1,225 research outputs found

    Bat Algorithm: Literature Review and Applications

    Full text link
    Bat algorithm (BA) is a bio-inspired algorithm developed by Yang in 2010 and BA has been found to be very efficient. As a result, the literature has expanded significantly in the last 3 years. This paper provides a timely review of the bat algorithm and its new variants. A wide range of diverse applications and case studies are also reviewed and summarized briefly here. Further research topics are also discussed.Comment: 10 page

    Elephant Search with Deep Learning for Microarray Data Analysis

    Full text link
    Even though there is a plethora of research in Microarray gene expression data analysis, still, it poses challenges for researchers to effectively and efficiently analyze the large yet complex expression of genes. The feature (gene) selection method is of paramount importance for understanding the differences in biological and non-biological variation between samples. In order to address this problem, a novel elephant search (ES) based optimization is proposed to select best gene expressions from the large volume of microarray data. Further, a promising machine learning method is envisioned to leverage such high dimensional and complex microarray dataset for extracting hidden patterns inside to make a meaningful prediction and most accurate classification. In particular, stochastic gradient descent based Deep learning (DL) with softmax activation function is then used on the reduced features (genes) for better classification of different samples according to their gene expression levels. The experiments are carried out on nine most popular Cancer microarray gene selection datasets, obtained from UCI machine learning repository. The empirical results obtained by the proposed elephant search based deep learning (ESDL) approach are compared with most recent published article for its suitability in future Bioinformatics research.Comment: 12 pages, 5 Tabl

    Power Quality Improvement Using Series Active Power Filter Based On Gravitational Search Algorithm

    Get PDF
    This paper proposes a heuristic control of the series active power filter for power quality enhancement. In this context, the series active filter is better utilized as a voltage source controller contrary to its conventional usage as variable impedance. The present-day utility system as a linear model is unsatisfactory and the steps are laid down to discuss utility system as a nonlinear model. This paper deals power quality disturbances like voltage sag/swell, voltage error and THD with robust heuristic algorithms like the gravitational search algorithms (GSA) and it is further compared with firefly (FF) algorithm. The harmonic reduction in the source current and mitigation of sags/swells in the load voltage is carried out with optimal tuning of the PI controller. The series active power filter as a harmonic suppressor with a specific reference controlled strategy is discussed in this paper. The synchronous reference frame (SRF) theory is used to generate the reference voltage signals required for compensation. The hysteresis band current controller (HBCC) is used to perform the switching operation of Voltage Source Inverter. Simulations are carried out in the MATLAB/SIMULINK environment

    A Brief Survey on Intelligent Swarm-Based Algorithms for Solving Optimization Problems

    Get PDF
    This chapter presents an overview of optimization techniques followed by a brief survey on several swarm-based natural inspired algorithms which were introduced in the last decade. These techniques were inspired by the natural processes of plants, foraging behaviors of insects and social behaviors of animals. These swam intelligent methods have been tested on various standard benchmark problems and are capable in solving a wide range of optimization issues including stochastic, robust and dynamic problems

    Chaotic Quantum Double Delta Swarm Algorithm using Chebyshev Maps: Theoretical Foundations, Performance Analyses and Convergence Issues

    Full text link
    Quantum Double Delta Swarm (QDDS) Algorithm is a new metaheuristic algorithm inspired by the convergence mechanism to the center of potential generated within a single well of a spatially co-located double-delta well setup. It mimics the wave nature of candidate positions in solution spaces and draws upon quantum mechanical interpretations much like other quantum-inspired computational intelligence paradigms. In this work, we introduce a Chebyshev map driven chaotic perturbation in the optimization phase of the algorithm to diversify weights placed on contemporary and historical, socially-optimal agents' solutions. We follow this up with a characterization of solution quality on a suite of 23 single-objective functions and carry out a comparative analysis with eight other related nature-inspired approaches. By comparing solution quality and successful runs over dynamic solution ranges, insights about the nature of convergence are obtained. A two-tailed t-test establishes the statistical significance of the solution data whereas Cohen's d and Hedge's g values provide a measure of effect sizes. We trace the trajectory of the fittest pseudo-agent over all function evaluations to comment on the dynamics of the system and prove that the proposed algorithm is theoretically globally convergent under the assumptions adopted for proofs of other closely-related random search algorithms.Comment: 27 pages, 4 figures, 19 table

