−1 w

−νd/ζ
i .

(5.15)

We now use the assumption t0 ≤ 1 to get

T1i ≤ C∗tmin(d/ζ,β)
0 w

max(−µd/ζ,−βµ−βζ/d+1)
i−1 w

max(−νd/ζ,−βν−βζ/d+1)
i , (5.16)

for some constant C∗ > 0. Thus, we need a case distinction on whether β < d/ζ or not. (The case
distinction is the same for the maxima and the minimum). First assume that β < d/ζ. Then we
can use this upper bound for T1i from (5.16) in the upper bound for T1 we derived in (5.11) to get

T1 ≤ λkpk
k∏
i=1

C∗tβ0w
−βµ−βζ/d+1
i−1 w

−βν−βζ/d+1
i

= (λpC∗tβ0 )kw
−βµ−βζ/d+1
0

( k−1∏
i=1

w
−β(µ+ν)−2βζ/d+2
i

)
w
−βν−βζ/d+1
k .

(5.17)

So then, using this upper bound for T1 in (5.9), we get

nt0k (0, w0) ≤
∫
(wi)i≤k

(λpC∗tβ0 )kw
−βµ−βζ/d+1
0

( k−1∏
i=1

w
−β(µ+ν)−2βζ/d+2
i

)
w
−βν−βζ/d+1
k

k∏
i=1

FW (dwi)

= (λpC∗tβ0 )kw
1−βµ−βζ/d
0 E[W 2−β(µ+ν+2ζ/d)]k−1E[W 1−β(ν+ζ/d)].

(5.18)

Hence we have proven the lemma for the case d/ζ > β. We now explore the case where d/ζ ≤ β.
In this case using the upper bound for T1i from (5.16) in the upper bound for T1 in (5.11) gives

T1 ≤ λkpk
k∏
i=1

C∗t
d/ζ
0 w

−µd/ζ
i−1 w

−νd/ζ
i

= (λpC∗t
d/ζ
0 )kw

−µd/ζ
0

k−1∏
i=1

w
−(µ+ν)d/ζ
i · w−νd/ζk .

(5.19)
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Here we used that max(−µd/ζ,−βµ − βζ/d + 1) = −µdζ since 1 − βζ/d ≤ 0. Again using this
upper bound for T1 in (5.9) gives

nt0k (0, w0) ≤
∫
(wi)i≤k

(λpC∗t
d/ζ
0 )kw

−µd/ζ
0

k−1∏
i=1

w
−(µ+ν)d/ζ
i · w−νd/ζk

k∏
i=1

FW (dwi)

= (λpC∗t
d/ζ
0 )kw

−µd/ζ
0 E[W−(µ+ν)d/ζ ]k−1E[W−νd/ζ ],

(5.20)

which shows that the lemma also holds for the case d/ζ ≤ β, completing the proof.

The next lemma will show that under the same conditions as in Lemma 5.7, the origin will al-
most surely not have infinitely many incident edges of bounded cost. This, in combination with
Lemma 5.4, will rule out sideways explosion in the proof of Theorem 5.1.

Lemma 5.8. Let α ∈ (1,∞). Consider IGIRGW,L(λ) with 0 < λ ≤ 1. Suppose that the vertex
fitness distribution is as defined in Assumption 3.2, the connection probability as defined in Assump-
tion 3.3 and the cost of spread C as defined in Definition 3.7. Then we have that P(N t

1(0) <∞) = 1
for all t ≥ 0 when

3− τ < β

(
µ+ ν + 2

ζ

d

)
. (5.21)

Note that if d/ζ ≤ β, this condition is trivially satisfied.

Proof. We show that the statement is true by showing that E[N t
1(0)] < ∞. This is most easily

done by modifying the proof of Lemma 5.7. The main difference is that we cannot choose t ≤ 1
and we have that k = 1. Again we denote nt1(0, w0) = E[N t

1(0) |W0 = w0]. We can again perform
the same calculations from (5.6) to (5.9) to see

nt1(0, w0) ≤
∫
w1

E

[ ∑
v1∈V

pmin

(
1,

(
w0w1

‖v1‖d

)α)
FL

(
t

‖v1‖ζwµ0wν1

)]
FW (dw1). (5.22)

Again defining T1 as the inner expectation, applying Campbell’s formula and filling in FL as given
in Definition 3.5, we see

