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First passage percolation on the Erdős-Rényi random graph
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Abstract

In this paper we explore first passage percolation (FPP) on the Erdős-Rényi random graph
Gn(pn), where each edge is given an independent exponential edge weight with rate 1. In the
sparse regime, i.e., when npn → λ > 1, we find refined asymptotics both for the minimal
weight of the path between uniformly chosen vertices in the giant component, as well as for
the hopcount (i.e., the number of edges) on this minimal weight path. More precisely, we prove
a central limit theorem for the hopcount, with asymptotic mean and variance both equal to
λ/(λ − 1) logn. Furthermore, we prove that the minimal weight centered by logn/(λ − 1)
converges in distribution.

We also investigate the dense regime, where npn → ∞. We find that although the base
graph is a ultra small (meaning that graph distances between uniformly chosen vertices are
o(log n)), attaching random edge weights changes the geometry of the network completely.
Indeed, the hopcount Hn satisfies the universality property that whatever be the value of pn,
Hn/ logn → 1 in probability and, more precisely, (Hn−βn logn)/

√
logn, where βn = λn/(λn−

1), has a limiting standard normal distribution. The constant βn can be replaced by 1 precisely
when λn ≫

√
log n, a case that has appeared in the literature (under stronger conditions on

λn) in [2, 12]. We also find bounds for the maximal weight and maximal hopcount between
vertices in the graph. This paper continues the investigation of FPP initiated in [2] and [3].
Compared to the setting on the configuration model studied in [3], the proofs presented here
are much simpler due to a direct relation between FPP on the Erdős-Rényi random graph
and thinned continuous-time branching processes.

Key words: Central limit theorem, continuous-time branching process, Erdős-Rényi random
graph, flows, first passage percolation, hopcount
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1 Introduction

First passage percolation is one of the most fundamental problems in probability theory. The basic
motivation to study this problem is the following. The goal is to model the flow of fluid through
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some random medium. Suppose that we have a base graph on n vertices which represents the
available pathways for the fluid. We attach to each edge in the graph some random edge weight,
typically assumed to be independent and identically distributed (i.i.d.) positive random variables
with some probability density function f . We then think of fluid percolating through the network
at rate 1 from some source. Letting n → ∞, one is then interested in asymptotics of various
statistics of the flow through this medium. See e.g., [10, 13] for results and a survey on the integer
lattice.

Our aim in this paper is to rigorously analyze first passage percolation (FPP) on the Erdős-Rényi
random graph (ERRG) denoted by Gn(pn). We shall see that for two randomly chosen vertices in
the giant component the hopcount, i.e., the number of edges on the shortest-weight path between
these vertices, scales as log n and we shall find a central limit theorem (CLT) for this quantity.
We shall also find that the weight of the shortest-weight path re-centered by a constant multiple
of log n converges in distribution to some limiting random variable. We shall describe the explicit
distribution of the limit. We shall also find lower bounds for the maximal optimal weight and
hopcount between vertices in the giant component.

In [3], we have investigated FPP on the configuration model (CM) with degrees given by an
i.i.d. sequence with distribution function F , satisfying F (x) = 0, x < 2. Consequently, all degrees
are at least 2 and the giant component contains n − o(n) vertices, so that with high probability
(whp), two uniformly chosen vertices are connected. Furthermore, it was assumed that for all
x ≥ 0, there exist constants c1, c2, such that

c1x
1−τ ≤ 1 − F (x) ≤ c2x

1−τ , when τ ∈ (2, 3),

whereas for τ > 3, F should satisfy, for all x ≥ 0,

1 − F (x) ≤ cx1−τ ,

for some constant c. Apart from self-loops and multiple edges, the CM, with a binomial degree
sequence, is not very different from the ERRG. The main challenge in studying the ERRG
compared to the study of FPP on the CM in [3] is threefold:

(a) The degree sequence in [3] was assumed to satisfy F (x) = 0, x < 2, so that all degrees are
at least 2, with probability 1. As said this implies that uniformly chosen vertices are whp
connected. In the present paper a uniformly chosen pair of vertices does have a positive
probability of being connected, but this probability does not equal 1, so that we have to
condition on the uniformly chosen vertices to be in the giant component. Technically, this
is a big step forwards.

(b) We deal with the case where the average degree λn = npn → ∞, see Corollary 2.4 below, a
scenario that is not contained in the sparse setting in [3]. This is the first time a result of
this generality has been proved in the regime npn → ∞.

(c) The ERRG admits an elegant embedding in a marked branching process in continuous
time. Consequently, the proofs are short and non-technical compared to those in [3]. This
technique should prove to be useful in a number of other random graph models. Moreover,
we include a lower bound on the weight and length of the largest shortest-weight path for
FPP on the ERRG.
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2 Results

In this section we formulate our main results. Throughout this paper, we work on the Erdős-Rényi
random graph (ERRG) Gn(pn), with vertex set [n] = {1, . . . , n} and edge set En = {(i, j) : i, j ∈
[n], i 6= j}, and where every pair of vertices i 6= j is connected independently with probability
pn. Furthermore, each edge e ∈ En is equipped with an independent weight Ee, having an

exponential distribution with rate 1. We denote by
a.s.−→,

d−→, and
P−→, convergence almost

surely, in distribution, and in probability, respectively. The symbols o, O are the ordinary Landau
symbols. We say that a sequence of random variables Xn satisfies Xn = oP(bn), Xn = OP(bn),

respectively, if Xn/bn
P−→ 0, Xn/bn is tight, respectively. We write that a sequence of events

(En)n≥1 occurs with high probability (whp) when P(En) = 1 − o(1). Binomial random variables
are denoted by Bin(n, p), where n denotes the number of trials and p the success probability. We
further notate by Exp(µ), Poi(λ), respectively an exponentially distributed random variable with
rate µ, and a Poisson random variable with mean λ.

In the Theorems 2.1 and 2.2 below, we shall investigate the hopcount and weight of FPP on the
ERRG.

Theorem 2.1 (CLT for hopcount) Let limn→∞ npn = λ > 1 and define β = λ
λ−1 > 1. Then,

the hopcount Hn between two uniformly chosen vertices, conditioned on being connected, satisfies
a central limit theorem with the asymptotic mean and variance both equal to β log n, i.e.,

Hn − β log n√
β log n

d−→ Z,

where Z is a standard normal random variable.

Now we consider the asymptotics of the minimal weight.

Theorem 2.2 (Limit distribution for minimal weight) Let limn→∞ npn = λ > 1, and de-
fine γ = 1

λ−1 . Then, there exists a non-degenerate real valued random variable X with distribution
ρ, such that the minimal weight Wn between two uniformly chosen vertices, conditioned on being
connected, satisfies

Wn − γ log n
d−→ X.

Remark 2.3 (Joint convergence) The proof shall reveal that the convergence in Theorems 2.1
and 2.2 holds jointly, with the limits being independent.