    Benchmarking CPUs and GPUs on embedded platforms for software receiver usage

    Get PDF
    Smartphones containing multi-core central processing units (CPUs) and powerful many-core graphics processing units (GPUs) bring supercomputing technology into your pocket (or into our embedded devices). This can be exploited to produce power-efficient, customized receivers with flexible correlation schemes and more advanced positioning techniques. For example, promising techniques such as the Direct Position Estimation paradigm or usage of tracking solutions based on particle filtering, seem to be very appealing in challenging environments but are likewise computationally quite demanding. This article sheds some light onto recent embedded processor developments, benchmarks Fast Fourier Transform (FFT) and correlation algorithms on representative embedded platforms and relates the results to the use in GNSS software radios. The use of embedded CPUs for signal tracking seems to be straight forward, but more research is required to fully achieve the nominal peak performance of an embedded GPU for FFT computation. Also the electrical power consumption is measured in certain load levels.Peer ReviewedPostprint (published version

    Linear Phase FIR Low Pass Filter Design Based on Firefly Algorithm

    Get PDF
    In this paper, a linear phase Low Pass FIR filter is designed and proposed based on Firefly algorithm. We exploit the exploitation and exploration mechanism with a local search routine to improve the convergence and get higher speed computation. The optimum FIR filters are designed based on the Firefly method for which the finite word length is used to represent coefficients. Furthermore, Particle Swarm Optimization (PSO) and Differential Evolution algorithm (DE) will be used to show the solution. The results will be compared with PSO and DE methods. Firefly algorithm and Parks–McClellan (PM) algorithm are also compared in this paper thoroughly. The design goal is successfully achieved in all design examples using the Firefly algorithm. They are compared with that obtained by using the PSO and the DE algorithm. For the problem at hand, the simulation results show that the Firefly algorithm outperforms the PSO and DE methods in some of the presented design examples. It also performs well in a portion of the exhibited design examples particularly in speed and quality

    Designs of Digital Filters and Neural Networks using Firefly Algorithm

    Get PDF
    Firefly algorithm is an evolutionary algorithm that can be used to solve complex multi-parameter problems in less time. The algorithm was applied to design digital filters of different orders as well as to determine the parameters of complex neural network designs. Digital filters have several applications in the fields of control systems, aerospace, telecommunication, medical equipment and applications, digital appliances, audio recognition processes etc. An Artificial Neural Network (ANN) is an information processing paradigm that is inspired by the way biological nervous systems, such as the brain, processes information and can be simulated using a computer to perform certain specific tasks like clustering, classification, and pattern recognition etc. The results of the designs using Firefly algorithm was compared to the state of the art algorithms and found that the digital filter designs produce results close to the Parks McClellan method which shows the algorithm’s capability of handling complex problems. Also, for the neural network designs, Firefly algorithm was able to efficiently optimize a number of parameter values. The performance of the algorithm was tested by introducing various input noise levels to the training inputs of the neural network designs and it produced the desired output with negligible error in a time-efficient manner. Overall, Firefly algorithm was found to be competitive in solving the complex design optimization problems like other popular optimization algorithms such as Differential Evolution, Particle Swarm Optimization and Genetic Algorithm. It provides a number of adjustable parameters which can be tuned according to the specified problem so that it can be applied to a number of optimization problems and is capable of producing quality results in a reasonable amount of time

    2DOF PID Controller Design for a Class of FOPTD Models–An Analysis with Heuristic Algorithms

    Get PDF
    AbstractIn recent years, a number of controller design procedures are developed and implemented in process industries to enhance the performance of closed loop processes. In this paper, heuristic algorithm based Two Degrees Of Freedom (2DOF) PID controller design is proposed for a class of First Order Plus Time Delay (FOPTD) systems existing in the literature. Minimization of the weighted sum of multiple objective functions is considered to monitor the heuristic search towards the optimal controller parameters. A detailed comparative analysis between well known heuristic methods, such as Particle Swarm Optimization (PSO), Bacterial Foraging Optimization (BFO), Cuckoo Search (CS) and Firefly Algorithm (FA) are presented. The popular 2DOF PID structures, such as Feed Back Structure (FBS) and Feed Forward Structure (FFS) are considered in this work to enhance the performance of FOPTD systems. From the results, it is noted that, proposed controller provides enhanced results for the reference tracking and disturbance rejection operations
    • …
    corecore