T1 ≤ λp
∫
v1∈Rd

min

(
1,

(
w0w1

‖v1‖d

)α)
min

(
1,

tβ

‖v1‖ζβwµβ0 wνβ1

)
dνL, (5.23)

where the standard measure of the point process, the Lebesgue measure on Rd, again is denoted
by νL. We can follow the same steps as in (5.12) to (5.16) (now not assuming that t ≤ 1) to get
that

T1 ≤ λpC∗min(td/ζ , tβ)w
max(−µd/ζ,1−βµ−βζ/d)
0 w

max(−νd/ζ,1−βν−βζ/d)
1 , (5.24)

for some constant C∗ > 0. We again need a case distinction on whether β ≤ d/ζ or not. Start by
assuming that β ≤ d/ζ. Then using the upper bound for T1 given in (5.24) in (5.22) yields

nt1(0, w0) ≤
∫
w1

λpC∗min(td/ζ , tβ)w
1−βµ−βζ/d
0 w

1−βν−βζ/d
1 FW (dw1)

= λpC∗min(td/ζ , tβ)w
1−βµ−βζ/d
0 E[W 1−β(ν+ζ/d)].

(5.25)

In Lemma 5.7 it was proven that the expectation in (5.25) is finite when (5.21) holds, proving the
Lemma for the case β ≤ d/ζ.

For the case β > d/ζ, using the upper bound for T1 given in (5.24) in (5.22) gives

nt1(0, w0) ≤
∫
w1

λpC∗min(td/ζ , tβ)w
−µd/ζ
0 w

−νd/ζ
1 FW (dw1)

= λpC∗min(td/ζ , tβ)w
−µd/ζ
0 E[W−νd/ζ ].

(5.26)

Again, in Lemma 5.7 it was proven that the expectation in (5.26) is finite when (5.21) holds. Thus
we have shown that the lemma holds for the case β > d/ζ as well, completing the proof.
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We are now ready to prove Theorem 5.1. First, Lemma 5.4 and Lemma 5.8 will be used to rule out
sideways explosion. We note that if lengthwise explosion occurs, it will occur arbitrarily fast, as was
shown in Lemma 5.5. We will prove that for some t0 < 1, the probability of having an infinite path
emanating from 0 with total cost in [0, t0] is zero. This will be done by showing that there exist
no infinite paths starting at 0 using edges of cost at most t0 by using the path-counting argument
from Lemma 5.7. Using the exponentially decaying bounds this lemma provides for paths of length
k, we can then bound the probability of such paths existing with Markov’s inequality. Using this
bound on the probability, the Borel-Cantelli Lemma will then show the model is conservative.

Proof of Theorem 5.1. By Lemma 5.8, for all t ≥ 0, we have that P(N t
1(0) < ∞). Then by

Lemma 5.4, sideways explosion almost surely does not happen, and since τ ∈ (2, 3), the explosion
time is realised via at least one infinite path for any vertex in the infinite component. Furthermore,
by Lemma 5.5, if the model is lengthwise explosive, for all t0 > 0, there exists an infinite path
with total cost at most t0 with strictly positive probability. In order to show that a model is
conservative, it is sufficient to show that for some t0 < 1, the probability of having an infinite path
with total cost in [0, t0] is zero. We will instead show a stronger statement. Namely, we will show
that there is no infinite path π starting from 0 that uses only edges (u, v) of cost Cw(u,v) ≤ t0. We
show this by proving that almost surely, there is no infinite path in G(t0), where G(t0) is defined
as in Definition 5.2. Recall that by Definition 5.3, that N t0

k (0) counts the number of k-edge paths
in G(t0) emanating from v0 = 0. We apply Lemma 5.7 and note that we need to apply either the
bound given by (a) or the bound given by (b), depending on whether d/ζ > β or not.

First we handle the case where d/ζ > β and the bound given in (a) applies. Choose

t0 := (2λpC∗∗E[W 2−β(µ+ν+2ζ/d)])−1/β with C∗∗ := max(C∗, 1.1/(2λpE[W 2−β(µ+ν+2ζ/d)])),
(5.27)

such that the bound in (a) implies that E[N t0
k (0) | W0 = w0] decays exponentially in k. We use

C∗∗ rather than C∗ to ensure that t0 < 1. By Markov’s inequality we have that P(N t0
k ≥ 1 |W0 =

w0) ≤ E[N t0
k (0) | W0 = w0]. Therefore,

∑
k≥1 P(N t0

k (0) ≥ 1 | W0 = w0) ≤ C
∑
k≥1 2−k < ∞ for

some constant C > 0. By the Borel-Cantelli Lemma, almost surely, there exists a k0 such that for
all k ≥ k0, we have that N t0

k (0) < 1. Consequently, almost surely, N t0
k (0) = 0 for all k ≥ k0 and

there cannot exist an infinite path in G(t0). Thus, the model is conservative.