Let us identify the limiting distribution ρ. Consider a continuous-time Galton-Watson branching-
process with Poi(λ) offspring, where the individuals have an exponential life time with rate 1.
Denote the number of alive individuals at time t by N(t). It is well known [1] that there exists
α > 0 such that e−αtN(t) has an almost sure limit W . For the case under consideration it is
readily verified that the Malthusian parameter α = λ − 1 > 0. Let D denote a Poi(λ) random
variable representing the number of offspring from one individual, and, conditioned on D, denote
by E1, E2, . . . , ED, the exponential lifetimes of the offspring. Then the limit W satisfies the
stochastic equation

W
d
=

D
∑

i=1

e−αEiWi, (2.1)
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where on the right-hand side all the involved random variables are independent with Wi being
copies of W . Hence taking conditional expectations w.r.t. D, it is seen that φ(t) = E[e−tW ]
satisfies the functional relation

φ(t) = E

[(

E[e−te−αE1W ]
)D]

= exp

(

−λ

∫ ∞

0

[

1 − φ(te−(λ−1)x)
]

e−xdx

)

. (2.2)

From this, it is quite easy to prove that the random variable W has an atom at zero of size pλ,
where pλ is the smallest non-negative solution of the equation

pλ = exp(−λ(1 − pλ)),

i.e., pλ is the extinction probability of a branching process with Poi(λ) offspring. Furthermore,
the random variable W , conditioned to be positive, admits a continuous density on R+, and we
denote by

Wλ
d
= (W |W > 0). (2.3)

To construct ρ we shall need the following random variables:

(a) Let W (1)

λ ,W (2)

λ be independent and identically distributed as Wλ,

(b) Let E
d
= Exp(1) be independent of W (i)

λ .

In terms of these random variables, the random variable X with distribution ρ satisfies

X
d
= −γ log (γW (1)

λ ) − γ log (γW (2)

λ ) + γ log(E).

We next study the dense graph setting, where npn = λn → ∞. The proof in this setting follows
the same lines as that of Theorems 2.1-2.2, and therefore we will only give a sketch of proof.
Observe that for npn → ∞, any pair of vertices is whp connected. It is not hard to see that,
in this case, the giant component consists of n(1 − o(1)) vertices, and that the graph distance
between two uniformly chosen vertices is log n/ log λn = o(log n), so that the random graph is
ultra small. In the statement of the result, we denote by Hn and Wn, respectively, the hopcount
and minimal weight of the shortest-weight path between two uniformly chosen vertices.

Corollary 2.4 (Limit of hopcount and weight for npn → ∞) Set λn = npn. For λn → ∞,
as n → ∞,
(a)

Hn − βn log n√
log n

d−→ Z, (2.4)

where βn = λn/(λn − 1) and Z is a standard normal random variable;
(b)

(λn − 1)Wn − log n
d−→ X̃, (2.5)

where the random variable X̃
d
= M1 + M2 −M3, with M1, M2,M3 independent Gumbel random

variables, i.e., P(Mi ≤ x) = Λ(x) = exp(−e−x), 1 ≤ i ≤ 3, for all x ∈ R.

Remark 2.5 (Dense setting) (a) In Part (a) of Corollary 2.4 the centering βn log n can be
replaced by log n if and only if λn/

√
log n → ∞. In this case, the hopcount has the same limiting

distribution as on the complete graph (see e.g., [12]).
(b) Note that the distribution of Hn for the case where npn/(log n)3 → ∞ was obtained in [12].
In [2, Theorem 5] limit results for Hn/ log n and npnWn − log n were obtained in the case where
lim infn→∞(npn)/(log n) = a, with 1 < a ≤ ∞. Thus, the present paper essentially completes the
study of FPP on ERRGs in all regimes.
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Theorems 2.1-2.2 state that for uniformly chosen connected vertices, the weight and length of the
optimal path between them scales as γ log n and β log n, respectively. The following shows the
existence of pairs of vertices with a much larger optimal path weight and hopcount:

Theorem 2.6 (Existence of long paths) Let npn → λ > 1 and define by c(λ), d(λ) the con-
stants

c(λ) =
1

λ− 1
+

2

log |µλ|
, d(λ) =

λ

λ− 1
+

2

log |µλ|
, (2.6)

where µλ is the dual of λ, i.e., the unique µ ∈ (0, 1) such that

µe−µ = λe−λ. (2.7)

Then for any given ε, with high probability, there exists a pair of vertices say i∗, j∗ in the giant
component such that the weight of the optimal path Wn(i∗, j∗) and its number of edges Hn(i∗, j∗)
satisfy the inequalities

Wn(i∗, j∗) ≥ (1 − ε)c(λ) log n, Hn(i∗, j∗) ≥ (1 − ε)d(λ) log n. (2.8)

We conjecture that the above result is optimal, i.e., you can get between any pair of vertices
within weight c(λ) log n and with at most d(λ) log n hops.

In [3], we have proven results parallel to those in Theorem 2.1 and 2.2 for the configuration
model (CM) with degrees given by an i.i.d. sequence with distribution function F , where F (x) ≤
cx1−τ , τ > 3, for some constant c and all x ≥ 0. We found that the asymptotic hopcount between
two uniformly chosen vertices converges to a normal distribution with mean and variance equal
to ν

ν−1 log n, where ν = E[D(D−1)]/E[D] and where the random variable D is distributed as the
degree distribution F . Note that in Theorem 2.1 the role of ν is taken over by the parameter λ.
This is not surprising, since for a Poi(λ) variable D, we have ν = E[D(D − 1)]/E[D] = λ.

3 Setting the stage for the proofs

A rough idea of the proof is as follows. Fix two vertices, say 1 and 2, in the giant component.
Think of fluid emanating from these two sources simultaneously at rate 1, so that at time t, F (i)(t)
is the flow cluster from vertex i and includes the minimal weight paths to all vertices wetted at
or before t from vertex i, i = 1, 2. When these two flows collide (namely, when the flow from one
of the sources reaches the other flow) via the formation of an edge (v1, v2) between two vertices
v1 ∈ F (1)(·) and v2 ∈ F (2)(·), then the shortest-weight path between the two vertices has been
found. This collision time, which we denote by S12, tells us that the weight between the two
vertices, Wn(1, 2), equals

Wn(1, 2) = 2S12. (3.1)

Furthermore, if Gn(vi), i = 1, 2, denotes the number of edges between the source i and the vertex
vi along the tree F (i)(S12), then the hopcount Hn(1, 2) is given by

Hn(1, 2) = Gn(v1) + Gn(v2) + 1. (3.2)

The above idea is indeed a very rough sketch of our proof. In the paper we embed the flow
on the ERRG in a continuous-time marked branching process (CTMBP), where the offspring
distribution is binomial with parameters n−1 and p (see Section 4.2). With high probability, the
marks in the CTMBP correspond to the vertices in the ERRG. We denote by {SWT(i)

m}m≥0 the
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marks of the individuals wetted by the flow after m splits and the arrival times of these splits,
where the superscript i, i = 1, 2, denotes the root i of the flow. It is not mandatory to let the
flows grow simultaneously, and for technical reasons, the proof is simpler if we first grow SWT(1)

m

to a size an = ⌈√n⌉. After this, we grow SWT(2)
m , and we stop as soon as a mark of SWT(1)

an
appears in {SWT(2)

m }∞m=0. The size an = ⌈√n⌉ is the correct one, since if both flows are of size
approximately

√
n, the probability that the second flow finds a mark of the first flow in some

time interval of positive length is of order 1.

The CLT for the distance Gm between the mth-wetted mark and the root as well as the limit
distribution for the weight of the path between this mark and the root are given in Section 4.3.
This theory is based on the asymptotics for Bellman-Harris processes which will be developed in
Section 3.1.

In Section 4.4 we investigate the connection time Cn, i.e., the random time until the second flow
starting from mark 2 hits the flow of size an, which started from mark 1. We prove that Cn/an
converges in distribution to an Exp(1) random variable. This can informally be understood as
follows. The number of distinct marks in SWT(1)

an is an(1 + o(1)). Each of these marks is chosen
with probability 1/n in SWT(2)

m , so that the first time that any of these marks is chosen is close
to a geometric random variable with success parameter an/n. This random variable is close to

n/anExp(1), so that indeed Cn/an
d−→ Exp(1).

We furthermore show that, conditioned on Cn, the hopcount Hn is, whp, the independent sum
of G(1)

Un,an
and G(2)

Cn
. Here G(1)

Un,an
denotes the distance between root 1 and a mark in SWT(1)

an that
is chosen uniformly at random.

With the above sketch of proof in mind, the remainder of the paper is organized as follows:

(1) In Section 3.1 we will analyze various properties of a Bellman-Harris process conditioned on
non-extinction, including times to grow to a particular size and the generation of individuals
at this time. In this continuous-time branching process the offspring will have a Poisson
distribution.

(2) In Section 4.1, we introduce marked branching process trees with binomially distributed
offspring and make the connection between these trees and the ERRG, by thinning the
marked branching process tree.

(3) In Section 4.2, we replace the general weights on the edges by exponential ones so that
we end up with a continuous-time marked branching processes (CTMBP) with binomial
offspring. We further focus on some of the nice properties of the involved random variables,
that are a consequence of the memoryless property of the exponential distribution.

(4) By coupling the CTMBP with binomial offspring to a Bellman-Harris process with Poisson
offspring, we deduce in Section 4.3 the limit theorem for the generation Gm and the weight
Am from the results in Section 3.1.

(5) In Section 4.4, we present a refined analysis of the connection time of the two flow clusters.

(6) Finally, in Section 5, we complete the proofs of our main results.

The idea of the argument is quite simple but making these ideas rigorous takes some technical
work because of the issue of conditioning on being in the giant component.
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3.1 Asymptotics for Bellman-Harris processes

Here we shall construct random trees where each vertex lives for an exponential amount of time,
dies and gives birth to some number of children. Fix a sequence of non-negative integers d1, d2, . . ..
For future reference, let si =

∑i
j=1 dj − (i− 1). We shall make the following blanket assumption

si > 0, for all i ≥ 1. (3.3)

The condition in (3.3) is equivalent to the fact that the tree where the ith vertex has degree di is
infinitely large. Consider the following continuous-time construction of a random tree:

Construction 3.1 (FPP on a tree) (1) Start with the root which dies immediately giving
rise to d1 alive offspring;

(2) each alive offspring lives for an Exp(1) amount of time, independent of all other randomness
involved;

(3) when the ith vertex dies it leaves behind di alive offspring.

In terms of the above construction, we can identify si as the number of alive vertices after the
ith death. Let T1, T2, . . . , Tm be the time spacings between the (i− 1)st and ith death 1 ≤ i ≤ m.
We shall often refer to Ai = T1 + T2 + . . . + Ti, 1 ≤ i ≤ m, as the time of the ith split. Note that
at the graph topology level, the above procedure is the same as the following construction, where
exponential life times do not appear:

Construction 3.2 (Discrete-time reformulation of FPP on a tree) The shortest-weight -
graph on a tree with degrees {di}∞i=1 is obtained as follows:

(1) At time 0, start with one alive vertex (the initial ancestor);

(2) at each time step i, pick one of the alive vertices at random, this vertex dies giving birth to
di children.

Let Gm denote the graph distance between the root and a uniformly chosen vertex among all
alive vertices at step m. We quote the following fundamental result from [5]. 1

Proposition 3.3 (Shortest-weight paths on a tree) Pick an alive vertex at time m ≥ 1 uni-
formly at random from all vertices alive at this time. Then
(a) the generation of the mth chosen vertex is equal in distribution to

Gm =
m
∑

i=1

Ii, (3.4)

where {Ii}∞i=1 are independent Bernoulli random variables with

P(Ii = 1) = di/si, 1 ≤ i ≤ m. (3.5)

1A new probabilistic proof is given in [3] , since there is some confusion in comparing the definition si in this
paper and the definition of si given in [5, below (3.1)].

7



(b) the weight of the shortest-weight path between the root of the tree and the mth chosen vertex
is equal in distribution to

Am = T1 + T2 + . . . + Tm
d
=

m
∑

i=1

Ei/si, (3.6)

where {Ti}∞i=1 are i.i.d. exponential random variables with rate si and hence Ti is equal in distri-
bution to Ei/si.

The above proposition states that the random variable Gm is the sum of m independent Bernoulli
random variables. It is known that in a wide variety of settings, such quantities essentially follow
a CLT. We shall be interested in showing that the standardization G̃m of Gm converges in
distribution to a normal random variable Z, and the way we shall prove this is by showing that
the Wasserstein distance between the distribution G̃m and that of Z goes to 0. Denote by Wass
the metric on the space of probability measures defined as

Wass(µ1, µ2) = sup

{
∣

∣

∣

∣

∫

R

gdµ1 −
∫

R

gdµ2

∣

∣

∣

∣

: g is 1−Lipschitz and bounded

}

.

It is well known [7, Theorem 11.3.3] that this metric on the space of probability measures induces

the same topology as the topology of weak convergence. Thus showing that G̃m
d−→ Z is equiv-

alent to showing that Wass(µm, µ) → 0 where G̃m ∼ µm and Z ∼ µ; here X ∼ ν means that the
law of the random variable X is equal to ν.

The following result is simple to prove using any of the methods for showing CLTs for sums of
independent random variables, e.g. Stein’s method [6].

Lemma 3.4 (CLT of hopcount in tree) As before let Gm denote the generation to a uni-
formly chosen vertex alive at time m. Define the sequence of random variables

G̃m =
Gm −∑m

i=1 ρi
√
∑m

i=1 ρi(1 − ρi)
, (3.7)

where ρi = di/si. Let µm denote the distribution of G̃m and µ the distribution of a standard
normal random variable. Then

Wass(µm, µ) ≤ 3
√

∑m
i=1 ρi(1 − ρi)

. (3.8)

Proof. Combining [6, Theorem 3.1 and 3.2] yields

Wass(µm, µ) ≤ 3

m
∑

i=1

E[|ηi|3], (3.9)

where

ηi =
Ii − ρi

√
∑m

i=1 ρi(1 − ρi)
,

and where Ii is a Bin(1, ρi) random variable. From this we obtain

m
∑

i=1

E[|ηi|3] =
1

[
∑m

i=1 ρi(1 − ρi)]3/2

m
∑

i=1

ρi(1 − ρi){ρ2i + (1 − ρi)
2} ≤ 1

√
∑m

i=1 ρi(1 − ρi)
,

8



using ρ2i + (1 − ρi)
2 ≤ 1.

From now on we take D1,D2, . . . i.i.d. where Dj has a Poi(λ) distribution with λ > 1. Further-
more, we consider the continuous time construction of a random tree as in Construction 3.1, with
di = Di and Si =

∑i
j=1Dj − (i − 1). Since the Dj are now random, for any fixed time m ≥ 1,

there is now some non-zero probability that Sj = 0 for some 1 ≤ j ≤ m. However, note that for
any m,

P (Si > 0 ∀i = 1, 2, . . . ,m) ≥ 1 − pλ,

where pλ is the extinction probability of a Galton-Watson branching process with Poi(λ) offspring.
Let Gm be the generation of a randomly chosen alive individual among all alive vertices at time
m, conditional on Si > 0 for all 1 ≤ i ≤ m. Let Am be the time for the mth split to happen in the
continuous-time construction (see Construction 3.1). Then we have the following asymptotics:

Theorem 3.5 (CLT for hopcount on trees conditioned to survive) Conditioned on Si >
0 for all 1 ≤ i ≤ m, the following asymptotics for m → ∞ hold:
(a) the generation Gm satisfies a CLT, i.e.,

Gm − β logm√
β logm

d−→ Z, (3.10)

where Z is standard normal and β = λ
λ−1 ;

(b) the random variable Am satisfies the asymptotics:

Am − γ logm
a.s.−→ −γ log γWλ, (3.11)

where Wλ has a distribution given by (2.3). The limits in (a) and (b) also hold jointly, where the
limits are independent.