For the case where d/ζ ≤ β, the proof is analogous except for the choice of t0. We instead choose
t0 := (2λpC∗∗E[W−(µ+ν)d/ζ ])−d/ζ with C∗∗ := max(C∗, 1.1/(2λpE[W−(µ+ν)d/ζ ])) and proceed as
above to conclude that the model is conservative in this case as well.

6 Conclusion

6.a Results
The goal of this thesis was to introduce a specific model of the IGIRG graph and extend the results
presented by Komjáthy et al. in [25] by adding a multiplicative edge length term to the cost of
spread. To achieve this, we modified several of the proofs in [25] to prove our main results. For
τ ∈ (2, 3), the parameter space is fully covered by Theorem 4.2 and Theorem 5.1. As already
mentioned, for τ > 3, explosion cannot occur [19, 26]. The original paper of Komjáthy et al.
covered the case τ ∈ (1, 2] as well. Recall that in this case E[W ] is infinite. For the conservative
case, we can extend our results by assuming that β(ν + ζ/d) > 2− τ . Under this assumption, the
results of Theorem 5.1 apply and the model is conservative for τ ∈ (1, 2]. The extra assumption
is needed to be able to apply Claim 5.6 to ensure that the expectations in Lemma 5.7 are finite.
Extending Theorem 4.2 to τ ∈ (1, 2] is a topic of future research. We also did not provide a full
analysis of when sideways explosion occurs. In our case, the explosive argument was based on
lengthwise explosion only, so what the necessary conditions for sideways explosion are remains an
open question.
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6.b Different Graph Model
The cost of spread we defined can also be researched on different graph models. A limitation of
the IGIRG model is that it is static, i.e, after the vertices and edges have been generated, they no
longer change. In some real-world networks such as a social network, this is not desirable: we may
be introduced to new individuals, as well as fade out of the life of others. More advanced graph
models, dependent on time, could better represent these networks. Another possible limitation
of the IGIRG model is that spatial distance influences the existence of every edge. Although the
IGIRG model contains some long range edges, the probability of these edges being present is still
influenced by their geometric distance. It could be a reasonable assumption that for a small fraction
of possible edges, the connection probability is not influenced by distance. Coming back to the
social network example, this could reflect that sometimes people meet one another through online
interactions only. Hence distance between the two such pairs of people was not a factor in getting
into contact with one other.

6.c Spread and Cost Extensions
In this thesis, the cost function was restricted to a polynomial of the fitnesses and edge length
in the explosive case (Theorem 4.2), and the cost function was restricted to a monomial in the
conservative case (5.1). This may not be suited for all modelling purposes; one could imagine that
in e.g. physics settings, there might be applications in which sine or cosine terms play a role. Thus,
extending the analysis to more general cost functions is desirable.

The spreading model itself could be extended as well. A straightforward extension would be
to consider the case in which infected vertices can recover (SIS model) or introduce new vertex
classes, such as in the SIR model. More options for different vertex classes can be thought of. For
instance, when viewing the spreading process from an epidemiological perspective, vertices could be
assigned a class, ‘careless’, ‘normal’ or ‘careful’. The rate of spread between two vertices can then
also depend on the classes of the individuals. The spreading model can also be extended without
adding vertex classes. For instance, the cost of spread could be accelerated when many vertices in
a fixed radius of an uninfected vertex are already infected. Yet another option is introducing some
kind of ‘global factors’: the rate of spread could be dependent on how many vertices are already
infected in total. The possible extensions of the spreading model are endless.

6.d Beyond the Model
A more general future study could investigate how well the IGIRG model and our defined cost
of spread reflect real-life networks. It has not been compared to real-life data yet, so whether
real-world networks exhibit phenomena similar to explosion under the conditions of our theorems
remains uncertain. Whether such phenomena occur when our derived conditions are met is not
trivial. Most real-life networks are very large, but, in contrast to our model, ultimately finite.
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