The issue of conditioning is a technical annoyance as it removes the independence of increments
of the random walk {Si}mi=1. However what should be intuitively clear is that, for a random walk
with positive drift, conditioned to be positive is, whp, the same as conditioning the path to be
positive in the first wm steps, where we assume wm = o(log logm). Indeed, by the time wm, the
walk has reached height approximately (λ−1)wm and if we just add independent Poisson random
variables from this stage onwards, then the random walk will, whp, remain positive, since the
walk has reached a high level by this time, and the probability that it would reach 0 by time m
is exponentially small in wm. This idea is made precise in the following construction. First we
shall need some notation. Fix wm = o(log logm) → ∞ and let Yi = Di − 1 where the Di are
i.i.d. Poi(λ) random variables. Let Sj = 1 +

∑j
i=1 Yi.

Now consider the following construction

Construction 3.6 Take S∗
1 , S

∗
1 , . . . , S

∗
wm

equal in distribution to S1, S2, . . . , Swm conditioned on
being positive. Furthermore, let Ywm+1, Ywm+2, . . . Ym be i.i.d. distributed as Poi(λ) − 1, indepen-
dent of S∗

1 , S
∗
1 , . . . , S

∗
wm

. Define a new sequence S1, . . . , Sm by

Si =

{

S∗
i , i ≤ wm

S∗
wm

+
∑i

j=wm+1 Yj, wm + 1 ≤ i ≤ m.
(3.12)

Then the following proposition yields good bounds on the behavior of this random walk:

9



Proposition 3.7 (Good bounds for the conditioned random walk) The sequence in Con-
struction 3.6 satisfies the following regularity properties:
(a) P(S1 > 0, . . . , Sm > 0) = 1 − o(1), as m → ∞, and there exists a coupling such that
P(Sj = S̃j , 1 ≤ j ≤ m) = 1 − o(1), as m → ∞, where S̃j, 1 ≤ j ≤ m, is equal in distribution to

the random walk Rj = 1 +
∑j

i=1(Di − 1), 1 ≤ j ≤ m, conditioned on R1 > 0, . . . , Rm > 0.
(b) There exists a constant C > 0 such that, whp, for all j > log logm,

(λ− 1)j − C
√

j log j ≤ Sj ≤ (λ− 1)j + C
√

j log j. (3.13)

(c) Let ρi = Di/Si. Then

m
∑

i=1

ρi(1 − ρi) = β logm + OP(log logm). (3.14)

Assuming Proposition 3.7, let us show how to prove Theorem 3.5:

Proof of Theorem 3.5. In order to prove Part (a), we note that according to Lemma 3.4 it
suffices to show that

∑m
i=1 ρi(1 − ρi) → ∞, as m → ∞. This is immediate from Part (a) and (c)

of Proposition 3.7.

The almost sure convergence of Am = T1 + . . . + Tm in (3.11) is a little more difficult. We refer
to [1, Theorem 2, p. 120] where it has been proved that the time of the mth split, Am, when the
branching process has Poi(λ) offspring satisfies the asymptotics

N(Am)e−(λ−1)Am a.s.−→ W, (3.15)

where N(t) denotes the number of alive individuals at time t. Observe that (3.15) can easily
be deduced from the convergence e−(λ−1)tN(t)

a.s.−→ W , by substituting Am for t, and using that
Am

a.s.−→ ∞. Conditioning on the random walk to stay positive yields:

(

N(Am)e−(λ−1)Am |S1 > 0, . . . , Sm > 0
)

a.s.−→ Wλ. (3.16)

Now N(t) is the number of alive individuals at time t, so after m splits N(Am)/m = Sm/m
a.s.−→

λ− 1, by the strong law. Hence, with γ = 1/(λ− 1),

(

Am|S1 > 0, . . . , Sm > 0
)

− γ logm
a.s.−→ −γ log γWλ. (3.17)

Proof of Proposition 3.7. We start with the proofs of Part (b) and Part (c). Note that
wm = o(log logm), and that the random variables Dj with j > wm are independent. The proof
of (b) is then straightforward from the large deviation properties of the Poisson distribution and
a simple union bound. For (c) we write

m
∑

i=1

ρi =

m
∑

i=1

Di

Si
=

∑

i≤log logm

Di

Si
+

m
∑

i=⌈log logm⌉

Di

Si
.

For the second sum on the right-side we combine the bounds in (b) and use Chebyshev’s inequality
on the i.i.d. Poisson random variables Di, i ≥ log logm, to obtain

m
∑

i=⌈log logm⌉

Di

(λ− 1)i
= β logm + OP(1).
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The first sum on the right-side is obviously of order OP(log logm). This proves (c).

For the first statement in (a), we observe that {Si > 0 ∀i = 1, . . . , wm} and {Sm ≥ x} are both
increasing in the i.i.d. random variables {Di}mi=1. Therefore, by the FKG-inequality [9] and for
any x ≥ 0, we obtain that P(Sm ≥ x | Si > 0∀i = 1, . . . , wm) ≥ P(Sm ≥ x). Therefore,

P(Sm ≥ lm | Si > 0∀i = 1, . . . , wm) ≥ P(Sm ≥ lm) = 1 − o(1), (3.18)

when we take lm = (λ− 1)wm − C
√
wm logm, and use Part (b).

We now turn to the coupling statement in Part (a). Denote by Pl the probability distribution
of the random walk starting at l. Then, using again the notation {Rj}j≥0 for an unconstrained
random walk with step size Yk,

Plm( min
0≤j≤m

Sj ≤ 0) ≤ Plm(min
j≥0

Rj ≤ 0) = P(max
j≥0

R̃j ≤ lm) ≤ e−θ∗lm = o(1), (3.19)

where R̃j = −Rj, j ≥ 0, and where θ∗ > 0 is the unique positive solution of the equation

θ − λ + λe−θ = 0. (3.20)

Indeed, the final inequality in (3.19) is obtained using the martingale Zn =
∏

i≤n e−θ∗Yi , which is
by (3.20) the product of independent unit mean random variables [15, p. 342].

Finally, if we take S̃j(ω) = S∗
j (ω) for j < wm and all ω in the probability space, whereas we

take for S̃j(ω) = S∗
wm

(ω) +
∑j

i=wm+1 Yi(ω), for j > wm, and those ω with lm +
∑j

i=wm+1 Yi(ω) >

0, wm < j ≤ m and S̃j(ω) = 0 otherwise, we obtain our desired coupling. This completes the
proof of Part (a) and, since the proof of Part (b) and Part (c) has been given above, we are done.

4 Branching process trees and imbedding of ERRG

We introduce marked branching process trees in Section 4.1. In Section 4.2, we attach the
exponentially distributed weights to the edges and obtain in this way a continuous-time marked
branching process (CTMBP) with binomially distributed offspring. Section 4.3 describes the
distribution of the height and weight of minimal weight paths in these CTMBP. In Section 4.4,
we treat the connection between the CTMBP and the ERRG.

4.1 Marked branching process trees

In this section we describe a marked branching process tree (MBPT) with a binomially distributed
offspring, and we show how this MBPT should be thinned to obtain the connection with the
ERRG. We then attach i.i.d. weights having probability density f on (0,∞) to both the branching
process tree and the ERRG. We interpret these weights as distances between marks, vertices,
respectively. We close the section with a proof that for each time t ≥ 0, the set of marks that
can be reached in the thinned process within time t from the root is identical in distribution to
the set of vertices that can be reached within time t from the initial vertex i0 in the ERRG.

The set of marks is denoted by [n] = {1, 2, . . . , n}. In the branching process tree, we start with
a single individual with mark i0 ∈ [n], and we put I0 = {i0}. This individual reproduces a
binomially distributed number of offspring X1, with parameters n − 1 and p. We attach each
of these X1 children to their father by a single edge, so that we obtain a tree structure. Each
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edge is assigned a weight taken from an i.i.d. sample having probability density f , with support
(0,∞). To obtain the marks of the offspring we take at random a sample of size X1 from the
set [n] \ {i0}. The corresponding set of marks is denoted by I1. Hence the marks are chosen
uniformly at random from a set of size n − 1 and are all different. Moreover the mark of the
father (i0) is not present among the set of marks I1 of the offspring. Observe that the marks can
be seen as vertex numbers of the ERRG; from this viewpoint, the children of individual i0, given
by the vertex-set I1, are the direct neighbors of the vertex i0 in the ERRG.

We proceed by taking the individual for which the corresponding edge-weight is minimal. In
our language this individual is reached after T1 time units, where T1 is equal to the length of
the minimal edge weight, since the fluid percolates at rate 1. The mark reached by time T1 is
denoted by i1. The reproduction process for i1 is identical to that of i0: we take a Bin(n − 1, p)
number of children (denoted by X2) and connect each of them by a single edge to i1. The X2

‘new’ edges are supplied by weights taken i.i.d. with probability density f . We update the ‘old’
edges by subtracting T1 from their respective weights, because T1 time units have been used. We
then complete this step by assigning marks to the new individuals, taken uniformly at random
from the set [n] \ {i1}, this mark set is denoted by I2.

We proceed by induction: suppose that we have reached the individuals i0, i1, . . . , ik, in this order,
so that the (updated) weight attached to the edge with endpoint ik was the minimal edge weight

at time Ak = T1 + T2 + . . . + Tk. We now form Xk+1
d
= Bin(n − 1, p) new edges and attach

them to ik. These edges are supplied by weights, taken i.i.d. with probability density f , whereas
at the same time, the weights to all other edges emanating from i0, i1, . . . , ik−1 are updated by
subtracting Tk. We assign marks analogously as before by drawing them uniformly at random
from the set [n] \ {ik}. Obviously, this mark set is denoted by Ik.

We thin the MBPT defined above as follows. At each time point Ak = T1 + T2 + . . . + Tk we
delete the newly found individual with mark ik and the entire tree emanating from ik, when

ik ∈ {i0, i1, . . . , ik−1}, (4.1)

i.e., we delete ik and all its offspring when the mark ik appeared previously. Observe that the
probability of the event (4.1) is at most k/n. The sets {Îk}k≥0 are obtained from {Ik}k≥0, by
deleting the thinned vertices.

Obviously, for each fixed n, the thinned MBPT will become empty after a finite time, even
in the super critical case ((n − 1)pn > 1), when the unthinned MBPT will survive with positive
probability. This is because we sample the marks from the finite set [n], and hence with probability
one at a certain random time all marks will have appeared. We consider the MBPT and its thinned
version up to the first generation that the thinned process becomes empty. Furthermore, consider
the ERRG with n vertices and attach weights to the edges independently (also independent from
the branching process) with the same marginal density f as used in the branching process. Then,
by the independence of binomial random variables X1,X2, . . . and the thinning described above,
for each t ≥ 0, the set of marks that are reached by time t in the thinned MBPT and the set of
vertices that are reached by time t in the ERRG, are equal in distribution. Since this holds for
each t ≥ 0 the proof of the following lemma is obvious:

Lemma 4.1 (FPP on ERRG is thinned CTMBP) Fix n ≥ 1 and p ∈ (0, 1). Consider the
thinned MBPT until extinction with i.i.d. weights having density f with support (0,∞). If we
apply independently an identical weight construction to the ERRG, then for any i0 ∈ [n], the
weight Wn(i0, j) of the shortest path between initial vertex i0 and any other vertex j ∈ [n] in the
ERRG is equal in distribution to the weight of the shortest path between i0 and j in the thinned
MBPT.
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Remark 4.2 (a) In both random environments (thinned MBPT and ERRG) it can happen that
i0 and j are not connected. We then put the weight equal to +∞.
(b) Observe that since the weight distribution admits a density and is defined on finite objects, the
minimal weight, if finite, uniquely identifies the minimal path and hence the number of edges on
this minimal path, the hopcount. Hence, Lemma 4.1 also proves that the hopcount between i0 and
j in the ERRG is equal in distribution to the hopcount between i0 and j in the thinned MBPT.

4.2 The continuous-time branching process

We study distance between uniformly chosen, connected, vertices in Gn(pn) with exponentially
distributed edge-weights. Since the vertices of the ERRG are exchangeable we can as well study
the distance between vertex 1 and vertex 2 conditioned on the event that 1 and 2 are in the giant
component. For the remainder of the paper we put:

f(x) = e−x, x > 0, (4.2)

the density of the exponential distribution with rate 1. For the initial vertex we take either i0 = 1
or i0 = 2, and, if necessary, we will use a superscript to indicate from which vertex we start. Since
we have a (distributional) embedding of the vertices of Gn(p), reached by time t, in the marked
branching process tree (see Lemma 4.1 and Remark 4.2) we can restrict our attention exclusively
to the MBPT and its thinned version.

We start from the individual with mark 1 and let fluid percolate at unit speed from this individual
until it reaches one of the children. Because the weights are exponentially distributed (see (4.2)),
the number of individuals that has been reached by time t ≥ 0 form a continuous time branching
process (CTMBP) [1, Chapter 2]. The alive individuals are defined as those individuals which
are directly connected to the reached individuals appropriately called wetted individuals. At
time t = 0 this number is S1 = X1. Then at the first splitting time T1 at which time the
second individual is wetted the number of alive vertices equals S2 = X1 + X2 − 1, since X2 new
individuals are born and one individual gave birth and died (became wet). So, starting from the
i.i.d. sequence X1,X2, . . . , we define the random walk

Sk = X1 + . . . + Xk − (k − 1), k ≥ 1 (4.3)

and the inter-splitting times Tk, k ≥ 1, where conditioned on X1,X2, . . . ,Xk, the random vari-
ables T1, T2, . . . , Tk are independent and where Tj has an exponential distribution with param-
eter Sj . Indeed, by the memoryless property of the exponential distribution, when t = Aj =
T1 + . . . + Tj , we have Sj+1 alive individuals and all their Sj+1 edges, with which they are at-
tached to the dead or wet individuals have an independent exponentially distributed random
variable with rate 1 as weight. Therefore the inter-splitting time Tj+1 until the next individ-
ual is wetted, conditioned on Sj+1, is equal in distribution to min1≤s≤Sj+1 Es, where E1, E2, . . .
are independent rate 1 exponentially distributed random variables. This shows that the condi-
tional distribution of Tj+1 is the correct one, since the minimum of q independent Exp(1) has an
exponential distribution with rate q.

At each splitting time Ak, k ≥ 1, the number of wetted individuals equals k + 1, whereas the
number of edges and endpoints competing to become wet equals Sk+1. We now introduce shortest-
weight trees. Since the ERRG is imbedded in the CTMBP, we introduce the SWT in terms of
marks and splitting times. The shortest weight tree SWTk is equal to the collection of marks
that are wetted at the kth splitting time Ak and we include in the definition the splitting-times
A1, A2, . . . , Ak. So, SWT0 = ({i0}, A0 = 0), the mark of the root, and

SWTk =
(

{i0, i1, . . . , ik}, {A0, A1, . . . , Ak}
)

, k ≥ 1, (4.4)
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where i0, i1, . . . , ik, denote the marks reached at the splitting times A0, A1, . . . , Ak, respectively.
To connect ij with the splitting time Aj , we introduce the mapping t(ij) = j, so that mark
i ∈ SWTk was reached at time At(i). For a fixed mark i ∈ SWTk and all marks j 6= i, the random
variables 11ij|SWTk that indicate whether edge ij is in the branching process tree (or in other
words: j is one of the alive individuals born out of i) are independent and satisfy

P

(

11ij = 1|SWTk

)

= pn. (4.5)

Furthermore, let us fix k ≥ 0 and consider the in total Sk+1 alive individuals at the splitting time
Ak. The edges between the wet mark i and the mark j, corresponding to an alive individual with
mark j, has weight Eij , i ∈ SWTk. Now observe from the memoryless property of the exponential
distribution, that, conditionally on SWTk,

Eij |SWTk
d
= Ak+1 −At(i) + E′

ij , (4.6)

where E′
ij are independent Exp(1) random variables.

4.3 Hopcount and weight from root to newly added individuals

Concerning the height and the weight of the path with minimal weight from root 1 in {SWTk}k≥0

to the mth individual that has been wetted we refer to (3.4) and (3.6), respectively, where the
random variables I1, I2, . . . , Im are conditionally independent given X1,X2, . . . ,Xm, the binomi-
ally distributed offspring in the tree with root 1, and where dj = Xj , sj = Sj. Indeed, the height
of the mth individual that has been wetted in the CTMBP is equal to the generation Gm of that
individual and its weight is equal to the splitting-time Am = T1 + . . . + Tm, where conditionally
on X1,X2, . . . ,Xm, the distribution of Tj is given by

Tj
d
= Ej/Sj , (4.7)

and where {Ei}∞i=1 are i.i.d. exponential random variables with mean 1, independent of all random
variables introduced earlier. The CLT for the hopcount Gm and the limit law for the weight Am

in the CTMBP can be deduced from Theorem 3.5 in the following way:

Proposition 4.3 (Asymptotics for shortest weight paths in the CTMBP) Consider
an i.i.d. sequence X1,X2, . . . , with a binomial distribution where the parameters n − 1 and pn
satisfy limn→∞ npn = λ > 1, and put β = λ/(λ− 1). Further more let Gm and Am be defined as
in (3.4) and (3.6), respectively, with di = Xi, i ≥ 1. Then, conditionally on Si = X1 + . . . + Xi −
(i − 1) > 0 for all 1 ≤ i ≤ m, the asymptotics in Theorem 3.5 (a-b) remain to hold, where the
limits are independent.

Proof. According to [11, Theorem 2.9], we can couple X ∼ Bin(n−1, pn) and D ∼ Poi((n−1)pn),
by means of a pair of variables (X̃, D̃) with X̃ ∼ Bin(n− 1, pn) and D̃ ∼ Poi((n− 1)pn), so that
for any ε > 0, and n sufficiently large,

P(X̃ 6= D̃) ≤ (n− 1)p2n ≤ (λ + ε)2

n
. (4.8)

Hence for m = o(n), we can couple the i.i.d. sequence X1,X2, . . . ,Xm to an i.i.d. sequence of
Poisson variables D1,D2, . . . ,Dm, such that

P(X̃i 6= D̃i, for some i ≤ m) ≤
m
∑

i=1

(λ + ε)2

n
= m

(λ + ε)2

n
→ 0. (4.9)
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Next, we define (Ji,Ki), 1 ≤ i ≤ m, conditioned on (X̃1, D̃1), . . . , (X̃m, D̃m) as follows. Let
U1, U2, . . . , Um be an i.i.d. sequence of uniform (0, 1) random variables. For each i, the sample
space of (Ji,Ki) is {0, 1}2, and the conditional probabilities are defined by

P(Ji = 1 | Ui) = 1
{Ui≤

X̂i

ŜX
i

}
, P(Ki = 1 | Ui) = 1

{Ui≤
D̂i

ŜD
i

}
(4.10)

where ŜX

i = (X̂1 + . . . + X̂i) − (i − 1), ŜD

i = (D̂1 + . . . + D̂i) − (i − 1), and where 1A de-
notes the indicator of the set A. Note that the joint distribution of (Ji,Ki), conditioned on
(X̃1, D̃1), . . . , (X̃m, D̃m), is completely specified by the probabilities in (4.10). Finally, set

Am = {(X̃1 = D̃1), . . . , (X̃m = D̃m)} (4.11)

Then by (4.9), we have that P(Amn) → 1, and

P

(

mn
∑

i=1

Ji =

mn
∑

i=1

Ki

)

≥ P(Amn) → 1, (4.12)

because on Amn we have Ji = Ki, 1 ≤ i ≤ mn. In order to prove Part (a), we have to show
that

∑mn

i=1 Ji conditioned on ŜX

i > 0, 1 ≤ i ≤ mn has, whp, the same distribution as
∑mn

i=1 Ki

conditioned on ŜD

i > 0, 1 ≤ i ≤ mn. Observe that the statement follows from (4.11) and (4.12)
since by the coupling introduced above,

P(ŜD

i > 0, 1 ≤ i ≤ mn) → 1 − pλ > 0. (4.13)

Hence, Part (a) follows from Part (a) of Theorem 3.5. Referring to Part (b) of Theorem 3.5 and the
definition of Am in (3.6), we conclude that the proof of Part (b) also follows in a straightforward
manner.

4.4 The connection time

In Definition (4.4) of Section 4.2 we have introduced {SWTk}k≥0, which includes the set of marks
of the individuals that are wet after the kth split. More precisely, we grow a CTMBP from a
root with mark 1 and include the marks that are successively reached and their splitting-times
in {SWT(1)

k }k≥0. Our plan is to grow SWT(1)

k until the set of marks has reached size an = ⌈√n⌉;
the branching process then contains an wet individuals and the same marks can appear more
than once. Then, we grow independently, starting from a root with mark 2, a second marked
branching process. We denote the shortest weight tree, i.e., the wetted marks and their splitting
times of this second process by {SWT(2)

k }k≥0. We stop the first time that this second process
contains a mark from SWT(1)

an , i.e., we stop growing {SWT(2)

k }k≥0 at the random time Cn defined
by

Cn = min{m ≥ 0 : SWT(2)
m ∩ SWT(1)

an 6= ∅}, (4.14)

where SWT(2)
m ∩ SWT(1)

an denotes the common marks in SWT(2)
m and SWT(1)

an . We now reach
the main theorem of this section, where we establish the connection between the weight Wn

and the hopcount Hn in the ERRG and the weight and height in the shortest-weight trees
{SWT(i)

k }k≥0, i = 1, 2, introduced in this section.

Theorem 4.4 (Connecting hopcount to heights in CTMBP) Let Hn, Wn denote the hop-
count and the weight, respectively, of the minimal path between the vertices 1 and 2 in the Erdős-
Rényi graph Gn(pn), where we condition on the vertices 1 and 2 to be in the giant component.
(a) For n → ∞, whp,

Hn
d
= G(1)

Un,an
+ G(2)

Cn
, (4.15)
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where GUn,an is the height (or generation) of a uniformly chosen mark in SWT(1)
an , and G(2)

Cn
is

the height of the mark attached at the random time Cn defined in (4.14), and where conditioned
on Cn the variables G(1)

Un,an
and G(2)

Cn
are independent.

(b) Similarly, for n → ∞, whp,

Wn
d
= A(1)

an + A(2)

Cn
, (4.16)

where A(i)
m , i = 1, 2, is the splitting-time of the mth mark in {SWT(i)

k }k≥0.

For the moment, we postpone the proof of Theorem 4.4. We first need to establish two interme-
diate results. Observe that if in SWT(i)

k , i = 1, 2, all marks on the minimal weight path between
the root i and some other mark U ∈ SWT(i)

k appeared for the first time, then the entire path is
contained in the thinned branching process, and by Theorem 4.1 and the remark following that
same theorem both the weight and the hopcount in the ERRG between the vertices i and U
are equal in distribution to G(i)

U and A(i)

U , where G(i)

U denotes the generation of mark U and A(i)

U

denotes the splitting-time of U . Hence, in order to prove Theorem 4.4, we need an upper bound
on the expected number of marks in SWT(i)

k whose minimal weight path contains thinned marks.
This will be the content of the first lemma below. The second lemma below shows that Cn/an
converges to an Exp(1) random variable, so that we have a handle on the size of Cn.

Lemma 4.5 (A coupling bound) Fix k ≥ 1 and denote by M (i)

k , i = 1, 2, the number of marks
in SWT(i)

k for which the minimal path from root i to that mark contains a thinned mark (or
individual). Then

E[M (i)

k ] ≤ k2

n− an
, i = 1, 2. (4.17)

The above inequality holds in SWT(1)

k for 1 ≤ k ≤ an and in SWT(2)

k for 1 ≤ k ≤ Cn.

Proof. We start with SWT(1)

k . Let SWT(1)

k contain M (1)

k marks whose minimal path contains
at least one thinned mark. The new mark which is drawn to be the mark of the newly wetted
vertex in SWT(1)

k+1 attaches to one of these M (1)

k marks with probability M (1)

k /(k + 1), since

|SWT(1)

k | = k + 1. If the new mark is attached to a vertex with one of the k + 1 − M (1)

k other
marks, then with probability at most (k + 1)/n this mark appeared previously and has to be
thinned. Hence

E[M (1)

k+1 −M (1)

k |M (1)

k ] ≤ k + 1

n
+

M (1)

k

k + 1
. (4.18)

For SWT(2)

k the fraction k+1
n in the recursion should be replaced by k+1

n−an
, because for each

1 ≤ k ≤ Cn we know that SWT(1)
an contains at most an different marks. Write bk = E[M (1)

k ].
Taking double expectations in (4.18) and solving the recursive inequality yields:

bk+1

k + 1
≤ 1

n
+

bk
k
, so that

bk+1

k + 1
≤ k

n
.

This yields E[M (1)

k ] ≤ k2

n . The proof for SWT(2)

k is similar, however since at most an marks are
occupied by SWT(1)

an , we replace n by n− an and this yields (4.17).

Lemma 4.6 (Weak convergence of connection time) Conditioned on the event that both
CTMBPs survive, the connection time Cn, defined in (4.14), satisfies the asymptotics

Cn/an
d→ E, (4.19)

where E has an exponential distribution with rate 1.
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Proof. Define by Q
(j)
n the conditional probability given both SWT(1)

an and SWT(2)

j . Similar to [3,
Lemma B.1], the probability P(Cn > m) satisfies the following product form:

P(Cn > m) = E

[

m
∏

j=1

Q(j)
n (Cn > j|Cn > j − 1)

]

. (4.20)

We omit the proof of (4.20), which follows by suitable conditioning arguments and is identical to
[3, Proof of Lemma B.1]. Since both branching processes survive, SWT(1)

an contains an(1 + o(1))
different marks and by (4.17) the expected number of multiple marks is O(1). From this we
obtain that as long as the second branching process does not die out,

Q(j)
n (Cn > j|Cn > j − 1) = 1 − an(1 + o(1))

n
.

Substitution of this into (4.20) with m = anx, and x > 0, yields

P(Cn > anx) =
[

1 − an(1 − o(1))

n

]anx
→ e−x, (4.21)

and we arrive at (4.19).

Proof of Theorem 4.4. We start with the proof of the hopcount. Since 1 and 2 are connected,
with high probability, 1 and 2 are contained in the giant component of the ERRG. This implies
that both CTMBP’s do not die out. Consider the mark set SWT(1)

an and choose one of the wet
individuals at random. The mark number of this individual will be denoted by Un. Then the
probability that the shortest weight path from root 1 to Un contains a thinned mark is at most

E[M (1)
an ]

an
≤ an

n− an
→ 0. (4.22)

This shows that whp the hopcount between vertex 1 and vertex Un in Gn(pn) is given by G(1)

Un,an
.

By (4.19), Cn = oP(
√
n log n), and a similar argument shows that, whp, the hopcount between 2

and the individual corresponding to the last mark added to SWT(2)

Cn
is equal to G(2)

Cn
.

Now recall the discussion around (4.5) and (4.6). We conclude from this discussion that indeed
at time Cn one of the marks in SWT(1)

an is chosen uniformly at random and this establishes (4.15).
Finally, we introduce the notation p(i) for i ∈ SWTk, to denote the parent of mark i, i.e., the
mark to which i was attached in SWTk. Because of the way the exponential weight in (4.6) can
be re-allocated to edges in SWT(1)

an , the edge {p(i), i} gets weight Aan+1 − At(i) and the weight
E′

ij is allocated to ij, with i ∈ SWT(1)
an and j /∈ SWT(1)

an , so that we get (4.16).

5 Proof of the main results

In this section, we complete the proof of our main results.

Proof of Theorem 2.1. Observe that the statistical dependence between the two CTMBPs,
i.e., the one that grows from the root with mark 1 and the one that grows from the root with
mark 2, is introduced only through their marks. Moreover, in each tree, the hopcount of the mth

added individual is independent of the marks. Hence, conditioned on the event {Cn = m}, the
random variables G(1)

Un,an
and G(2)

Cn
= G(2)

m are statistically independent.
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Denote by Z(1)
n = (G(1)

Un,an
− β log an)/

√
β log an and by Z(2)

n = (G(2)

Cn
− β log Cn)/

√
β log Cn, and

by ξ1, ξ2 two independent standard normal random variables. Then, by Proposition 4.3, for any
sequence mn = o(n) → ∞, and for any bounded continuous function g of two real variables

lim
n→∞

E[g(Z(1)
n , Z(2)

n )|Cn = mn] = E[g(ξ1, ξ2)]. (5.1)

Hence by bounded convergence (the function g is bounded), and using (4.19),

lim
n→∞

E[g(Z(1)
n , Z(2)

n )] =

∫ ∞

0
lim
n→∞

E

[

g(Z(1)
n , Z(2)

n )|Cn = ⌈any⌉
]

dP(Cn ≤ ⌈any⌉)

=

∫ ∞

0
E[g(ξ1, ξ2)]e−y dy = E[g(ξ1, ξ2)].

This shows the joint weak convergence of the pair (Z(1)
n , Z(2)

n ) to (ξ1, ξ2). By the continuous
mapping theorem [4, Theorem 5.1] applied to (x, y) 7→ x + y, we then find that

Hn − β log n√
log n

=
G(1)

Un,an
− (β/2) log n
√

log n
+

G(2)

Cn
− (β/2) log n
√

log n

=
G(1)

Un,an
− β log an√
log an

·
√

log an√
log n

+
G(2)

Cn
− β log Cn√
log Cn

·
√

log Cn√
log n

+ oP(1)

d→ ξ1/
√

2 + ξ2/
√

2, (5.2)

and we note that (ξ1 + ξ2)/
√

2 is again standard normal.

Proof of Theorem 2.2. Similarly to the proof of Theorem 2.1, for any sequence mn → ∞,

(

A(1)
an − γ log an, A

(2)

Cn
− γ log Cn|Cn = mn

)

d−→ (X1,X2), (5.3)

with X1,X2 two independent copies of X = −γ log(γWλ). We rewrite the second coordinate as:

A(2)

Cn
− γ log Cn = A(2)

Cn
− γ log an − γ log(Cn/an).

Hence, from (5.3) and the limit law for Cn/an given in (4.19), we obtain:

Wn − γ log n = A(1)
an + A(2)

Cn
− 2γ log an

= A(1)
an − γ log an + A(2)

Cn
− γ log Cn + γ log(Cn/an)

d→ X1 + X2 + γ log(E),

where E
d
= Exp(1) is independent of (X1,X2). We can reformulate this as

(λ− 1)Wn − log n
d−→ − log(γW (1)

λ ) − log(γW (2)

λ ) −M, (5.4)

where M = − log(E) has a Gumbel distribution, i.e., P(M ≤ x) = Λ(x) = exp(−e−x).

Proof of Corollary 2.4. We start with a proof of (3.10), with β replaced by βn = λn/(λn − 1).
We give the proof for the CTMBP with Bin(n, λn/n) offspring distribution (thus avoiding the
coupling with Poisson random variables in Proposition 4.3). Since, for λn → ∞, any two vertices
are, whp, connected it is not necessary to condition on the event {Si > 0, 1 ≤ i ≤ m}, and
therefore it is straightforward from (3.4) and (3.5) that

Gm
d
=

m
∑

i=1

Ii, where P(Ii = 1|{D(n)

i }1≤i≤m) = D(n)

i /S(n)

i , (5.5)
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with D(n)

1 ,D(n)

2 , . . . ,D(n)
m , independent Bin(n, λn/n) and S(n)

i =
∑i

j=1D
(n)

j − (i − 1). By [14,

Chapter 3], the random variables D(n)

j concentrate around λn, whereas S(n)

i concentrates around
i(λn − 1) + 1. Therefore Gm in (5.5) satisfies the same asympotics as

m
∑

i=1

Î(n)

i , where P(Î(n)

i = 1) =
λn

i(λn − 1)
=

βn
i
,

with Î(n)

1 , Î(n)

2 , . . . , Î(n)
m independent. Applying Lemma 3.4, we conclude that for m = mn → ∞,

Gm − βn
∑m

i=1 1/i
√

∑m
i=1(βn/i)(1 − βn/i)

d−→ Z, (5.6)

where Z is standard normal. Note that the denominator of (5.6) can be replaced by
√

logm,
since βn → 1 and hence

∑m
i=1(βn/i)(1 − βn/i)/ log m → 1. This proves (3.10), with β replaced

by βn = λn/(λn − 1). The centering constant βn
∑m

i=1 1/i can be replaced by βn logm, but in
general not by logm, except when (βn − 1)

√
logmn → 0, or equivalently λn = o(

√
logmn).

We now turn to the proof of Part (b) of Corollary 2.4. Again, we will use that S(n)

i concentrates
around i(λn − 1) + 1. Hence, from (3.6),

Am
d
=

m
∑

i=1

Ei/S
(n)

i ≈ 1

λn − 1

m
∑

i=1

Ei/i.

Now define Bn as a random variable with distribution equal to the maximum of n independent
exponentially distributed random variables with rate 1, i.e.,

P(Bn ≤ x) = (1 − e−x)n.

Then Ei/i, 1 ≤ i ≤ n, are equal in distribution to the spacings of these exponentially distributed

variables i.e., Bn
d
=

∑n
i=1Ei/i. Consequently, with γn = 1/(λn − 1),

lim
n→∞

P(γ−1
n A(1)

an − log an ≤ x) = lim
n→∞

P(Ban − log an ≤ x)

= lim
n→∞

(1 − e−x+log an)an = Λ(x), (5.7)

where Λ denotes the distribution function of a Gumbel random variable, i.e., Λ(x) = exp(−e−x).
Parallel to the proof of Theorem 2.2, we conclude that

(

γ−1
n A(1)

an − log an, γ
−1
n A(2)

Cn
− log Cn

) d→ (M1,M2),

where M1 and M2 are two independent copies of a random variable with distribution function Λ.
Finally, since Cn/an converges in distribution to an Exp(1) random variable, we conclude from
the continuous mapping theorem that (2.5) holds.

Proof of Theorem 2.6. This proof is a consequence of Theorems 2.1-2.2 and the results on the
diameter of Gn(λ/n) proved in [8]. We shall sketch the proof. We start by recalling some notation
and properties of the ERRG from [8]. Let the 2-core of Gn(λ/n) be the maximal subgraph of
which each vertex has degree at least 2. The study of the diameter in [8] is based on the crucial
observation that any longest shortest path in a random graph (with minimum degree 1) will occur
between a pair vertices u, v of degree 1. Moreover, this path will consist of three segments: a
path from u to the 2-core, a path through the 2-core, a path from the 2-core to v. While this is
used in [8] only for graph distances, the same applies to FPP on a graph. Now, when we pick two
uniform vertices i and j (as in Theorems 2.1-2.2), then the paths from i and j to the 2-core are
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(a) unique and (b) whp of length o(log n) (since the giant component with the 2-core removed
is a collection of trees of which most trees have size o(log n)). As a result, Theorems 2.1-2.2 also
hold when picking two uniform vertices in the 2-core.

Next we investigate the maximal weight and length of shortest-weight paths in the ERRG. In [8,
Section 6.1], it is shown that whp there are two paths of length at least (1/ log (−µλ)−ε) log n in
the giant component with the 2-core removed connecting two vertices i∗ and j∗ of degree 1 to two
vertices U, V in the 2-core. Since these paths are unique, they must also be the shortest-weight
paths for FPP on the ERRG between the vertices i∗ and U , and j∗ and V , respectively. The
weights along these paths is thus a sum of (1/ log (−µλ)− ε) log n i.i.d. Exp(1) random variables.
By exchangeability of the vertices, U, V are uniform vertices in the core. Thus, the shortest-
weight path from i∗ to j∗ has at least λ/(λ− 1) log n+ oP(log(n)) + (2/ log (−µλ)− 2ε) log n hops,
as required, while its weight is at least 1/(λ− 1) log n+ oP(log(n)) + (2/ log (−µλ)− 2ε) log n.
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